Abstract

We investigate the three-photon absorption spectra of four platinum acetylides complexes employing femtosecond pulses. We observed strong three-photon absorption cross-section in the near-infrared region (from 850 nm to 1200 nm). The three-photon absorption (3PA) spectra present resonance enhancement effect as two photons of the excitation wavelength approach the lower two-photon allowed states of the molecules as well as a 3PA allowed band around 1180 nm. The 3PA cross-section spectra were interpreted using the sum-over-essential-states approach, considering a three-energy-level diagram.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. He, L. X. Yuan, Y. P. Cui, M. Li, and P. N. Prasad, “Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material,” J. Appl. Phys. 81(6), 2529–2537 (1997).
    [CrossRef]
  2. G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20(23), 2393–2395 (1995).
    [CrossRef] [PubMed]
  3. D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989).
    [CrossRef] [PubMed]
  4. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  5. C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstrucures containing an electroluminescent polymer,” Appl. Phys. Lett. 95(11), 113309 (2009).
    [CrossRef]
  6. T. J. Dougherty and S. L. Marcus, “Photodynamic therapy,” Eur. J. Cancer 28(10), 1734–1742 (1992).
    [CrossRef] [PubMed]
  7. G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108(4), 1245–1330 (2008).
    [CrossRef] [PubMed]
  8. C. E. Powell, S. K. Hurst, J. P. Morrall, M. P. Cifuentes, R. L. Roberts, M. Samoc, and M. G. Humphrey, “Organometallic complexes for nonlinear optics. 39. Syntheses and third-order nonlinear optical properties of first-generation peripherally metalated arylalkynyl dendrimers,” Organometallics 26(18), 4456–4463 (2007).
    [CrossRef]
  9. J. E. Rogers, T. M. Cooper, P. A. Fleitz, D. J. Glass, and D. G. McLean, “Photophysical characterization of a series of platinum(II)-containing phenyl-ethynyl oligomers,” J. Phys. Chem. A 106(43), 10108–10115 (2002).
    [CrossRef]
  10. J. Staromlynska, P. B. Chapple, J. R. Davy, and T. J. McKay, “A platinum ethynyl compound for optical limiting,” Proc. SPIE 2229, 59–66 (1994).
    [CrossRef]
  11. J. Staromlynska, T. J. McKay, and P. Wilson, “Broadband optical limiting based on excited state absorption in Pt:ethynyl,” J. Appl. Phys. 88(4), 1726–1732 (2000).
    [CrossRef]
  12. K. A. Nguyen, P. N. Day, and R. Pachter, “One- and two-photon spectra of platinum acetylide chromophores: a TDDFT study,” J. Phys. Chem. A 113(50), 13943–13952 (2009).
    [CrossRef] [PubMed]
  13. J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
    [CrossRef] [PubMed]
  14. T. M. Cooper, D. M. Krein, A. R. Burke, D. G. McLean, J. E. Rogers, J. E. Slagle, and P. A. Fleitz, “Spectroscopic characterization of a series of platinum acetylide complexes having a localized triplet exciton,” J. Phys. Chem. A 110(13), 4369–4375 (2006).
    [CrossRef] [PubMed]
  15. D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
    [CrossRef]
  16. E. C. Lim, Excited States (Academic Press, 1977).
  17. L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
    [CrossRef] [PubMed]
  18. K. D. Bonin and T. J. McIlrath, “Two-photon electric-dipole selection rules,” J. Opt. Soc. Am. B 1(1), 52–55 (1984).
    [CrossRef]
  19. W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation-theory,” J. Phys. At. Mol. Opt. Phys. 17(5), 763–781 (1984).
    [CrossRef]
  20. Z. D. Yang, J. K. Feng, and A. M. Ren, “Theoretical investigation of one- and two-photon absorption properties of platinum acetylide chromophores,” Inorg. Chem. 47(23), 10841–10850 (2008).
    [CrossRef] [PubMed]
  21. T. J. McKay, J. Staromlynska, P. Wilson, and J. Davy, “Nonlinear luminescence spectroscopy in a Pt: ethynyl compound,” J. Appl. Phys. 85(3), 1337–1341 (1999).
    [CrossRef]
  22. K. D. Belfield, M. V. Bondar, F. E. Hernandez, O. V. Przhonska, and S. Yao, “Two-photon absorption cross section determination for fluorene derivatives: analysis of the methodology and elucidation of the origin of the absorption processes,” J. Phys. Chem. B 111(44), 12723–12729 (2007).
    [CrossRef] [PubMed]
  23. R. Anémian, Y. Morel, P. L. Baldeck, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, “Optical limiting in the visible range: molecular engineering around N-4,N-4 '-bis(4-methoxyphenyl)-N-4,N-4 '-diphenyl-4,4(')-diaminobiphenyl,” J. Mater. Chem. 13(9), 2157–2163 (2003).
    [CrossRef]
  24. S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, “Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev. B 69(11), 115421 (2004).
    [CrossRef]
  25. D. S. Corrêa, L. De Boni, D. T. Balogh, and C. R. Mendonca, “Three- and four-photon excitation of poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV),” Adv. Mater. (Deerfield Beach Fla.) 19(18), 2653–2656 (2007).
    [CrossRef]
  26. K. D. Belfield, F. E. Hernandez, I. Cohanoschi, M. V. Bondar, and E. W. Van Stryland, “Two-photon and beyond: 2, 3 and 4 photon absorption in conjugated fluorenes,” Polym. Mater. Sci. Eng. 91, 346–347 (2004).

