Abstract

The refractive index changes in doped silica are investigated. We observed that the permanent isotropic index change threshold (T1) is not significantly dependent on the doping. We show that strong birefringence (permanent linear birefringence) exists in doped silica but its threshold (T2) exhibits significant dependence on the used dopants. In our conditions, comparing with silica (0.31 μJ/pulse here), for 1.5 at% Ge-doped silica the T2 threshold is smaller (0.14 ± 0.05 μJ/pulse). For a silica doped with 0.3 at% of fluorine, T2 is close to 1.20 ± 0.05 μJ/pulse. An interpretation is given not only about threshold variation but also about RIC for energies beyond. It is based on the overcoming of relaxation time in the volume interaction.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999).
    [CrossRef]
  2. B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16(22), 18354–18361 (2008).
    [CrossRef] [PubMed]
  3. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
    [CrossRef] [PubMed]
  4. P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
    [CrossRef]
  5. J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
    [CrossRef]
  6. M. Lancry, F. Brisset, and B. Poumellec, “In the heart of nanogratings made up during femtosecond laser irradiation,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD), (Optical Society of America, 2010), ISBN 978–1-55752–896–4.
  7. M. Kaempfe, G. Seifert, K. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
    [CrossRef]
  8. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [CrossRef] [PubMed]
  9. M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
    [CrossRef]
  10. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
    [CrossRef]
  11. B. Poumellec and M. Lancry, “Damage thresholds in femtosecond laser processing of silica: a review,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD), (Optical Society of America, 2010), ISBN 978–1-55752–896–4.
  12. L. Sudrie, “Propagation non-linéaire des impulsions laser femtosecondes dans la silice,” (Université de Paris Sud XI Orsay, 2002).
  13. C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
    [CrossRef]
  14. M. Lancry, P. Niay, and M. Douay, “Comparing the properties of various sensitization methods in H2-loaded, UV hypersensitized or OH-flooded standard germanosilicate fibers,” Opt. Express 13(11), 4037–4043 (2005).
    [CrossRef] [PubMed]
  15. M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fibers materials,” Phys. Rep. (in press).
  16. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
    [CrossRef] [PubMed]
  17. E. Bricchi and P. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
    [CrossRef]
  18. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  19. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1-3), 91–95 (1998).
    [CrossRef]
  20. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
    [CrossRef]
  21. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser irradiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
    [CrossRef]
  22. A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. Kazansky, “SnO2 nanoparticles in silica: Nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88(13), 131912 (2006).
    [CrossRef]
  23. P. K. Bachmann, W. G. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 1: Preforms,” Appl. Opt. 25(7), 1093–1098 (1986).
    [CrossRef] [PubMed]
  24. G. Scherer, “Stress-optical effects in optical waveguides,” J. Non-Cryst. Solids 38-39, 201–204 (1980).
    [CrossRef]
  25. T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. 20(22), 2279–2281 (1995).
    [CrossRef] [PubMed]
  26. M. Lancry, B. Poumellec, and M. Douay, “Anisotropic luminescence photo-excitation in H2-loaded Ge-doped silica exposed to polarized 193 nm laser light,” J. Non-Cryst. Solids 355(18-21), 1062–1065 (2009).
    [CrossRef]
  27. J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
    [CrossRef]
