Abstract

We report on different refractive index change (RIC) behavior in borosilicate glasses induced by focused 1 kHz and 250 kHz femtosecond (fs) laser irradiation. The influence of fs laser irradiation condition and annealing temperature on RIC was examined. Absorption, electron spin resonance and Raman spectra, and transmission electron microscope were used to clarify the mechanisms of the RIC. Smaller RIC (up to 10−4) was observed after 1 kHz fs laser irradiation, while larger RIC (up to 10−1) was detected after 250 kHz fs laser irradiation, which were ascribed to the formation of color centers and precipitation of nanocrystals, respectively. The result highlights that the mechanisms of RIC induced by fs laser can be very different depending on the irradiation conditions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 76(5), 857–860 (2003).
    [CrossRef]
  3. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
    [CrossRef] [PubMed]
  4. Y. Li, Y. Dou, R. An, H. Yang, and Q. Gong, “Permanent computer-generated holograms embedded in silica glass by femtosecond laser pulses,” Opt. Express 13(7), 2433–2438 (2005).
    [CrossRef] [PubMed]
  5. G. Lin, F. Luo, F. He, Y. Teng, W. Tan, J. Si, D. Chen, J. Qiu, Q. Zhao, and Z. Xu, “Space-selective precipitation of Ge crystalline patterns in glasses by femtosecond laser irradiation,” Opt. Lett. 36(2), 262–264 (2011).
    [CrossRef] [PubMed]
  6. Y. Cheng, Z. Xu, J. Xu, K. Sugioka, and K. Midorikawa, “Three-dimensional femtosecond laser integration in glasses,” Rev. Laser Eng. 36(APLS), 1206–1209 (2008).
    [CrossRef]
  7. K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett. 26(1), 19–21 (2001).
    [CrossRef] [PubMed]
  8. T. Hashimoto and S. Tanaka, “Large negative refractive index modification induced by irradiation of femtosecond laser inside optical glasses,” Appl. Surf. Sci. 257(12), 5429–5433 (2011).
    [CrossRef]
  9. W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett. 28(24), 2491–2493 (2003).
    [CrossRef] [PubMed]
  10. M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett. 35(10), 1662–1664 (2010).
    [CrossRef] [PubMed]
  11. T. T. Fernandez, S. M. Eaton, G. Della Valle, R. M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, and P. Laporta, “Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass,” Opt. Express 18(19), 20289–20297 (2010).
    [CrossRef] [PubMed]
  12. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19(10), 2496–2504 (2002).
    [CrossRef]
  13. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108(3), 033110 (2010).
    [CrossRef]
  14. N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses,” Opt. Express 12(17), 4019–4024 (2004).
    [CrossRef] [PubMed]
  15. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [CrossRef] [PubMed]
  16. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  17. M. Kerker, The Scattering of Light (Academic Press, 1969).
  18. K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25(6), 408–410 (2000).
    [CrossRef] [PubMed]
  19. N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett. 83(17), 3495–3497 (2003).
    [CrossRef]
  20. C. J. Buchenauer, M. Cardona, and F. H. Pollak, “Raman scattering in gray tin,” Phys. Rev. B 3(4), 1243–1244 (1971).
    [CrossRef]

2011

G. Lin, F. Luo, F. He, Y. Teng, W. Tan, J. Si, D. Chen, J. Qiu, Q. Zhao, and Z. Xu, “Space-selective precipitation of Ge crystalline patterns in glasses by femtosecond laser irradiation,” Opt. Lett. 36(2), 262–264 (2011).
[CrossRef] [PubMed]

T. Hashimoto and S. Tanaka, “Large negative refractive index modification induced by irradiation of femtosecond laser inside optical glasses,” Appl. Surf. Sci. 257(12), 5429–5433 (2011).
[CrossRef]

2010

2008

Y. Cheng, Z. Xu, J. Xu, K. Sugioka, and K. Midorikawa, “Three-dimensional femtosecond laser integration in glasses,” Rev. Laser Eng. 36(APLS), 1206–1209 (2008).
[CrossRef]

2005

2004

2003

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett. 83(17), 3495–3497 (2003).
[CrossRef]

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 76(5), 857–860 (2003).
[CrossRef]

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett. 28(24), 2491–2493 (2003).
[CrossRef] [PubMed]

2002

2001

2000

1996

1971

C. J. Buchenauer, M. Cardona, and F. H. Pollak, “Raman scattering in gray tin,” Phys. Rev. B 3(4), 1243–1244 (1971).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Ams, M.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108(3), 033110 (2010).
[CrossRef]

An, R.