2009 (2)

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstrucures containing an electroluminescent polymer,” Appl. Phys. Lett. 95(11), 113309 (2009).
[CrossRef]

K. A. Nguyen, P. N. Day, and R. Pachter, “One- and two-photon spectra of platinum acetylide chromophores: a TDDFT study,” J. Phys. Chem. A 113(50), 13943–13952 (2009).
[CrossRef] [PubMed]

2008 (2)

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

Z. D. Yang, J. K. Feng, and A. M. Ren, “Theoretical investigation of one- and two-photon absorption properties of platinum acetylide chromophores,” Inorg. Chem. 47(23), 10841–10850 (2008).
[CrossRef] [PubMed]

2007 (5)

K. D. Belfield, M. V. Bondar, F. E. Hernandez, O. V. Przhonska, and S. Yao, “Two-photon absorption cross section determination for fluorene derivatives: analysis of the methodology and elucidation of the origin of the absorption processes,” J. Phys. Chem. B 111(44), 12723–12729 (2007).
[CrossRef] [PubMed]

D. S. Corrêa, L. De Boni, D. T. Balogh, and C. R. Mendonca, “Three- and four-photon excitation of poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV),” Adv. Mater. (Deerfield Beach Fla.) 19(18), 2653–2656 (2007).
[CrossRef]

C. E. Powell, S. K. Hurst, J. P. Morrall, M. P. Cifuentes, R. L. Roberts, M. Samoc, and M. G. Humphrey, “Organometallic complexes for nonlinear optics. 39. Syntheses and third-order nonlinear optical properties of first-generation peripherally metalated arylalkynyl dendrimers,” Organometallics 26(18), 4456–4463 (2007).
[CrossRef]

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

2006 (2)

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

T. M. Cooper, D. M. Krein, A. R. Burke, D. G. McLean, J. E. Rogers, J. E. Slagle, and P. A. Fleitz, “Spectroscopic characterization of a series of platinum acetylide complexes having a localized triplet exciton,” J. Phys. Chem. A 110(13), 4369–4375 (2006).
[CrossRef] [PubMed]

2004 (2)

K. D. Belfield, F. E. Hernandez, I. Cohanoschi, M. V. Bondar, and E. W. Van Stryland, “Two-photon and beyond: 2, 3 and 4 photon absorption in conjugated fluorenes,” Polym. Mater. Sci. Eng. 91, 346–347 (2004).

S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, “Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev. B 69(11), 115421 (2004).
[CrossRef]

2003 (1)

R. Anémian, Y. Morel, P. L. Baldeck, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, “Optical limiting in the visible range: molecular engineering around N-4,N-4 '-bis(4-methoxyphenyl)-N-4,N-4 '-diphenyl-4,4(')-diaminobiphenyl,” J. Mater. Chem. 13(9), 2157–2163 (2003).
[CrossRef]

2002 (1)

J. E. Rogers, T. M. Cooper, P. A. Fleitz, D. J. Glass, and D. G. McLean, “Photophysical characterization of a series of platinum(II)-containing phenyl-ethynyl oligomers,” J. Phys. Chem. A 106(43), 10108–10115 (2002).
[CrossRef]

2001 (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

2000 (1)

J. Staromlynska, T. J. McKay, and P. Wilson, “Broadband optical limiting based on excited state absorption in Pt:ethynyl,” J. Appl. Phys. 88(4), 1726–1732 (2000).
[CrossRef]