  28. H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 89–97 (2002).
    [CrossRef]
  29. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
    [CrossRef] [PubMed]
  30. H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
    [CrossRef]
  31. M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
    [CrossRef]
  32. S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
    [CrossRef]
  33. S. Guizard, P. Martin, G. Petite, P. D'Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
    [CrossRef]
  34. L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24 (2005).
    [CrossRef]
  35. M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. 57(1), 63–94 (2012).
    [CrossRef]
  36. A. Tool, “Relation between inelastic deformability and theram expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29(9), 240–253 (1946).
    [CrossRef]
  37. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [CrossRef] [PubMed]
  38. M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to IR femtosecond laser,” Phys. Rev. B (in press).
  39. F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56(1), 138–144 (2001).
    [CrossRef]
  40. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
    [CrossRef]
  41. M. Yamane and J. Mackenzie, “Vicker's hardness of glass,” J. Non-Cryst. Solids 15(2), 153–164 (1974).
    [CrossRef]
  42. P. Richet, D. de Ligny, and E. Westrum, “Low-temperature heat capacity of GeO2 and B2O3 glasses: thermophysical and structural implications,” J. Non-Cryst. Solids 315(1-2), 20–30 (2003).
    [CrossRef]
  43. K. Tajima, M. Tateda, and M. Ohashi, “Viscosity of GeO2-doped silica glasses,” J. Lightwave Technol. 12(3), 411–414 (1994).
    [CrossRef]
  44. M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
    [CrossRef]
  45. M. Lancry and B. Poumellec, “Femtosecond laser direct writing in P, Ge doped silica glasses: time resolved plasma measurements,” in Femtosecond Laser Microfabrication, OSA Technical Digest (CD) (Optical Society of America, 2009), ISBN 978–1–55752–879–7, paper LMTuA5 (2009).
  46. M. Lancry, K. Cook, J. Canning, and B. Poumellec, “Nanogratings and molecular oxygen formation during femtosecond laser irradiation in silica,” in The International Quantum Electronics Conference (IQEC)/The Conference on Lasers and Electro-Optics (CLEO) Pacific Rim (2011).
  47. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
    [CrossRef]
  48. P. Kazansky, E. Bricchi, Y. Shimotsuma, and K. Hirao, “Self-assembled nanostructures and two-plasmon decay in femtosecond processing of transparent materials,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThJ3.
  49. M. Lancry, B. Poumellec, W. Yang, and B. Bourguignon, “Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica,” Opt. Express (in press).
  50. R. Araujo, “Oxygen vacancies in silica and germania glasses,” J. Non-Cryst. Solids 197(2-3), 164–169 (1996).
    [CrossRef]
  51. M. Schurman and M. Tomozawa, “Equilibrium oxygen vacancy concentrations and oxidant diffusion in germania, silica, and germania-silica glasses,” J. Non-Cryst. Solids 202(1-2), 93–106 (1996).
    [CrossRef]
  52. T. E. Tsai, E. J. Friebele, and D. L. Griscom, “Thermal stability of photoinduced gratings and paramagnetic centers in Ge- and Ge/P-doped silica optical fibers,” Opt. Lett. 18(12), 935–937 (1993).
    [CrossRef] [PubMed]
  53. K. Sanada, N. Shamoto, and K. Inada, “Radiation resistance of fluorine-doped silica-core fibers,” J. Non-Cryst. Solids 179, 339–344 (1994).
    [CrossRef]
  54. K. Saito and A. Ikushima, “Effects of fluorine on structure, structural relaxation, and absorption edge in silica glass,” J. Appl. Phys. 91(8), 4886–4890 (2002).
    [CrossRef]
  55. L. Skuja, K. Kajihara, Y. Ikuta, M. Hirano, and H. Hosono, “Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping,” J. Non-Cryst. Solids 345-346, 328–331 (2004).
    [CrossRef]
  56. B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III 6(12), 1595–1624 (1996).
    [CrossRef]

