Abstract

A new class of surface plasmon polaritons supported in identical enantiomeric chiral plasmonic structures is presented. The waves are caused by bianisotropy and are absent in the case of bi-isotropic media as well as in anisotropic structures without a magnetoelectric coupling. The existence of two distinct modes of the surface plasmon polaritons with unusual dispersion and polarization properties is predicted. The role of losses is investigated and the propagation length of the surface waves is determined.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
    [CrossRef]
  2. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [CrossRef]
  3. D. L. Mills and E. Burstein, “Polaritons: the electromagnetic modes of media,” Rep. Prog. Phys. 37(7), 817–926 (1974).
    [CrossRef]
  4. V. M. Agranovich and D. L. Mills, eds., Surface Polaritons (Nord-Holland, 1982).
  5. H. Raether, Surface Plasmons (Springer, 1988).
  6. A. Zayats, I. Smolyaninov, and A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [CrossRef]
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  8. R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
    [CrossRef]
  9. S. Kawata, ed., Near Field Optics and Surface Plasmon Polaritons (Springer, 2001).
  10. J. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87(22), 221101 (2005).
    [CrossRef]
  11. M. I. Dyakonov, “New type of electromagnetic wave …,” Sov. Phys. JETP 67, 714–716 (1988).
  12. O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102(4), 043903 (2009).
    [CrossRef] [PubMed]
  13. J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A 81(1), 013801 (2010).
    [CrossRef]
  14. R. H. Tarkhanyan and D. G. Niarchos, “Nonradiative surface electromagnetic waves at the interface of uniaxially bianisotropic enantiomeric media,” Phys. Status Solidi B 248(6), 1499–1504 (2011).
    [CrossRef]
  15. N.V. Ashcroft and N.D. Mermin, Solid State Physics (Brooks Cole, 1976).
  16. A. Lakhtakia, V. V. Varadan, and V. K. Varadan, “Field equations, Huygens’s principle, integral equations, and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media,” J. Opt. Soc. Am. A 5, 175–184 (1988).
    [CrossRef]
  17. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).
  18. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 31, 213–222 (1941).
    [CrossRef]
  19. A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (19681).
    [CrossRef]
  20. V. M. Agranovich, “Crystal optics of surface polaritons and the properties of surfaces,” Sov. Phys. Usp. 18, 99–117 (1975).
    [CrossRef]
  21. G. Borstel, H. Falge, and A. Otto, “Surface and bulk phonon polaritons observed by attenuated total reflection,” Springer Tract Mod. Phys. 75, 107–148 (1975).
    [CrossRef]

2011

R. H. Tarkhanyan and D. G. Niarchos, “Nonradiative surface electromagnetic waves at the interface of uniaxially bianisotropic enantiomeric media,” Phys. Status Solidi B 248(6), 1499–1504 (2011).
[CrossRef]

2010

J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A 81(1), 013801 (2010).
[CrossRef]

2009

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102(4), 043903 (2009).
[CrossRef] [PubMed]

2005

J. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87(22), 221101 (2005).
[CrossRef]

A. Zayats, I. Smolyaninov, and A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

2001

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
[CrossRef]

1988

1975

V. M. Agranovich, “Crystal optics of surface polaritons and the properties of surfaces,” Sov. Phys. Usp. 18, 99–117 (1975).
[CrossRef]

G. Borstel, H. Falge, and A. Otto, “Surface and bulk phonon polaritons observed by attenuated total reflection,” Springer Tract Mod. Phys. 75, 107–148 (1975).
[CrossRef]

1974

D. L. Mills and E. Burstein, “Polaritons: the electromagnetic modes of media,” Rep. Prog. Phys. 37(7), 817–926 (1974).
[CrossRef]

1969

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

1957

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[CrossRef]

1941

Agranovich, V. M.

V. M. Agranovich, “Crystal optics of surface polaritons and the properties of surfaces,” Sov. Phys. Usp. 18, 99–117 (1975).
[CrossRef]

Artigas, D.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102(4), 043903 (2009).
[CrossRef] [PubMed]

Baudrion, A.-L.

J. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87(22), 221101 (2005).
[CrossRef]

Borstel, G.

G. Borstel, H. Falge, and A. Otto, “Surface and bulk phonon polaritons observed by attenuated total reflection,” Springer Tract Mod. Phys. 75, 107–148 (1975).
[CrossRef]

Burstein, E.