1999 (1)

T. J. McKay, J. Staromlynska, P. Wilson, and J. Davy, “Nonlinear luminescence spectroscopy in a Pt: ethynyl compound,” J. Appl. Phys. 85(3), 1337–1341 (1999).
[CrossRef]

1997 (1)

G. S. He, L. X. Yuan, Y. P. Cui, M. Li, and P. N. Prasad, “Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material,” J. Appl. Phys. 81(6), 2529–2537 (1997).
[CrossRef]

1995 (1)

1994 (1)

J. Staromlynska, P. B. Chapple, J. R. Davy, and T. J. McKay, “A platinum ethynyl compound for optical limiting,” Proc. SPIE 2229, 59–66 (1994).
[CrossRef]

1992 (1)

T. J. Dougherty and S. L. Marcus, “Photodynamic therapy,” Eur. J. Cancer 28(10), 1734–1742 (1992).
[CrossRef] [PubMed]

1989 (1)

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989).
[CrossRef] [PubMed]

1984 (2)

K. D. Bonin and T. J. McIlrath, “Two-photon electric-dipole selection rules,” J. Opt. Soc. Am. B 1(1), 52–55 (1984).
[CrossRef]

W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation-theory,” J. Phys. At. Mol. Opt. Phys. 17(5), 763–781 (1984).
[CrossRef]

Andraud, C.

R. Anémian, Y. Morel, P. L. Baldeck, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, “Optical limiting in the visible range: molecular engineering around N-4,N-4 '-bis(4-methoxyphenyl)-N-4,N-4 '-diphenyl-4,4(')-diaminobiphenyl,” J. Mater. Chem. 13(9), 2157–2163 (2003).
[CrossRef]

Anémian, R.

R. Anémian, Y. Morel, P. L. Baldeck, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, “Optical limiting in the visible range: molecular engineering around N-4,N-4 '-bis(4-methoxyphenyl)-N-4,N-4 '-diphenyl-4,4(')-diaminobiphenyl,” J. Mater. Chem. 13(9), 2157–2163 (2003).
[CrossRef]

Baldeck, P. L.

R. Anémian, Y. Morel, P. L. Baldeck, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, “Optical limiting in the visible range: molecular engineering around N-4,N-4 '-bis(4-methoxyphenyl)-N-4,N-4 '-diphenyl-4,4(')-diaminobiphenyl,” J. Mater. Chem. 13(9), 2157–2163 (2003).
[CrossRef]

Balogh, D. T.

D. S. Corrêa, L. De Boni, D. T. Balogh, and C. R. Mendonca, “Three- and four-photon excitation of poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV),” Adv. Mater. (Deerfield Beach Fla.) 19(18), 2653–2656 (2007).
[CrossRef]

Belfield, K. D.

K. D. Belfield, M. V. Bondar, F. E. Hernandez, O. V. Przhonska, and S. Yao, “Two-photon absorption cross section determination for fluorene derivatives: analysis of the methodology and elucidation of the origin of the absorption processes,” J. Phys. Chem. B 111(44), 12723–12729 (2007).
[CrossRef] [PubMed]

K. D. Belfield, F. E. Hernandez, I. Cohanoschi, M. V. Bondar, and E. W. Van Stryland, “Two-photon and beyond: 2, 3 and 4 photon absorption in conjugated fluorenes,” Polym. Mater. Sci. Eng. 91, 346–347 (2004).

Beljonne, D.

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

Bhawalkar, J. D.

Bondar, M. V.

K. D. Belfield, M. V. Bondar, F. E. Hernandez, O. V. Przhonska, and S. Yao, “Two-photon absorption cross section determination for fluorene derivatives: analysis of the methodology and elucidation of the origin of the absorption processes,” J. Phys. Chem. B 111(44), 12723–12729 (2007).
[CrossRef] [PubMed]

K. D. Belfield, F. E. Hernandez, I. Cohanoschi, M. V. Bondar, and E. W. Van Stryland, “Two-photon and beyond: 2, 3 and 4 photon absorption in conjugated fluorenes,” Polym. Mater. Sci. Eng. 91, 346–347 (2004).

Bonin, K. D.

Brédas, J. L.

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

Burke, A. R.

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

T. M. Cooper, D. M. Krein, A. R. Burke, D. G. McLean, J. E. Rogers, J. E. Slagle, and P. A. Fleitz, “Spectroscopic characterization of a series of platinum acetylide complexes having a localized triplet exciton,” J. Phys. Chem. A 110(13), 4369–4375 (2006).
[CrossRef] [PubMed]

Chapple, P. B.