2012

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. 57(1), 63–94 (2012).
[CrossRef]

2009

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[CrossRef]

M. Lancry, B. Poumellec, and M. Douay, “Anisotropic luminescence photo-excitation in H2-loaded Ge-doped silica exposed to polarized 193 nm laser light,” J. Non-Cryst. Solids 355(18-21), 1062–1065 (2009).
[CrossRef]

2008

B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16(22), 18354–18361 (2008).
[CrossRef] [PubMed]

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[CrossRef]

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

2007

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

2006

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[CrossRef]

E. Bricchi and P. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser irradiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[CrossRef]

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. Kazansky, “SnO2 nanoparticles in silica: Nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88(13), 131912 (2006).
[CrossRef]

2005

2004

L. Skuja, K. Kajihara, Y. Ikuta, M. Hirano, and H. Hosono, “Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping,” J. Non-Cryst. Solids 345-346, 328–331 (2004).
[CrossRef]

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[CrossRef]

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
[CrossRef] [PubMed]

2003

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[CrossRef] [PubMed]

J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[CrossRef]

P. Richet, D. de Ligny, and E. Westrum, “Low-temperature heat capacity of GeO2 and B2O3 glasses: thermophysical and structural implications,” J. Non-Cryst. Solids 315(1-2), 20–30 (2003).
[CrossRef]

2002

K. Saito and A. Ikushima, “Effects of fluorine on structure, structural relaxation, and absorption edge in silica glass,” J. Appl. Phys. 91(8), 4886–4890 (2002).
[CrossRef]

H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 89–97 (2002).
[CrossRef]

2001

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[CrossRef] [PubMed]

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56(1), 138–144 (2001).
[CrossRef]

C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

M. Kaempfe, G. Seifert, K. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
[CrossRef]

2000

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

1999

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999).
[CrossRef]

1998

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1-3), 91–95 (1998).
[CrossRef]

1996

S. Guizard, P. Martin, G. Petite, P. D'Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III 6(12), 1595–1624 (1996).
[CrossRef]

R. Araujo, “Oxygen vacancies in silica and germania glasses,” J. Non-Cryst. Solids 197(2-3), 164–169 (1996).
[CrossRef]

M. Schurman and M. Tomozawa, “Equilibrium oxygen vacancy concentrations and oxidant diffusion in germania, silica, and germania-silica glasses,” J. Non-Cryst. Solids 202(1-2), 93–106 (1996).
[CrossRef]

1995

1994

K. Tajima, M. Tateda, and M. Ohashi, “Viscosity of GeO2-doped silica glasses,” J. Lightwave Technol. 12(3), 411–414 (1994).
[CrossRef]

K. Sanada, N. Shamoto, and K. Inada, “Radiation resistance of fluorine-doped silica-core fibers,” J. Non-Cryst. Solids 179, 339–344 (1994).
[CrossRef]

1993

1986

1980

G. Scherer, “Stress-optical effects in optical waveguides,” J. Non-Cryst. Solids 38-39, 201–204 (1980).
[CrossRef]

1974

M. Yamane and J. Mackenzie, “Vicker's hardness of glass,” J. Non-Cryst. Solids 15(2), 153–164 (1974).
[CrossRef]

1946

A. Tool, “Relation between inelastic deformability and theram expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29(9), 240–253 (1946).
[CrossRef]

Ams, M.

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Ani-Joseph, S.

Arai, A.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

Araujo, R.

R. Araujo, “Oxygen vacancies in silica and germania glasses,” J. Non-Cryst. Solids 197(2-3), 164–169 (1996).
[CrossRef]

Bachmann, P. K.

Bennion, I.

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Berg, K.

M. Kaempfe, G. Seifert, K. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
[CrossRef]

Bhardwaj, V.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser irradiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[CrossRef]

Bourguignon, B.

M. Lancry, B. Poumellec, W. Yang, and B. Bourguignon, “Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica,” Opt. Express (in press).

Bovatsek, J.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

Bricchi, E.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

E. Bricchi and P. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[CrossRef]

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. Kazansky, “SnO2 nanoparticles in silica: Nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88(13), 131912 (2006).
[CrossRef]

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
[CrossRef] [PubMed]

Brodeur, A.

C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[CrossRef]

Canning, J.

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[CrossRef]

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to IR femtosecond laser,” Phys. Rev. B (in press).

Chan, J.

J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[CrossRef]

Chan, J. W.

Chiodini, N.

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. Kazansky, “SnO2 nanoparticles in silica: Nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88(13), 131912 (2006).
[CrossRef]

Corkum, P.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser irradiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[CrossRef]

Couairon, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

Davis, K. M.

de Ligny, D.