Aoki, N.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 76(5), 857–860 (2003).
[CrossRef]

Arai, A. Y.

Asano, T.

Beresna, M.

Borrelli, N. F.

Bovatsek, J.

Buchenauer, C. J.

C. J. Buchenauer, M. Cardona, and F. H. Pollak, “Raman scattering in gray tin,” Phys. Rev. B 3(4), 1243–1244 (1971).
[CrossRef]

Callan, J. P.

Cardona, M.

C. J. Buchenauer, M. Cardona, and F. H. Pollak, “Raman scattering in gray tin,” Phys. Rev. B 3(4), 1243–1244 (1971).
[CrossRef]

Cerullo, G.

Chen, D.

Cheng, Y.

Y. Cheng, Z. Xu, J. Xu, K. Sugioka, and K. Midorikawa, “Three-dimensional femtosecond laser integration in glasses,” Rev. Laser Eng. 36(APLS), 1206–1209 (2008).
[CrossRef]

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 76(5), 857–860 (2003).
[CrossRef]

Davis, K. M.

Dekker, P.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108(3), 033110 (2010).
[CrossRef]

Della Valle, G.

Dou, Y.

Eaton, S. M.

Fernandez, T. T.

Finlay, R. J.

Fukata, N.

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett. 83(17), 3495–3497 (2003).
[CrossRef]

Glezer, E. N.

Gong, Q.

Hase, M.

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett. 83(17), 3495–3497 (2003).
[CrossRef]

Hashimoto, T.

T. Hashimoto and S. Tanaka, “Large negative refractive index modification induced by irradiation of femtosecond laser inside optical glasses,” Appl. Surf. Sci. 257(12), 5429–5433 (2011).
[CrossRef]

He, F.

Helvajian, H.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 76(5), 857–860 (2003).
[CrossRef]

Her, T. H.

Herman, P. R.

Hirao, K.

Huang, L.

Irannejad, M.

Itoh, K.

Jha, A.

Jose, G.

Kawachi, M.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 76(5), 857–860 (2003).
[CrossRef]

Kazansky, P. G.

Kitajima, M.

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett. 83(17), 3495–3497 (2003).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kuroiwa, Y.

Laporta, P.

Li, Y.

Lin, G.

Little, D. J.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108(3), 033110 (2010).
[CrossRef]

Luo, F.

Marshall, G. D.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108(3), 033110 (2010).
[CrossRef]

Masuda, M.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 76(5), 857–860 (2003).
[CrossRef]

Mazur, E.

Midorikawa, K.

Y. Cheng, Z. Xu, J. Xu, K. Sugioka, and K. Midorikawa, “Three-dimensional femtosecond laser integration in glasses,” Rev. Laser Eng. 36(APLS), 1206–1209 (2008).
[CrossRef]

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 76(5), 857–860 (2003).
[CrossRef]

Milosavljevic, M.

Mitsuyu, T.

Miura, K.

Murakami, K.

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett. 83(17), 3495–3497 (2003).
[CrossRef]

Narita, Y.

Nishii, J.

Osellame, R.

Pollak, F. H.

C. J. Buchenauer, M. Cardona, and F. H. Pollak, “Raman scattering in gray tin,” Phys. Rev. B 3(4), 1243–1244 (1971).
[CrossRef]

Qiu, J.

Shah, L.

Shihoyama, K.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 76(5), 857–860 (2003).
[CrossRef]

Si, J.

Streltsov, A. M.

Sugimoto, N.

Sugioka, K.

Y. Cheng, Z. Xu, J. Xu, K. Sugioka, and K. Midorikawa, “Three-dimensional femtosecond laser integration in glasses,” Rev. Laser Eng. 36(APLS), 1206–1209 (2008).
[CrossRef]

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 76(5), 857–860 (2003).
[CrossRef]

Takeshima, N.

Tan, W.

Tanaka, S.

T. Hashimoto and S. Tanaka, “Large negative refractive index modification induced by irradiation of femtosecond laser inside optical glasses,” Appl. Surf. Sci. 257(12), 5429–5433 (2011).
[CrossRef]

N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses,” Opt. Express 12(17), 4019–4024 (2004).
[CrossRef] [PubMed]

Teng, Y.