J. Staromlynska, P. B. Chapple, J. R. Davy, and T. J. McKay, “A platinum ethynyl compound for optical limiting,” Proc. SPIE 2229, 59–66 (1994).
[CrossRef]

Cifuentes, M. P.

C. E. Powell, S. K. Hurst, J. P. Morrall, M. P. Cifuentes, R. L. Roberts, M. Samoc, and M. G. Humphrey, “Organometallic complexes for nonlinear optics. 39. Syntheses and third-order nonlinear optical properties of first-generation peripherally metalated arylalkynyl dendrimers,” Organometallics 26(18), 4456–4463 (2007).
[CrossRef]

Cohanoschi, I.

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

K. D. Belfield, F. E. Hernandez, I. Cohanoschi, M. V. Bondar, and E. W. Van Stryland, “Two-photon and beyond: 2, 3 and 4 photon absorption in conjugated fluorenes,” Polym. Mater. Sci. Eng. 91, 346–347 (2004).

Cooper, T. M.

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

T. M. Cooper, D. M. Krein, A. R. Burke, D. G. McLean, J. E. Rogers, J. E. Slagle, and P. A. Fleitz, “Spectroscopic characterization of a series of platinum acetylide complexes having a localized triplet exciton,” J. Phys. Chem. A 110(13), 4369–4375 (2006).
[CrossRef] [PubMed]

J. E. Rogers, T. M. Cooper, P. A. Fleitz, D. J. Glass, and D. G. McLean, “Photophysical characterization of a series of platinum(II)-containing phenyl-ethynyl oligomers,” J. Phys. Chem. A 106(43), 10108–10115 (2002).
[CrossRef]

Correa, D. S.

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstrucures containing an electroluminescent polymer,” Appl. Phys. Lett. 95(11), 113309 (2009).
[CrossRef]

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

Corrêa, D. S.

D. S. Corrêa, L. De Boni, D. T. Balogh, and C. R. Mendonca, “Three- and four-photon excitation of poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV),” Adv. Mater. (Deerfield Beach Fla.) 19(18), 2653–2656 (2007).
[CrossRef]

Cui, Y. P.

G. S. He, L. X. Yuan, Y. P. Cui, M. Li, and P. N. Prasad, “Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material,” J. Appl. Phys. 81(6), 2529–2537 (1997).
[CrossRef]

Davy, J.

T. J. McKay, J. Staromlynska, P. Wilson, and J. Davy, “Nonlinear luminescence spectroscopy in a Pt: ethynyl compound,” J. Appl. Phys. 85(3), 1337–1341 (1999).
[CrossRef]

Davy, J. R.

J. Staromlynska, P. B. Chapple, J. R. Davy, and T. J. McKay, “A platinum ethynyl compound for optical limiting,” Proc. SPIE 2229, 59–66 (1994).
[CrossRef]

Day, P. N.

K. A. Nguyen, P. N. Day, and R. Pachter, “One- and two-photon spectra of platinum acetylide chromophores: a TDDFT study,” J. Phys. Chem. A 113(50), 13943–13952 (2009).
[CrossRef] [PubMed]

De Boni, L.

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

D. S. Corrêa, L. De Boni, D. T. Balogh, and C. R. Mendonca, “Three- and four-photon excitation of poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV),” Adv. Mater. (Deerfield Beach Fla.) 19(18), 2653–2656 (2007).
[CrossRef]

Dougherty, T. J.

T. J. Dougherty and S. L. Marcus, “Photodynamic therapy,” Eur. J. Cancer 28(10), 1734–1742 (1992).
[CrossRef] [PubMed]

Drobizhev, M.

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

Farley, R.

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

Feng, J. K.

Z. D. Yang, J. K. Feng, and A. M. Ren, “Theoretical investigation of one- and two-photon absorption properties of platinum acetylide chromophores,” Inorg. Chem. 47(23), 10841–10850 (2008).
[CrossRef] [PubMed]

Fleitz, P. A.

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

T. M. Cooper, D. M. Krein, A. R. Burke, D. G. McLean, J. E. Rogers, J. E. Slagle, and P. A. Fleitz, “Spectroscopic characterization of a series of platinum acetylide complexes having a localized triplet exciton,” J. Phys. Chem. A 110(13), 4369–4375 (2006).
[CrossRef] [PubMed]

J. E. Rogers, T. M. Cooper, P. A. Fleitz, D. J. Glass, and D. G. McLean, “Photophysical characterization of a series of platinum(II)-containing phenyl-ethynyl oligomers,” J. Phys. Chem. A 106(43), 10108–10115 (2002).
[CrossRef]

Fratini, A.