P. Richet, D. de Ligny, and E. Westrum, “Low-temperature heat capacity of GeO2 and B2O3 glasses: thermophysical and structural implications,” J. Non-Cryst. Solids 315(1-2), 20–30 (2003).
[CrossRef]

Dekker, P.

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

D'Oliveira, P.

S. Guizard, P. Martin, G. Petite, P. D'Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
[CrossRef]

Douay, M.

M. Lancry, B. Poumellec, and M. Douay, “Anisotropic luminescence photo-excitation in H2-loaded Ge-doped silica exposed to polarized 193 nm laser light,” J. Non-Cryst. Solids 355(18-21), 1062–1065 (2009).
[CrossRef]

M. Lancry, P. Niay, and M. Douay, “Comparing the properties of various sensitization methods in H2-loaded, UV hypersensitized or OH-flooded standard germanosilicate fibers,” Opt. Express 13(11), 4037–4043 (2005).
[CrossRef] [PubMed]

Dubov, M.

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Eaton, S.

Fedorov, N.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to IR femtosecond laser,” Phys. Rev. B (in press).

Franchina, E.

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. Kazansky, “SnO2 nanoparticles in silica: Nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88(13), 131912 (2006).
[CrossRef]

Franco, M.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999).
[CrossRef]

Friebele, E. J.

Gertsvolf, M.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

Graener, H.

M. Kaempfe, G. Seifert, K. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
[CrossRef]

Griscom, D. L.

Groothoff, N.

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[CrossRef]

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to IR femtosecond laser,” Phys. Rev. B (in press).

Guizard, S.

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[CrossRef]

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[CrossRef]

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56(1), 138–144 (2001).
[CrossRef]

S. Guizard, P. Martin, G. Petite, P. D'Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
[CrossRef]

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to IR femtosecond laser,” Phys. Rev. B (in press).

Herman, P.

Hermann, W. G.

Hirano, M.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24 (2005).
[CrossRef]

L. Skuja, K. Kajihara, Y. Ikuta, M. Hirano, and H. Hosono, “Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping,” J. Non-Cryst. Solids 345-346, 328–331 (2004).
[CrossRef]

H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 89–97 (2002).
[CrossRef]

Hirao, K.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[CrossRef]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1-3), 91–95 (1998).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser irradiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[CrossRef]

Hofmeister, H.

M. Kaempfe, G. Seifert, K. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
[CrossRef]

Hosono, H.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24 (2005).
[CrossRef]

L. Skuja, K. Kajihara, Y. Ikuta, M. Hirano, and H. Hosono, “Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping,” J. Non-Cryst. Solids 345-346, 328–331 (2004).
[CrossRef]

H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 89–97 (2002).
[CrossRef]

Huser, T.

J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[CrossRef]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[CrossRef] [PubMed]

Ikushima, A.

K. Saito and A. Ikushima, “Effects of fluorine on structure, structural relaxation, and absorption edge in silica glass,” J. Appl. Phys. 91(8), 4886–4890 (2002).
[CrossRef]

Ikuta, Y.

L. Skuja, K. Kajihara, Y. Ikuta, M. Hirano, and H. Hosono, “Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping,” J. Non-Cryst. Solids 345-346, 328–331 (2004).
[CrossRef]

Inada, K.

K. Sanada, N. Shamoto, and K. Inada, “Radiation resistance of fluorine-doped silica-core fibers,” J. Non-Cryst. Solids 179, 339–344 (1994).
[CrossRef]

Ishiguro, Y.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[CrossRef]

Ishikawa, S.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[CrossRef]

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[CrossRef]

Juodkazis, S.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

Kaempfe, M.

M. Kaempfe, G. Seifert, K. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
[CrossRef]

Kajihara, K.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24 (2005).
[CrossRef]

L. Skuja, K. Kajihara, Y. Ikuta, M. Hirano, and H. Hosono, “Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping,” J. Non-Cryst. Solids 345-346, 328–331 (2004).
[CrossRef]

Kato, T.