D. L. Mills and E. Burstein, “Polaritons: the electromagnetic modes of media,” Rep. Prog. Phys. 37(7), 817–926 (1974).
[CrossRef]

Crasovan, L.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102(4), 043903 (2009).
[CrossRef] [PubMed]

Dereux, A.

J. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87(22), 221101 (2005).
[CrossRef]

Dyakonov, M. I.

M. I. Dyakonov, “New type of electromagnetic wave …,” Sov. Phys. JETP 67, 714–716 (1988).

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Falge, H.

G. Borstel, H. Falge, and A. Otto, “Surface and bulk phonon polaritons observed by attenuated total reflection,” Springer Tract Mod. Phys. 75, 107–148 (1975).
[CrossRef]

Fano, U.

Gao, J.

J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A 81(1), 013801 (2010).
[CrossRef]

González, M. U.

J. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87(22), 221101 (2005).
[CrossRef]

Lakhtakia, A.

J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A 81(1), 013801 (2010).
[CrossRef]

A. Lakhtakia, V. V. Varadan, and V. K. Varadan, “Field equations, Huygens’s principle, integral equations, and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media,” J. Opt. Soc. Am. A 5, 175–184 (1988).
[CrossRef]

Lei, M.

J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A 81(1), 013801 (2010).
[CrossRef]

Maradudin, A.

A. Zayats, I. Smolyaninov, and A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Mills, D. L.

D. L. Mills and E. Burstein, “Polaritons: the electromagnetic modes of media,” Rep. Prog. Phys. 37(7), 817–926 (1974).
[CrossRef]

Niarchos, D. G.

R. H. Tarkhanyan and D. G. Niarchos, “Nonradiative surface electromagnetic waves at the interface of uniaxially bianisotropic enantiomeric media,” Phys. Status Solidi B 248(6), 1499–1504 (2011).
[CrossRef]

Otto, A.

G. Borstel, H. Falge, and A. Otto, “Surface and bulk phonon polaritons observed by attenuated total reflection,” Springer Tract Mod. Phys. 75, 107–148 (1975).
[CrossRef]

A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (19681).
[CrossRef]

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[CrossRef]

Ruppin, R.

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
[CrossRef]

Smolyaninov, I.

A. Zayats, I. Smolyaninov, and A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Takayama, O.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102(4), 043903 (2009).
[CrossRef] [PubMed]

Tarkhanyan, R. H.

R. H. Tarkhanyan and D. G. Niarchos, “Nonradiative surface electromagnetic waves at the interface of uniaxially bianisotropic enantiomeric media,” Phys. Status Solidi B 248(6), 1499–1504 (2011).
[CrossRef]

Torner, L.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102(4), 043903 (2009).
[CrossRef] [PubMed]

Varadan, V. K.

Varadan, V. V.

Weeber, J.

J. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87(22), 221101 (2005).
[CrossRef]

Zayats, A.

A. Zayats, I. Smolyaninov, and A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Appl. Phys. Lett.

J. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87(22), 221101 (2005).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys. Condens. Matter

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
[CrossRef]

Phys. Rep.

A. Zayats, I. Smolyaninov, and A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Phys. Rev.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[CrossRef]

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Phys. Rev. A

J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A 81(1), 013801 (2010).
[CrossRef]

Phys. Rev. Lett.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102(4), 043903 (2009).
[CrossRef] [PubMed]

Phys. Status Solidi B

R. H. Tarkhanyan and D. G. Niarchos, “Nonradiative surface electromagnetic waves at the interface of uniaxially bianisotropic enantiomeric media,” Phys. Status Solidi B 248(6), 1499–1504 (2011).
[CrossRef]

Rep. Prog. Phys.

D. L. Mills and E. Burstein, “Polaritons: the electromagnetic modes of media,” Rep. Prog. Phys. 37(7), 817–926 (1974).
[CrossRef]

Sov. Phys. JETP

M. I. Dyakonov, “New type of electromagnetic wave …,” Sov. Phys. JETP 67, 714–716 (1988).

Sov. Phys. Usp.

V. M. Agranovich, “Crystal optics of surface polaritons and the properties of surfaces,” Sov. Phys. Usp. 18, 99–117 (1975).
[CrossRef]

Springer Tract Mod. Phys.

G. Borstel, H. Falge, and A. Otto, “Surface and bulk phonon polaritons observed by attenuated total reflection,” Springer Tract Mod. Phys. 75, 107–148 (1975).
[CrossRef]

Z. Phys.

A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (19681).
[CrossRef]

Other

N.V. Ashcroft and N.D. Mermin, Solid State Physics (Brooks Cole, 1976).

