Abstract

Scanning transmission electron microscopy in combination with electron energy-loss spectroscopy is a powerful tool for the spatial and spectral characterization of the plasmonic modes of lithographically defined photonic meta-atoms. As an example, we present a size dependence study of the resonance energies of the plasmonic modes of a series of isolated split-ring resonators. Furthermore, we show that the comparison of the plasmonic maps of a split-ring resonator and the corresponding complementary split-ring resonator allows a direct visualization of Babinet’s principle. Our experiments are in good agreement with numerical calculations based on a discontinuous Galerkin time-domain approach.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [Crossref] [PubMed]
  2. S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
    [Crossref] [PubMed]
  3. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
    [Crossref] [PubMed]
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  5. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
    [Crossref] [PubMed]
  6. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
    [Crossref] [PubMed]
  7. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
    [Crossref] [PubMed]
  8. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  9. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  10. J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
    [Crossref]
  11. M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
    [Crossref]
  12. M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
    [Crossref] [PubMed]
  13. B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009).
    [Crossref]
  14. M. N’Gom, S. Li, G. Schatz, R. Erni, A. Agarwal, N. Kotov, and T. Norris, “Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods,” Phys. Rev. B 80(11), 113411 (2009).
    [Crossref]
  15. F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C. Van Haesendonck, S. P. Ringer, M. Han, Z. Liu, and G. Wang, “Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy,” Small 6(3), 446–451 (2010).
    [Crossref] [PubMed]
  16. W. Sigle, J. Nelayah, C. T. Koch, and P. A. van Aken, “Electron energy losses in Ag nanoholes--from localized surface plasmon resonances to rings of fire,” Opt. Lett. 34(14), 2150–2152 (2009).
    [Crossref] [PubMed]
  17. G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
    [Crossref] [PubMed]
  18. A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
    [Crossref] [PubMed]
  19. F. J. García de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100(10), 106804 (2008).
    [Crossref] [PubMed]
  20. U. Hohenester, H. Ditlbacher, and J. R. Krenn, “Electron-energy-loss spectra of plasmonic nanoparticles,” Phys. Rev. Lett. 103(10), 106801 (2009).
    [Crossref] [PubMed]
  21. T. Walther, E. Quandt, H. Stegmann, A. Thesen, and G. Benner, “First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope,” Ultramicroscopy 106(11-12), 963–969 (2006).
    [Crossref] [PubMed]
  22. J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods (Springer, 2008).
  23. J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics Nanostruct. Fundam. Appl. 7(1), 2–11 (2009).
    [Crossref]
  24. K. Stannigel, M. König, J. Niegemann, and K. Busch, “Discontinuous Galerkin time-domain computations of metallic nanostructures,” Opt. Express 17(17), 14934–14947 (2009).
    [Crossref] [PubMed]
  25. K. Busch, M. König, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. (to be published), doi:.
    [Crossref]
  26. C. Matyssek, J. Niegemann, W. Hergert, and K. Busch, “Computing electron energy loss spectra with the Discontinuous Galerkin Time-Domain method,” Photonics Nanostruct. Fundam. Appl. (to be published), doi:.
    [Crossref]
  27. P.-B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  28. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
    [Crossref] [PubMed]
  29. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
    [Crossref] [PubMed]
  30. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
    [Crossref] [PubMed]
  31. T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
    [Crossref]
  32. A. Bitzer, A. Ortner, H. Merbold, T. Feurer, and M. Walther, “Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle,” Opt. Express 19(3), 2537–2545 (2011).
    [Crossref] [PubMed]

2011 (2)

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
[Crossref] [PubMed]

A. Bitzer, A. Ortner, H. Merbold, T. Feurer, and M. Walther, “Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle,” Opt. Express 19(3), 2537–2545 (2011).
[Crossref] [PubMed]

2010 (2)

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[Crossref] [PubMed]

F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C. Van Haesendonck, S. P. Ringer, M. Han, Z. Liu, and G. Wang, “Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy,” Small 6(3), 446–451 (2010).
[Crossref] [PubMed]

2009 (9)

W. Sigle, J. Nelayah, C. T. Koch, and P. A. van Aken, “Electron energy losses in Ag nanoholes--from localized surface plasmon resonances to rings of fire,” Opt. Lett. 34(14), 2150–2152 (2009).
[Crossref] [PubMed]