Kawamura, K.

H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 89–97 (2002).
[CrossRef]

Kazansky, P.

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[CrossRef]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

E. Bricchi and P. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[CrossRef]

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. Kazansky, “SnO2 nanoparticles in silica: Nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88(13), 131912 (2006).
[CrossRef]

Kazansky, P. G.

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Kherbouche, F.

B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III 6(12), 1595–1624 (1996).
[CrossRef]

Klappauf, B. G.

Krol, D.

J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[CrossRef]

Krol, D. M.

Kyoto, M.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[CrossRef]

Lancry, M.

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. 57(1), 63–94 (2012).
[CrossRef]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[CrossRef]

M. Lancry, B. Poumellec, and M. Douay, “Anisotropic luminescence photo-excitation in H2-loaded Ge-doped silica exposed to polarized 193 nm laser light,” J. Non-Cryst. Solids 355(18-21), 1062–1065 (2009).
[CrossRef]

B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16(22), 18354–18361 (2008).
[CrossRef] [PubMed]

M. Lancry, P. Niay, and M. Douay, “Comparing the properties of various sensitization methods in H2-loaded, UV hypersensitized or OH-flooded standard germanosilicate fibers,” Opt. Express 13(11), 4037–4043 (2005).
[CrossRef] [PubMed]

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fibers materials,” Phys. Rep. (in press).

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to IR femtosecond laser,” Phys. Rev. B (in press).

M. Lancry, B. Poumellec, W. Yang, and B. Bourguignon, “Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica,” Opt. Express (in press).

Lauria, A.

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. Kazansky, “SnO2 nanoparticles in silica: Nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88(13), 131912 (2006).
[CrossRef]

Mackenzie, J.

M. Yamane and J. Mackenzie, “Vicker's hardness of glass,” J. Non-Cryst. Solids 15(2), 153–164 (1974).
[CrossRef]

Mao, S.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[CrossRef]

Mao, X.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[CrossRef]

Marshall, G.

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Martin, P.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[CrossRef]

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56(1), 138–144 (2001).
[CrossRef]

S. Guizard, P. Martin, G. Petite, P. D'Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
[CrossRef]

Matsuishi, S.

H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 89–97 (2002).
[CrossRef]

Matsuo, S.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

Mazur, E.

C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

Meynadier, P.

S. Guizard, P. Martin, G. Petite, P. D'Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
[CrossRef]

Mezentsev, V.

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Misawa, H.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

Miura, K.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[CrossRef]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1-3), 91–95 (1998).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Mysyrowicz, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999).
[CrossRef]

Niay, P.

Nishii, J.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

Nishimura, M.

Nolte, S.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[CrossRef]

Ohashi, M.

K. Tajima, M. Tateda, and M. Ohashi, “Viscosity of GeO2-doped silica glasses,” J. Lightwave Technol. 12(3), 411–414 (1994).
[CrossRef]

Ohoga, Y.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[CrossRef]

Paleari, A.

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. Kazansky, “SnO2 nanoparticles in silica: Nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88(13), 131912 (2006).
[CrossRef]

Petite, G.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[CrossRef]

S. Guizard, P. Martin, G. Petite, P. D'Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
[CrossRef]

Poulin, J. C.

Poumellec, B.

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. 57(1), 63–94 (2012).
[CrossRef]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[CrossRef]

M. Lancry, B. Poumellec, and M. Douay, “Anisotropic luminescence photo-excitation in H2-loaded Ge-doped silica exposed to polarized 193 nm laser light,” J. Non-Cryst. Solids 355(18-21), 1062–1065 (2009).
[CrossRef]

B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16(22), 18354–18361 (2008).
[CrossRef] [PubMed]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[CrossRef] [PubMed]

B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III 6(12), 1595–1624 (1996).
[CrossRef]

M. Lancry, B. Poumellec, W. Yang, and B. Bourguignon, “Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica,” Opt. Express (in press).