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).

V. M. Agranovich and D. L. Mills, eds., Surface Polaritons (Nord-Holland, 1982).

H. Raether, Surface Plasmons (Springer, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

S. Kawata, ed., Near Field Optics and Surface Plasmon Polaritons (Springer, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry of the problem. The region z>0 is occupied by L-material and the region z<0 –by R-material which are the mirror image of each other. The surface wave is propagating along the positive x-axis.

Fig. 2
Fig. 2

The region in the plane ( α | | , α ) where the conditions (18) are satisfied and both q + and q are real positive quantities (shaded).

Fig. 3
Fig. 3

Dispersion curves of SPP (solid lines) in the case ξ | | < ξ . Dashed lines correspond to the bulk waves.

Fig. 4
Fig. 4

Dispersion curves of SPP (solid lines) in the case ξ | | > ξ . a. γ 1 < γ γ 2 . b. γ γ 1 .

Equations (66)

Equations on this page are rendered with MathJax. Learn more.

ξ L = ( ξ 0 0 0 ξ 0 0 0 ξ | | ) .
ε = ( ε 0 0 0 ε 0 0 0 ε | | ) ,
ε , | | ' = 1 ω p , | | 2 τ , | | 2 1 + ω 2 τ , | | 2 , ε , | | ' ' = ω p , | | 2 τ , | | ω ( 1 + ω 2 τ , | | 2 ) ,
r o t H = i ω D , r o t E = i ω B
D = ε 0 ε E i c ξ H ,
B = μ 0 H + i c ξ E ,
C = α [ α 2 α | | 1 ( 2 ξ ξ | | + ε + ε | | ) n 2 + α | | 1 n 4 ] ,
α , | | ε , | | ξ , | | 2 .
E L = E + L exp ( k 0 q + z ) + E L exp ( k 0 q z ) ,
E R = E + R exp ( k 0 q + z ) + E R exp ( k 0 q z )
n 2 = α | | [ 1 + ζ ( α | | α ) 1 ] n 1 2 ,
n 2 = ε α | | ( ε 2 + ε | | ξ 2 + 2 ε ξ ξ | | ) ( α | | ε 2 α ε | | 2 ) 1 n 2 2 ,
ζ ( ξ + ξ | | ) 2 .
E + y L / E + x L = E y L / E x L = E + y R / E + x R = E y R / E x R = λ ,
λ = ( α | | α ) ( q + + q ) ( ε | | ε ) ( ξ | | + ξ )
E + z L / E + x L = ( E + z R / E + x R ) * = λ + ,
λ ± = i λ n 1 [ ( ξ | | ξ ) q ± + α ( ξ | | + ξ ) q ± 1 ] α | | ( q + + q ) .
H + y L / H + x L = H y L / H x L = H + y R / H + x R = H y R / H x R = ρ ,
ρ = ( α | | ε 2 α ε | | 2 ) ( q + + q ) ε ( ε ε | | ) ( ε | | ξ + ε ξ | | ) .
H + z L / H + x L = ( H + z R / H + x R ) * = ρ + ,
ρ ± = i ρ n 2 [ ( ε ξ | | ε | | ξ ) q ± + α ( ε ξ | | + ε | | ξ ) q ± 1 ] α | | ε ( q + + q ) .
A < 0 ; 0 < C < A 2 .
ε , | | = ε , | | ' = 1 ω p , | | 2 / ω 2 , ε , | | " = 0 ,