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009).
[Crossref]

M. N’Gom, S. Li, G. Schatz, R. Erni, A. Agarwal, N. Kotov, and T. Norris, “Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods,” Phys. Rev. B 80(11), 113411 (2009).
[Crossref]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

U. Hohenester, H. Ditlbacher, and J. R. Krenn, “Electron-energy-loss spectra of plasmonic nanoparticles,” Phys. Rev. Lett. 103(10), 106801 (2009).
[Crossref] [PubMed]

J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics Nanostruct. Fundam. Appl. 7(1), 2–11 (2009).
[Crossref]

K. Stannigel, M. König, J. Niegemann, and K. Busch, “Discontinuous Galerkin time-domain computations of metallic nanostructures,” Opt. Express 17(17), 14934–14947 (2009).
[Crossref] [PubMed]

2008 (1)

F. J. García de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100(10), 106804 (2008).
[Crossref] [PubMed]

2007 (5)

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[Crossref]

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

2006 (4)

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
[Crossref] [PubMed]

T. Walther, E. Quandt, H. Stegmann, A. Thesen, and G. Benner, “First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope,” Ultramicroscopy 106(11-12), 963–969 (2006).
[Crossref] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

2005 (2)

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

2004 (2)

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1972 (1)

P.-B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Agarwal, A.

M. N’Gom, S. Li, G. Schatz, R. Erni, A. Agarwal, N. Kotov, and T. Norris, “Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods,” Phys. Rev. B 80(11), 113411 (2009).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Baena, J. D.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Benner, G.

T. Walther, E. Quandt, H. Stegmann, A. Thesen, and G. Benner, “First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope,” Ultramicroscopy 106(11-12), 963–969 (2006).
[Crossref] [PubMed]

Beruete, M.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Bitzer, A.

Bonache, J.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Bosman, M.

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
[Crossref]

Boudarham, G.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[Crossref] [PubMed]

Brueck, S. R. J.

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Busch, K.

J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics Nanostruct. Fundam. Appl. 7(1), 2–11 (2009).
[Crossref]

K. Stannigel, M. König, J. Niegemann, and K. Busch, “Discontinuous Galerkin time-domain computations of metallic nanostructures,” Opt. Express 17(17), 14934–14947 (2009).
[Crossref] [PubMed]

K. Busch, M. König, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. (to be published), doi:.
[Crossref]

C. Matyssek, J. Niegemann, W. Hergert, and K. Busch, “Computing electron energy loss spectra with the Discontinuous Galerkin Time-Domain method,” Photonics Nanostruct. Fundam. Appl. (to be published), doi:.
[Crossref]

Chen, C. H.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

Christy, R. W.

P.-B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, M. W.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

Colliex, C.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[Crossref]

Cortie, M. B.

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Deng, J. P.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

Ditlbacher, H.

U. Hohenester, H. Ditlbacher, and J. R. Krenn, “Electron-energy-loss spectra of plasmonic nanoparticles,” Phys. Rev. Lett. 103(10), 106801 (2009).
[Crossref] [PubMed]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Erni, R.

M. N’Gom, S. Li, G. Schatz, R. Erni, A. Agarwal, N. Kotov, and T. Norris, “Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods,” Phys. Rev. B 80(11), 113411 (2009).
[Crossref]

Etrich, C.

Falcone, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Fan, W. J.

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

Fedotov, V. A.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
[Crossref] [PubMed]

Feth, N.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[Crossref] [PubMed]

Feurer, T.

Frauenglass, A.

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

García de Abajo, F. J.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

F. J. García de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100(10), 106804 (2008).
[Crossref] [PubMed]

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[Crossref]

García de Abajo, J.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[Crossref] [PubMed]

Giessen, H.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref] [PubMed]

Han, M.

F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C. Van Haesendonck, S. P. Ringer, M. Han, Z. Liu, and G. Wang, “Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy,” Small 6(3), 446–451 (2010).
[Crossref] [PubMed]

He, L.

F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C. Van Haesendonck, S. P. Ringer, M. Han, Z. Liu, and G. Wang, “Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy,” Small 6(3), 446–451 (2010).
[Crossref] [PubMed]

Henrard, L.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[Crossref]

Hergert, W.