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to IR femtosecond laser,” Phys. Rev. B (in press).

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fibers materials,” Phys. Rep. (in press).

Prade, B.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999).
[CrossRef]

Qiu, J.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Quéré, F.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[CrossRef]

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56(1), 138–144 (2001).
[CrossRef]

Rajeev, P.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

Rajeev, P. P.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser irradiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[CrossRef]

Rayner, D.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser irradiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[CrossRef]

Régnier, E.

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. 57(1), 63–94 (2012).
[CrossRef]

Richet, P.

P. Richet, D. de Ligny, and E. Westrum, “Low-temperature heat capacity of GeO2 and B2O3 glasses: thermophysical and structural implications,” J. Non-Cryst. Solids 315(1-2), 20–30 (2003).
[CrossRef]

Risbud, S.

J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[CrossRef]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[CrossRef] [PubMed]

Russo, R.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[CrossRef]

Saito, K.

K. Saito and A. Ikushima, “Effects of fluorine on structure, structural relaxation, and absorption edge in silica glass,” J. Appl. Phys. 91(8), 4886–4890 (2002).
[CrossRef]

Sanada, K.

K. Sanada, N. Shamoto, and K. Inada, “Radiation resistance of fluorine-doped silica-core fibers,” J. Non-Cryst. Solids 179, 339–344 (1994).
[CrossRef]

Schaffer, C.

C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

Schaffer, C. B.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[CrossRef]

Scherer, G.

G. Scherer, “Stress-optical effects in optical waveguides,” J. Non-Cryst. Solids 38-39, 201–204 (1980).
[CrossRef]

Schurman, M.

M. Schurman and M. Tomozawa, “Equilibrium oxygen vacancy concentrations and oxidant diffusion in germania, silica, and germania-silica glasses,” J. Non-Cryst. Solids 202(1-2), 93–106 (1996).
[CrossRef]

Seifert, G.

M. Kaempfe, G. Seifert, K. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
[CrossRef]

Shah, L.

Shamoto, N.

K. Sanada, N. Shamoto, and K. Inada, “Radiation resistance of fluorine-doped silica-core fibers,” J. Non-Cryst. Solids 179, 339–344 (1994).
[CrossRef]

Shimotsuma, Y.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Simova, E.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser irradiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[CrossRef]

Skuja, L.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24 (2005).
[CrossRef]

L. Skuja, K. Kajihara, Y. Ikuta, M. Hirano, and H. Hosono, “Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping,” J. Non-Cryst. Solids 345-346, 328–331 (2004).
[CrossRef]

Sudrie, L.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999).
[CrossRef]

Suetsugu, Y.

Sugimoto, N.

Sun, H.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

Tajima, K.

K. Tajima, M. Tateda, and M. Ohashi, “Viscosity of GeO2-doped silica glasses,” J. Lightwave Technol. 12(3), 411–414 (1994).
[CrossRef]

Tateda, M.

K. Tajima, M. Tateda, and M. Ohashi, “Viscosity of GeO2-doped silica glasses,” J. Lightwave Technol. 12(3), 411–414 (1994).
[CrossRef]

Taylor, R.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser irradiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[CrossRef]

Tomozawa, M.

M. Schurman and M. Tomozawa, “Equilibrium oxygen vacancy concentrations and oxidant diffusion in germania, silica, and germania-silica glasses,” J. Non-Cryst. Solids 202(1-2), 93–106 (1996).
[CrossRef]

Tool, A.

A. Tool, “Relation between inelastic deformability and theram expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29(9), 240–253 (1946).
[CrossRef]

Tsai, T. E.

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[CrossRef]

Watanabe, M.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[CrossRef]

Wehr, H.

Westrum, E.

P. Richet, D. de Ligny, and E. Westrum, “Low-temperature heat capacity of GeO2 and B2O3 glasses: thermophysical and structural implications,” J. Non-Cryst. Solids 315(1-2), 20–30 (2003).
[CrossRef]

Wiechert, D. U.