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

Glass, D. J.

J. E. Rogers, T. M. Cooper, P. A. Fleitz, D. J. Glass, and D. G. McLean, “Photophysical characterization of a series of platinum(II)-containing phenyl-ethynyl oligomers,” J. Phys. Chem. A 106(43), 10108–10115 (2002).
[CrossRef]

Hall, B. C.

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

He, G. S.

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

G. S. He, L. X. Yuan, Y. P. Cui, M. Li, and P. N. Prasad, “Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material,” J. Appl. Phys. 81(6), 2529–2537 (1997).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20(23), 2393–2395 (1995).
[CrossRef] [PubMed]

Hernandez, F. E.

K. D. Belfield, M. V. Bondar, F. E. Hernandez, O. V. Przhonska, and S. Yao, “Two-photon absorption cross section determination for fluorene derivatives: analysis of the methodology and elucidation of the origin of the absorption processes,” J. Phys. Chem. B 111(44), 12723–12729 (2007).
[CrossRef] [PubMed]

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

K. D. Belfield, F. E. Hernandez, I. Cohanoschi, M. V. Bondar, and E. W. Van Stryland, “Two-photon and beyond: 2, 3 and 4 photon absorption in conjugated fluorenes,” Polym. Mater. Sci. Eng. 91, 346–347 (2004).

Humphrey, M. G.

C. E. Powell, S. K. Hurst, J. P. Morrall, M. P. Cifuentes, R. L. Roberts, M. Samoc, and M. G. Humphrey, “Organometallic complexes for nonlinear optics. 39. Syntheses and third-order nonlinear optical properties of first-generation peripherally metalated arylalkynyl dendrimers,” Organometallics 26(18), 4456–4463 (2007).
[CrossRef]

Hurst, S. K.

C. E. Powell, S. K. Hurst, J. P. Morrall, M. P. Cifuentes, R. L. Roberts, M. Samoc, and M. G. Humphrey, “Organometallic complexes for nonlinear optics. 39. Syntheses and third-order nonlinear optical properties of first-generation peripherally metalated arylalkynyl dendrimers,” Organometallics 26(18), 4456–4463 (2007).
[CrossRef]

Kawata, S.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Kim, K. Y.

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

Krein, D. M.

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

T. M. Cooper, D. M. Krein, A. R. Burke, D. G. McLean, J. E. Rogers, J. E. Slagle, and P. A. Fleitz, “Spectroscopic characterization of a series of platinum acetylide complexes having a localized triplet exciton,” J. Phys. Chem. A 110(13), 4369–4375 (2006).
[CrossRef] [PubMed]

Kretsch, K.

R. Anémian, Y. Morel, P. L. Baldeck, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, “Optical limiting in the visible range: molecular engineering around N-4,N-4 '-bis(4-methoxyphenyl)-N-4,N-4 '-diphenyl-4,4(')-diaminobiphenyl,” J. Mater. Chem. 13(9), 2157–2163 (2003).
[CrossRef]

Li, M.

G. S. He, L. X. Yuan, Y. P. Cui, M. Li, and P. N. Prasad, “Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material,” J. Appl. Phys. 81(6), 2529–2537 (1997).
[CrossRef]

Liu, M.

S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, “Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev. B 69(11), 115421 (2004).
[CrossRef]

Makarov, N. S.

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

Marcus, S. L.

T. J. Dougherty and S. L. Marcus, “Photodynamic therapy,” Eur. J. Cancer 28(10), 1734–1742 (1992).
[CrossRef] [PubMed]

Marlow, F.

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstrucures containing an electroluminescent polymer,” Appl. Phys. Lett. 95(11), 113309 (2009).
[CrossRef]

Mazur, E.

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstrucures containing an electroluminescent polymer,” Appl. Phys. Lett. 95(11), 113309 (2009).
[CrossRef]

McIlrath, T. J.

McKay, T. J.