C. Matyssek, J. Niegemann, W. Hergert, and K. Busch, “Computing electron energy loss spectra with the Discontinuous Galerkin Time-Domain method,” Photonics Nanostruct. Fundam. Appl. (to be published), doi:.
[Crossref]

Hofer, F.

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009).
[Crossref]

Hohenester, U.

U. Hohenester, H. Ditlbacher, and J. R. Krenn, “Electron-energy-loss spectra of plasmonic nanoparticles,” Phys. Rev. Lett. 103(10), 106801 (2009).
[Crossref] [PubMed]

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Johnson, P.-B.

P.-B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kaiser, S.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

Keast, V. J.

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
[Crossref]

Klein, M. W.

Koch, C. T.

Kociak, M.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[Crossref] [PubMed]

F. J. García de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100(10), 106804 (2008).
[Crossref] [PubMed]

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[Crossref]

Koh, A. L.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
[Crossref] [PubMed]

König, M.

J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics Nanostruct. Fundam. Appl. 7(1), 2–11 (2009).
[Crossref]

K. Stannigel, M. König, J. Niegemann, and K. Busch, “Discontinuous Galerkin time-domain computations of metallic nanostructures,” Opt. Express 17(17), 14934–14947 (2009).
[Crossref] [PubMed]

K. Busch, M. König, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. (to be published), doi:.
[Crossref]

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Kotov, N.

M. N’Gom, S. Li, G. Schatz, R. Erni, A. Agarwal, N. Kotov, and T. Norris, “Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods,” Phys. Rev. B 80(11), 113411 (2009).
[Crossref]

Krenn, J. R.

U. Hohenester, H. Ditlbacher, and J. R. Krenn, “Electron-energy-loss spectra of plasmonic nanoparticles,” Phys. Rev. Lett. 103(10), 106801 (2009).
[Crossref] [PubMed]

Kuhl, J.

Laso, M. A. G.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Lederer, F.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref] [PubMed]

Li, J.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Li, S.

M. N’Gom, S. Li, G. Schatz, R. Erni, A. Agarwal, N. Kotov, and T. Norris, “Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods,” Phys. Rev. B 80(11), 113411 (2009).
[Crossref]

Linden, S.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Liu, Z.

F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C. Van Haesendonck, S. P. Ringer, M. Han, Z. Liu, and G. Wang, “Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy,” Small 6(3), 446–451 (2010).
[Crossref] [PubMed]

Liz-Marzán, L. M.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[Crossref]

Lopetegi, T.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Lu, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Maaroof, A. I.

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
[Crossref]

Maier, S. A.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
[Crossref] [PubMed]

Malloy, K. J.

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

Marqués, R.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Martín, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Matyssek, C.

C. Matyssek, J. Niegemann, W. Hergert, and K. Busch, “Computing electron energy loss spectra with the Discontinuous Galerkin Time-Domain method,” Photonics Nanostruct. Fundam. Appl. (to be published), doi:.
[Crossref]

McComb, D. W.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
[Crossref] [PubMed]

Merbold, H.

Meyrath, T. P.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

Minhas, B. K.

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

Mou, C. Y.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

Myroshnychenko, V.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[Crossref] [PubMed]

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

N’Gom, M.

M. N’Gom, S. Li, G. Schatz, R. Erni, A. Agarwal, N. Kotov, and T. Norris, “Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods,” Phys. Rev. B 80(11), 113411 (2009).
[Crossref]

Nelayah, J.

W. Sigle, J. Nelayah, C. T. Koch, and P. A. van Aken, “Electron energy losses in Ag nanoholes--from localized surface plasmon resonances to rings of fire,” Opt. Lett. 34(14), 2150–2152 (2009).
[Crossref] [PubMed]

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[Crossref]

Niegemann, J.

J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics Nanostruct. Fundam. Appl. 7(1), 2–11 (2009).
[Crossref]

K. Stannigel, M. König, J. Niegemann, and K. Busch, “Discontinuous Galerkin time-domain computations of metallic nanostructures,” Opt. Express 17(17), 14934–14947 (2009).
[Crossref] [PubMed]

K. Busch, M. König, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. (to be published), doi:.
[Crossref]

C. Matyssek, J. Niegemann, W. Hergert, and K. Busch, “Computing electron energy loss spectra with the Discontinuous Galerkin Time-Domain method,” Photonics Nanostruct. Fundam. Appl. (to be published), doi:.
[Crossref]

Norris, T.