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[CrossRef]

Withford, M.

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Yamane, M.

M. Yamane and J. Mackenzie, “Vicker's hardness of glass,” J. Non-Cryst. Solids 15(2), 153–164 (1974).
[CrossRef]

Yang, W.

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[CrossRef]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

M. Lancry, B. Poumellec, W. Yang, and B. Bourguignon, “Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica,” Opt. Express (in press).

Yoshino, F.

Zhang, H.

Appl. Opt.

Appl. Phys. Lett.

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. Kazansky, “SnO2 nanoparticles in silica: Nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88(13), 131912 (2006).
[CrossRef]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

E. Bricchi and P. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser irradiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[CrossRef]

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[CrossRef]

Eur. Phys. J. D

M. Kaempfe, G. Seifert, K. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
[CrossRef]

Europhys. Lett.

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56(1), 138–144 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

J. Am. Ceram. Soc.

A. Tool, “Relation between inelastic deformability and theram expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29(9), 240–253 (1946).
[CrossRef]

J. Appl. Phys.

K. Saito and A. Ikushima, “Effects of fluorine on structure, structural relaxation, and absorption edge in silica glass,” J. Appl. Phys. 91(8), 4886–4890 (2002).
[CrossRef]

J. Lightwave Technol.

K. Tajima, M. Tateda, and M. Ohashi, “Viscosity of GeO2-doped silica glasses,” J. Lightwave Technol. 12(3), 411–414 (1994).
[CrossRef]

J. Mater. Sci.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[CrossRef]

J. Non-Cryst. Solids

M. Yamane and J. Mackenzie, “Vicker's hardness of glass,” J. Non-Cryst. Solids 15(2), 153–164 (1974).
[CrossRef]

P. Richet, D. de Ligny, and E. Westrum, “Low-temperature heat capacity of GeO2 and B2O3 glasses: thermophysical and structural implications,” J. Non-Cryst. Solids 315(1-2), 20–30 (2003).
[CrossRef]

L. Skuja, K. Kajihara, Y. Ikuta, M. Hirano, and H. Hosono, “Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping,” J. Non-Cryst. Solids 345-346, 328–331 (2004).
[CrossRef]

K. Sanada, N. Shamoto, and K. Inada, “Radiation resistance of fluorine-doped silica-core fibers,” J. Non-Cryst. Solids 179, 339–344 (1994).
[CrossRef]

R. Araujo, “Oxygen vacancies in silica and germania glasses,” J. Non-Cryst. Solids 197(2-3), 164–169 (1996).
[CrossRef]

M. Schurman and M. Tomozawa, “Equilibrium oxygen vacancy concentrations and oxidant diffusion in germania, silica, and germania-silica glasses,” J. Non-Cryst. Solids 202(1-2), 93–106 (1996).
[CrossRef]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[CrossRef]

G. Scherer, “Stress-optical effects in optical waveguides,” J. Non-Cryst. Solids 38-39, 201–204 (1980).
[CrossRef]

M. Lancry, B. Poumellec, and M. Douay, “Anisotropic luminescence photo-excitation in H2-loaded Ge-doped silica exposed to polarized 193 nm laser light,” J. Non-Cryst. Solids 355(18-21), 1062–1065 (2009).
[CrossRef]

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[CrossRef]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1-3), 91–95 (1998).
[CrossRef]

J. Phys. At. Mol. Opt. Phys.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

J. Phys. Chem. B

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

J. Phys. Condens. Matter

S. Guizard, P. Martin, G. Petite, P. D'Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
[CrossRef]

J. Phys. III

B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III 6(12), 1595–1624 (1996).
[CrossRef]

Meas. Sci. Technol.

C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

MRS Bull.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B

H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 89–97 (2002).
[CrossRef]

Opt. Commun.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fibers materials,” Phys. Rep. (in press).

Phys. Rev. B

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to IR femtosecond laser,” Phys. Rev. B (in press).