J. Staromlynska, T. J. McKay, and P. Wilson, “Broadband optical limiting based on excited state absorption in Pt:ethynyl,” J. Appl. Phys. 88(4), 1726–1732 (2000).
[CrossRef]

T. J. McKay, J. Staromlynska, P. Wilson, and J. Davy, “Nonlinear luminescence spectroscopy in a Pt: ethynyl compound,” J. Appl. Phys. 85(3), 1337–1341 (1999).
[CrossRef]

J. Staromlynska, P. B. Chapple, J. R. Davy, and T. J. McKay, “A platinum ethynyl compound for optical limiting,” Proc. SPIE 2229, 59–66 (1994).
[CrossRef]

McLean, D. G.

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

T. M. Cooper, D. M. Krein, A. R. Burke, D. G. McLean, J. E. Rogers, J. E. Slagle, and P. A. Fleitz, “Spectroscopic characterization of a series of platinum acetylide complexes having a localized triplet exciton,” J. Phys. Chem. A 110(13), 4369–4375 (2006).
[CrossRef] [PubMed]

J. E. Rogers, T. M. Cooper, P. A. Fleitz, D. J. Glass, and D. G. McLean, “Photophysical characterization of a series of platinum(II)-containing phenyl-ethynyl oligomers,” J. Phys. Chem. A 106(43), 10108–10115 (2002).
[CrossRef]

Meath, W. J.

W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation-theory,” J. Phys. At. Mol. Opt. Phys. 17(5), 763–781 (1984).
[CrossRef]

Mendonca, C. R.

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstrucures containing an electroluminescent polymer,” Appl. Phys. Lett. 95(11), 113309 (2009).
[CrossRef]

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

D. S. Corrêa, L. De Boni, D. T. Balogh, and C. R. Mendonca, “Three- and four-photon excitation of poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV),” Adv. Mater. (Deerfield Beach Fla.) 19(18), 2653–2656 (2007).
[CrossRef]

Misoguti, L.

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

Morel, Y.

R. Anémian, Y. Morel, P. L. Baldeck, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, “Optical limiting in the visible range: molecular engineering around N-4,N-4 '-bis(4-methoxyphenyl)-N-4,N-4 '-diphenyl-4,4(')-diaminobiphenyl,” J. Mater. Chem. 13(9), 2157–2163 (2003).
[CrossRef]

Morrall, J. P.

C. E. Powell, S. K. Hurst, J. P. Morrall, M. P. Cifuentes, R. L. Roberts, M. Samoc, and M. G. Humphrey, “Organometallic complexes for nonlinear optics. 39. Syntheses and third-order nonlinear optical properties of first-generation peripherally metalated arylalkynyl dendrimers,” Organometallics 26(18), 4456–4463 (2007).
[CrossRef]

Nguyen, K. A.

K. A. Nguyen, P. N. Day, and R. Pachter, “One- and two-photon spectra of platinum acetylide chromophores: a TDDFT study,” J. Phys. Chem. A 113(50), 13943–13952 (2009).
[CrossRef] [PubMed]

Nunzi, J. M.

R. Anémian, Y. Morel, P. L. Baldeck, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, “Optical limiting in the visible range: molecular engineering around N-4,N-4 '-bis(4-methoxyphenyl)-N-4,N-4 '-diphenyl-4,4(')-diaminobiphenyl,” J. Mater. Chem. 13(9), 2157–2163 (2003).
[CrossRef]

Pachter, R.

K. A. Nguyen, P. N. Day, and R. Pachter, “One- and two-photon spectra of platinum acetylide chromophores: a TDDFT study,” J. Phys. Chem. A 113(50), 13943–13952 (2009).
[CrossRef] [PubMed]

Paci, B.

R. Anémian, Y. Morel, P. L. Baldeck, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, “Optical limiting in the visible range: molecular engineering around N-4,N-4 '-bis(4-methoxyphenyl)-N-4,N-4 '-diphenyl-4,4(')-diaminobiphenyl,” J. Mater. Chem. 13(9), 2157–2163 (2003).
[CrossRef]

Park, C. K.

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989).
[CrossRef] [PubMed]

Polyakov, S.

S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, “Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev. B 69(11), 115421 (2004).
[CrossRef]

Powell, C. E.

C. E. Powell, S. K. Hurst, J. P. Morrall, M. P. Cifuentes, R. L. Roberts, M. Samoc, and M. G. Humphrey, “Organometallic complexes for nonlinear optics. 39. Syntheses and third-order nonlinear optical properties of first-generation peripherally metalated arylalkynyl dendrimers,” Organometallics 26(18), 4456–4463 (2007).
[CrossRef]

Power, E. A.

W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation-theory,” J. Phys. At. Mol. Opt. Phys. 17(5), 763–781 (1984).
[CrossRef]

Prasad, P. N.