M. N’Gom, S. Li, G. Schatz, R. Erni, A. Agarwal, N. Kotov, and T. Norris, “Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods,” Phys. Rev. B 80(11), 113411 (2009).
[Crossref]

Ortner, A.

Park, Y. S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Pastoriza-Santos, I.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[Crossref]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Quandt, E.

T. Walther, E. Quandt, H. Stegmann, A. Thesen, and G. Benner, “First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope,” Ultramicroscopy 106(11-12), 963–969 (2006).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Ringer, S. P.

F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C. Van Haesendonck, S. P. Ringer, M. Han, Z. Liu, and G. Wang, “Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy,” Small 6(3), 446–451 (2010).
[Crossref] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Rockstuhl, C.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref] [PubMed]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Schaffer, B.

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009).
[Crossref]

Schatz, G.

M. N’Gom, S. Li, G. Schatz, R. Erni, A. Agarwal, N. Kotov, and T. Norris, “Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods,” Phys. Rev. B 80(11), 113411 (2009).
[Crossref]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Schwanecke, A. S.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Seidel, A.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Sigle, W.

Song, F.

F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C. Van Haesendonck, S. P. Ringer, M. Han, Z. Liu, and G. Wang, “Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy,” Small 6(3), 446–451 (2010).
[Crossref] [PubMed]

Sorolla, M.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Stannigel, K.

J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics Nanostruct. Fundam. Appl. 7(1), 2–11 (2009).
[Crossref]

K. Stannigel, M. König, J. Niegemann, and K. Busch, “Discontinuous Galerkin time-domain computations of metallic nanostructures,” Opt. Express 17(17), 14934–14947 (2009).
[Crossref] [PubMed]

Stegmann, H.

T. Walther, E. Quandt, H. Stegmann, A. Thesen, and G. Benner, “First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope,” Ultramicroscopy 106(11-12), 963–969 (2006).
[Crossref] [PubMed]

Stéphan, O.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Taverna, D.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[Crossref]

Tencé, M.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[Crossref]

Thesen, A.

T. Walther, E. Quandt, H. Stegmann, A. Thesen, and G. Benner, “First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope,” Ultramicroscopy 106(11-12), 963–969 (2006).
[Crossref] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Trügler, A.

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009).
[Crossref]

van Aken, P. A.

Van Haesendonck, C.

F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C. Van Haesendonck, S. P. Ringer, M. Han, Z. Liu, and G. Wang, “Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy,” Small 6(3), 446–451 (2010).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Walther, M.

Walther, T.

T. Walther, E. Quandt, H. Stegmann, A. Thesen, and G. Benner, “First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope,” Ultramicroscopy 106(11-12), 963–969 (2006).
[Crossref] [PubMed]

Wan, J.

F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C. Van Haesendonck, S. P. Ringer, M. Han, Z. Liu, and G. Wang, “Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy,” Small 6(3), 446–451 (2010).
[Crossref] [PubMed]

Wang, G.

F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C. Van Haesendonck, S. P. Ringer, M. Han, Z. Liu, and G. Wang, “Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy,” Small 6(3), 446–451 (2010).
[Crossref] [PubMed]

Wang, T.

F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C. Van Haesendonck, S. P. Ringer, M. Han, Z. Liu, and G. Wang, “Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy,” Small 6(3), 446–451 (2010).
[Crossref] [PubMed]

Wang, X.

F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C. Van Haesendonck, S. P. Ringer, M. Han, Z. Liu, and G. Wang, “Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy,” Small 6(3), 446–451 (2010).
[Crossref] [PubMed]

Watanabe, M.

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
[Crossref]

Wegener, M.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Xu, C.