[ n 1 ( ω ) ] 2 = n 1 2 ( ω 2 ω 1 2 ) ( ω 2 ω 2 2 ) ω 2 ( ω 2 ω r 2 ) S g n ( ξ ξ | | ) ,
n 1 2 = 2 ξ ( 1 ξ | | 2 ) / | ξ ξ | | | , ω 1 2 = ω p | | 2 ( 1 ξ | | 2 ) 1 ,
ω 2 2 = ( ω p | | 2 ω p 2 ) / ψ , ψ 2 ξ ( ξ + ξ | | )
ω r 2 = ( ω p | | 2 ω p 2 ) / ( ξ 2 ξ | | 2 )
n 2 2 = n 2 2 ( ω 2 ω 1 2 ) ( ω 2 ω p 2 ) ( ω 2 ϖ + 2 ) ( ω 2 ϖ 2 ) ω 2 ( ω 2 ω r 1 2 ) ( ω 2 ω r 2 2 ) ( ω 2 ω r 3 2 ) S g n ( ξ ξ | | ) ,
n 2 2 = ( 1 + 2 ξ ξ | | + ξ 2 ) ( 1 ξ | | 2 ) / | ξ 2 ξ | | 2 | ,
ϖ ± 2 = ω p 2 { 1 + ξ ξ | | + γ ξ 2 / 2 ± ξ [ ( 1 + ξ ξ | | ) γ + γ 2 ξ 2 / 4 1 + ξ | | 2 ] 1 / 2 } ( 1 + ζ ξ | | 2 ) 1 ,
ω 6 + ω r 2 ( ω 2 ω p | | 2 ) ( ω 2 ω p 2 ) + 2 ω 2 ω p 2 ξ 2 ξ | | 2 [ ( ξ | | 2 γ ξ 2 ) ω 2 1 2 ω p 2 ( ξ | | 2 γ 2 ξ 2 ) ] = 0
γ ( ω p | | / ω p ) 2 = m / m | |
α | | > α > ( ε | | ε ) 2 / 4 ζ ,
ω r < ω < ω 3 ω p ( 1 ξ 2 ) 1 / 2
ω < min { ω 3 , ω r }
ω 4 = ω p | | ( 1 ξ 2 ζ ) 1 / 2 , ω 5 = ω p | | [ 1 ξ | | 2 + ( ξ | | ξ ) 2 / 4 ] 1 / 2 .
ε | | ( ω 4 ) = ε ( ω 3 ) + ζ = ζ + ξ 2 , ε | | ( ω 5 ) = ξ | | 2 ( ξ | | ξ ) 2 / 4.
ω 5 < ω < ω 4
α < α < α + ,
α ± ( α | | ) = [ ξ + ξ | | ψ α | | ] 2 .
ω < ω < ω + ,
ω ± 2 = ω 3 2 { 1 ± [ 1 ( 1 γ ) 2 ζ 1 ( 1 ξ 2 ) ] 1 / 2 } / 2.
ω 4 ω < ω 3
γ < γ 2 1 ζ ( 1 ξ 2 ) 1 .
ω 1 < ω < ω 3 ,
γ < γ 0 ( 1 ξ | | 2 ) ( 1 ξ 2 ) 1 .
ω 1 < ω < ω ,
ω + < ω < ω 3 .
γ 1 = 1 ζ 1 / 2 ( 1 ξ 2 ) 1 / 2 ,
γ 1 < γ γ 2 ,
n ' 2 = ( P + P 2 + Q 2 ) / 2 ,
n ' ' = Q / 2 n ' ,
P = α | | ' + ζ P 1 / P 0 ; Q = ε | | " + ζ Q 0 / P 0 ; P 0 = ( α | | ' α ' ) 2 + ( ε | | " ε " ) 2 ,
P 1 = α | | ' ( α | | ' α ' ) + ε | | " ( ε | | " ε " ) ; Q 0 = α | | ' ε " α ' ε | | " ; α | | , ' = ε | | , ' ξ | | , 2 .
n ' ' / n ' = ( P 2 + Q 2 P ) / Q .
n ' 2 ( ω r ) = ( α | | ' + ζ ε | | " / δ + ( α | | ' 2 + ε | | " 2 ) ( 1 + ζ 2 / δ 2 ) ) / 2 ,
n ' 2 ( ω 1 ) = ε | | " ( ζ δ + ( α ' 2 + δ 2 ) [ δ 2 + ( α ' ζ ) 2 ] ) / 2 ( α ' 2 + δ 2 ) ,
n ' 2 ( ω 2 ) = δ ( α | | ' δ + ζ ε | | " + ( α | | ' 2 + ε | | " 2 ) ( δ 2 + ζ 2 ) ) / 2 ( ζ 2 + δ 2 ) ,
L ( 2 Im k x ) 1 = n ' / k 0 Q .
ε | | , ' ' ω p | | , 2 ω 2 ( ω τ | | , )
| ε | | , ' | > > ε | | , " ,
| ω 2 ω p | | , 2 | / ω p | | , 2 > > ( ω τ | | , ) 1 .
L ( ω ) = n 1 ( ω ) / k 0 [ ε | | " + ζ Q 0 ( α | | ' α ' ) 2 ] ,
L ( ω r ) k 0 1 | δ | / 2 ζ | α ' | ,
L ( ω 1 ) k 0 1 | α ' | / 2 ε | | " | α ' ζ | ,
L ( ω 2 ) k 0 1 ζ | / 2 | α | | ' δ | ,

Metrics