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

G. S. He, L. X. Yuan, Y. P. Cui, M. Li, and P. N. Prasad, “Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material,” J. Appl. Phys. 81(6), 2529–2537 (1997).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20(23), 2393–2395 (1995).
[CrossRef] [PubMed]

Przhonska, O. V.

K. D. Belfield, M. V. Bondar, F. E. Hernandez, O. V. Przhonska, and S. Yao, “Two-photon absorption cross section determination for fluorene derivatives: analysis of the methodology and elucidation of the origin of the absorption processes,” J. Phys. Chem. B 111(44), 12723–12729 (2007).
[CrossRef] [PubMed]

Rebane, A.

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

Ren, A. M.

Z. D. Yang, J. K. Feng, and A. M. Ren, “Theoretical investigation of one- and two-photon absorption properties of platinum acetylide chromophores,” Inorg. Chem. 47(23), 10841–10850 (2008).
[CrossRef] [PubMed]

Rentzepis, P. M.

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989).
[CrossRef] [PubMed]

Roberts, R. L.

C. E. Powell, S. K. Hurst, J. P. Morrall, M. P. Cifuentes, R. L. Roberts, M. Samoc, and M. G. Humphrey, “Organometallic complexes for nonlinear optics. 39. Syntheses and third-order nonlinear optical properties of first-generation peripherally metalated arylalkynyl dendrimers,” Organometallics 26(18), 4456–4463 (2007).
[CrossRef]

Rogers, J. E.

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

T. M. Cooper, D. M. Krein, A. R. Burke, D. G. McLean, J. E. Rogers, J. E. Slagle, and P. A. Fleitz, “Spectroscopic characterization of a series of platinum acetylide complexes having a localized triplet exciton,” J. Phys. Chem. A 110(13), 4369–4375 (2006).
[CrossRef] [PubMed]

J. E. Rogers, T. M. Cooper, P. A. Fleitz, D. J. Glass, and D. G. McLean, “Photophysical characterization of a series of platinum(II)-containing phenyl-ethynyl oligomers,” J. Phys. Chem. A 106(43), 10108–10115 (2002).
[CrossRef]

Samoc, M.

C. E. Powell, S. K. Hurst, J. P. Morrall, M. P. Cifuentes, R. L. Roberts, M. Samoc, and M. G. Humphrey, “Organometallic complexes for nonlinear optics. 39. Syntheses and third-order nonlinear optical properties of first-generation peripherally metalated arylalkynyl dendrimers,” Organometallics 26(18), 4456–4463 (2007).
[CrossRef]

Schanze, K. S.

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

Shuai, Z. G.

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

Slagle, J. E.

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

T. M. Cooper, D. M. Krein, A. R. Burke, D. G. McLean, J. E. Rogers, J. E. Slagle, and P. A. Fleitz, “Spectroscopic characterization of a series of platinum acetylide complexes having a localized triplet exciton,” J. Phys. Chem. A 110(13), 4369–4375 (2006).
[CrossRef] [PubMed]

Staromlynska, J.

J. Staromlynska, T. J. McKay, and P. Wilson, “Broadband optical limiting based on excited state absorption in Pt:ethynyl,” J. Appl. Phys. 88(4), 1726–1732 (2000).
[CrossRef]

T. J. McKay, J. Staromlynska, P. Wilson, and J. Davy, “Nonlinear luminescence spectroscopy in a Pt: ethynyl compound,” J. Appl. Phys. 85(3), 1337–1341 (1999).
[CrossRef]

J. Staromlynska, P. B. Chapple, J. R. Davy, and T. J. McKay, “A platinum ethynyl compound for optical limiting,” Proc. SPIE 2229, 59–66 (1994).
[CrossRef]

Stegeman, G.

S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, “Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev. B 69(11), 115421 (2004).
[CrossRef]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Tan, L. S.

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Tayalia, P.

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstrucures containing an electroluminescent polymer,” Appl. Phys. Lett. 95(11), 113309 (2009).
[CrossRef]

Van Stryland, E. W.

K. D. Belfield, F. E. Hernandez, I. Cohanoschi, M. V. Bondar, and E. W. Van Stryland, “Two-photon and beyond: 2, 3 and 4 photon absorption in conjugated fluorenes,” Polym. Mater. Sci. Eng. 91, 346–347 (2004).

Voss, T.

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstrucures containing an electroluminescent polymer,” Appl. Phys. Lett. 95(11), 113309 (2009).
[CrossRef]

Wilson, P.