F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C. Van Haesendonck, S. P. Ringer, M. Han, Z. Liu, and G. Wang, “Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy,” Small 6(3), 446–451 (2010).
[Crossref] [PubMed]

Yang, J. K. W.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
[Crossref] [PubMed]

Zentgraf, T.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

Zhang, W.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zheludev, N. I.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Laser Photon. Rev. (1)

K. Busch, M. König, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. (to be published), doi:.
[Crossref]

Nano Lett. (2)

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
[Crossref] [PubMed]

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

Nanotechnology (1)

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
[Crossref]

Nat. Photonics (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Nat. Phys. (1)

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Photonics Nanostruct. Fundam. Appl. (2)

J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics Nanostruct. Fundam. Appl. 7(1), 2–11 (2009).
[Crossref]

C. Matyssek, J. Niegemann, W. Hergert, and K. Busch, “Computing electron energy loss spectra with the Discontinuous Galerkin Time-Domain method,” Photonics Nanostruct. Fundam. Appl. (to be published), doi:.
[Crossref]

Phys. Rev. B (4)

P.-B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009).
[Crossref]

M. N’Gom, S. Li, G. Schatz, R. Erni, A. Agarwal, N. Kotov, and T. Norris, “Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods,” Phys. Rev. B 80(11), 113411 (2009).
[Crossref]

Phys. Rev. Lett. (8)

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[Crossref] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

F. J. García de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100(10), 106804 (2008).
[Crossref] [PubMed]

U. Hohenester, H. Ditlbacher, and J. R. Krenn, “Electron-energy-loss spectra of plasmonic nanoparticles,” Phys. Rev. Lett. 103(10), 106801 (2009).
[Crossref] [PubMed]

Science (3)

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Small (1)

F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C. Van Haesendonck, S. P. Ringer, M. Han, Z. Liu, and G. Wang, “Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy,” Small 6(3), 446–451 (2010).
[Crossref] [PubMed]

Ultramicroscopy (1)

T. Walther, E. Quandt, H. Stegmann, A. Thesen, and G. Benner, “First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope,” Ultramicroscopy 106(11-12), 963–969 (2006).
[Crossref] [PubMed]

Other (1)

J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods (Springer, 2008).

Supplementary Material (1)

» Media 1: AVI (1120 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) HAADF image of a typical SRR fabricated by EBL. (b) Geometry of the SRR assumed in the DGTD calculations. (c) Mesh of the SRR for the coarsest refinement. (d) HAADF image of the corresponding CSRR. (e) Geometry and (f) mesh of the CSRR used in the calculations. The scale bars are 200 nm

Fig. 2
Fig. 2

(a) HAADF image of a SRR and (b)-(g) corresponding EELS maps of several plasmonic resonances with resonance energies as indicated. Each EELS map has an independent color scale in which small EELS signals are represented by dark blue and large EELS signals correspond to yellow. The white curves in the EELS maps indicate the boundaries of the SRR. The scale bar is 200 nm. See Media 1 for a movie of the EELS map.

Fig. 3
Fig. 3

(a) HAADF images of several SRRs of our series.(b) Resonance energies of the four lowest-order plasmonic modes of the SRRs (○: fundamental mode, ▲: second mode, ▽: third mode, ■: fourth mode). The straight lines are guides to the eye.

Fig. 4
Fig. 4

Calculated field distributions of |Ez| and |Bz| for the first three modes of a SRR and the corresponding CSRR with resonance energies as indicated. The white arrows indicate the polarization of the incident light field. The scale bars are 200 nm.

Fig. 5
Fig. 5

(a) HAADF image of a SRR and (b)-(d) EELS maps of the three lowest-order SRR resonances. (e) HAADF image of the corresponding CSRR and (f)-(h) EELS maps of the three lowest-order CSRR resonances. The resonance energy of each mode is indicated below its EELS map. The white curves show the boundaries of the SRR and the SRR-shaped aperture, respectively. The scale bars are 200 nm.

Fig. 6
Fig. 6

(a) Scheme of the SRR and (b)-(d) calculated EELS maps of the three lowest-order SRR resonances. (e) Scheme of the CSRR and (f)-(h) calculated EELS maps of the three lowest-order CSRR resonances. The resonance energy of each mode is indicated below its EELS map. The white curves show the boundaries of the SRR and the SRR-shaped aperture, respectively. The scale bars are 200 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε( ω )= ε ω D 2 ω( ω+i γ D ) Δε ω L 2 ω 2 ω L 2 +i γ L ω .

Metrics