Toma, T.

Toyoda, K.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 76(5), 857–860 (2003).
[CrossRef]

Vazquez, R. M.

Watanabe, W.

Withford, M. J.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108(3), 033110 (2010).
[CrossRef]

Xu, J.

Y. Cheng, Z. Xu, J. Xu, K. Sugioka, and K. Midorikawa, “Three-dimensional femtosecond laser integration in glasses,” Rev. Laser Eng. 36(APLS), 1206–1209 (2008).
[CrossRef]

Xu, Z.

Yamada, K.

Yamamoto, Y.

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett. 83(17), 3495–3497 (2003).
[CrossRef]

Yang, H.

Yoshino, F.

Zhang, H.

Zhao, Q.

Appl. Phys. Lett.

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett. 83(17), 3495–3497 (2003).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 76(5), 857–860 (2003).
[CrossRef]

Appl. Surf. Sci.

T. Hashimoto and S. Tanaka, “Large negative refractive index modification induced by irradiation of femtosecond laser inside optical glasses,” Appl. Surf. Sci. 257(12), 5429–5433 (2011).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

J. Appl. Phys.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108(3), 033110 (2010).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

G. Lin, F. Luo, F. He, Y. Teng, W. Tan, J. Si, D. Chen, J. Qiu, Q. Zhao, and Z. Xu, “Space-selective precipitation of Ge crystalline patterns in glasses by femtosecond laser irradiation,” Opt. Lett. 36(2), 262–264 (2011).
[CrossRef] [PubMed]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
[CrossRef] [PubMed]

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett. 28(24), 2491–2493 (2003).
[CrossRef] [PubMed]

M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett. 35(10), 1662–1664 (2010).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett. 26(1), 19–21 (2001).
[CrossRef] [PubMed]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25(6), 408–410 (2000).
[CrossRef] [PubMed]

Phys. Rev. B

C. J. Buchenauer, M. Cardona, and F. H. Pollak, “Raman scattering in gray tin,” Phys. Rev. B 3(4), 1243–1244 (1971).
[CrossRef]

Rev. Laser Eng.

Y. Cheng, Z. Xu, J. Xu, K. Sugioka, and K. Midorikawa, “Three-dimensional femtosecond laser integration in glasses,” Rev. Laser Eng. 36(APLS), 1206–1209 (2008).
[CrossRef]

Other

M. Kerker, The Scattering of Light (Academic Press, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical microscopic images of the fabricated gratings recorded under optical transmission mode, (a) 1 kHz and (b) 250 kHz fs laser irradiated Sn glass; (c) 1 kHz and (d) 250 kHz fs laser irradiated Ge glass.

Fig. 2
Fig. 2

Optical microscope images of the crystalline line fabricated by 250 kHz laser recorded under optical reflection mode and corresponding calculated refractive index profile, (a), (b) Ge glass, (c), (d) Sn glass.

Fig. 3
Fig. 3

Images of diffraction pattern and corresponding profiles, (a) 1 kHz, and (b) 250 kHz fs laser irradiated Sn glass, (c) 1 kHz, and (d) 250 kHz fs laser irradiated Ge glass.

Fig. 4
Fig. 4

Absorption spectra of (a) 1 kHz, and (b) 250 kHz fs laser irradiated Sn glass, (c) 1 kHz, and (d) 250 kHz fs laser irradiated Ge glass.

Fig. 5
Fig. 5

ESR spectra of fs laser unmodified, 1 kHz, and 250 kHz laser modified Sn glasses.

Fig. 6
Fig. 6

Micro-Raman spectra of (a) 1 kHz, and (b) 250 kHz laser modified Sn glasses. (c) Raman mapping picture at 197 cm−1.

Fig. 7
Fig. 7

TEM images of Sn glasses before and after 250 kHz laser irradiation.

Fig. 8
Fig. 8

(a) Dependences of the ESR signal intensity and diffraction efficiency on 1 kHz laser power, and (b) those on annealing temperature. (c) Dependences of the Raman peak intensity of Sn crystal and diffraction efficiency on 250 kHz laser power and (d) those on annealing temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R unmod = ( n unmod 1 ) 2 ( n unmod + 1 ) 2 ,   R mod = ( n mod 1 ) 2 ( n mod + 1 ) 2 ,   I = I mod I unmod = R mod + ( 1 R mod ) R mod R unmod + ( 1 R unmod ) R unmod ,

Metrics