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

Phys. Rev. Lett.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Phys. Status Solidi C

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24 (2005).
[CrossRef]

Prog. Mater. Sci.

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. 57(1), 63–94 (2012).
[CrossRef]

Other

M. Lancry, F. Brisset, and B. Poumellec, “In the heart of nanogratings made up during femtosecond laser irradiation,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD), (Optical Society of America, 2010), ISBN 978–1-55752–896–4.

B. Poumellec and M. Lancry, “Damage thresholds in femtosecond laser processing of silica: a review,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD), (Optical Society of America, 2010), ISBN 978–1-55752–896–4.

L. Sudrie, “Propagation non-linéaire des impulsions laser femtosecondes dans la silice,” (Université de Paris Sud XI Orsay, 2002).

M. Lancry and B. Poumellec, “Femtosecond laser direct writing in P, Ge doped silica glasses: time resolved plasma measurements,” in Femtosecond Laser Microfabrication, OSA Technical Digest (CD) (Optical Society of America, 2009), ISBN 978–1–55752–879–7, paper LMTuA5 (2009).

M. Lancry, K. Cook, J. Canning, and B. Poumellec, “Nanogratings and molecular oxygen formation during femtosecond laser irradiation in silica,” in The International Quantum Electronics Conference (IQEC)/The Conference on Lasers and Electro-Optics (CLEO) Pacific Rim (2011).

P. Kazansky, E. Bricchi, Y. Shimotsuma, and K. Hirao, “Self-assembled nanostructures and two-plasmon decay in femtosecond processing of transparent materials,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThJ3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Chemical analysis profile of the preform used in our experiments. Si and O contents are not shown. The Ge-doped part is the core of the optical fiber preform. The increase in F concentration indicates the preform center. Chlorine (in pink) is shown to remain at very low level. The analysis has been made by EPMA.

Fig. 2
Fig. 2

Quantitative birefringence cartography in optical fiber Ge-doped preform core in Fig. 2a and (F, P)-doped cladding and pure silica tube in Fig. 2b. The blue lines correspond to various writing pulse energies ranging from 55nJ up to 2.6μJ. The color scale indicates the slow axis orientation.

Fig. 3
Fig. 3

Average retardance (in nm) over the interaction length t (i.e. the laser trace) according to the writing pulse energy for various chemical compositions.

Fig. 4
Fig. 4

Optical image of the Ge-doped, (F, P) co-doped, F-doped and silica in the (x, y) plane (i.e. through the sample) recorded with quantitative phase measurement (QPM) microscope. The black lines correspond to negative index changes whereas the bright ones are for positive index changes.

Fig. 5
Fig. 5

Pulse energy versus numerical aperture diagram in log-log scale defining regions with different kinds of laser interaction with silica. Laser parameters: 0.1-17 μJ, NA = 0.01-1, 160 fs, 200 kHz, 800 nm. N.B.: the blue discontinuous line marks the position of our today experiments.

Fig. 6
Fig. 6

Average phase shift (in rad) over the interaction length t according to writing pulse energy for various chemical compositions. The up-right inset corresponds to low writing energies from 0.1 up to 0.4μJ.

Fig. 7
Fig. 7

This graph compares the glass relaxation time and the cooling profile after single pulse femtosecond laser irradiation for pure and doped silica. The cooling profiles with varying incident energy are for pure silica only.

Tables (1)

Tables Icon

Table 1 Dependence on T1 and T2 Thresholds on Doping a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S T E G e | radiative or non-radiative recombination | structural modification  like densification ε G e E ' + N b O H C G e O D C ( I I ) + O 2         
η ( T c ) / G ( T c ) = δ t ( T > T c )
W = a E g [ S T E ] = a E g σ n . I t h n . τ . N O .
I t h 2 , G e I t h 2 , S i = ( N S i ε S i σ S i I t h 2 , S i N G e ε G e σ G e ) 1 / 5 with I T2, Si    40TW/cm² .

Metrics