J. Staromlynska, T. J. McKay, and P. Wilson, “Broadband optical limiting based on excited state absorption in Pt:ethynyl,” J. Appl. Phys. 88(4), 1726–1732 (2000).
[CrossRef]

T. J. McKay, J. Staromlynska, P. Wilson, and J. Davy, “Nonlinear luminescence spectroscopy in a Pt: ethynyl compound,” J. Appl. Phys. 85(3), 1337–1341 (1999).
[CrossRef]

Yang, Z. D.

Z. D. Yang, J. K. Feng, and A. M. Ren, “Theoretical investigation of one- and two-photon absorption properties of platinum acetylide chromophores,” Inorg. Chem. 47(23), 10841–10850 (2008).
[CrossRef] [PubMed]

Yao, S.

K. D. Belfield, M. V. Bondar, F. E. Hernandez, O. V. Przhonska, and S. Yao, “Two-photon absorption cross section determination for fluorene derivatives: analysis of the methodology and elucidation of the origin of the absorption processes,” J. Phys. Chem. B 111(44), 12723–12729 (2007).
[CrossRef] [PubMed]

Yi, Y. P.

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

Yoshino, F.

S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, “Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev. B 69(11), 115421 (2004).
[CrossRef]

Yuan, L. X.

G. S. He, L. X. Yuan, Y. P. Cui, M. Li, and P. N. Prasad, “Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material,” J. Appl. Phys. 81(6), 2529–2537 (1997).
[CrossRef]

Zhao, C. F.

Zheng, Q.

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

Zhu, L. Y.

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

Zojer, E.

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

D. S. Corrêa, L. De Boni, D. T. Balogh, and C. R. Mendonca, “Three- and four-photon excitation of poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV),” Adv. Mater. (Deerfield Beach Fla.) 19(18), 2653–2656 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstrucures containing an electroluminescent polymer,” Appl. Phys. Lett. 95(11), 113309 (2009).
[CrossRef]

Chem. Rev. (1)

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

Eur. J. Cancer (1)

T. J. Dougherty and S. L. Marcus, “Photodynamic therapy,” Eur. J. Cancer 28(10), 1734–1742 (1992).
[CrossRef] [PubMed]

Inorg. Chem. (2)

J. E. Rogers, J. E. Slagle, D. M. Krein, A. R. Burke, B. C. Hall, A. Fratini, D. G. McLean, P. A. Fleitz, T. M. Cooper, M. Drobizhev, N. S. Makarov, A. Rebane, K. Y. Kim, R. Farley, and K. S. Schanze, “Platinum acetylide two-photon chromophores,” Inorg. Chem. 46(16), 6483–6494 (2007).
[CrossRef] [PubMed]

Z. D. Yang, J. K. Feng, and A. M. Ren, “Theoretical investigation of one- and two-photon absorption properties of platinum acetylide chromophores,” Inorg. Chem. 47(23), 10841–10850 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

T. J. McKay, J. Staromlynska, P. Wilson, and J. Davy, “Nonlinear luminescence spectroscopy in a Pt: ethynyl compound,” J. Appl. Phys. 85(3), 1337–1341 (1999).
[CrossRef]

J. Staromlynska, T. J. McKay, and P. Wilson, “Broadband optical limiting based on excited state absorption in Pt:ethynyl,” J. Appl. Phys. 88(4), 1726–1732 (2000).
[CrossRef]

G. S. He, L. X. Yuan, Y. P. Cui, M. Li, and P. N. Prasad, “Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material,” J. Appl. Phys. 81(6), 2529–2537 (1997).
[CrossRef]

J. Chem. Phys. (1)

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

J. Mater. Chem. (1)

R. Anémian, Y. Morel, P. L. Baldeck, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, “Optical limiting in the visible range: molecular engineering around N-4,N-4 '-bis(4-methoxyphenyl)-N-4,N-4 '-diphenyl-4,4(')-diaminobiphenyl,” J. Mater. Chem. 13(9), 2157–2163 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. At. Mol. Opt. Phys. (1)

W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation-theory,” J. Phys. At. Mol. Opt. Phys. 17(5), 763–781 (1984).
[CrossRef]

J. Phys. Chem. A (3)

K. A. Nguyen, P. N. Day, and R. Pachter, “One- and two-photon spectra of platinum acetylide chromophores: a TDDFT study,” J. Phys. Chem. A 113(50), 13943–13952 (2009).
[CrossRef] [PubMed]

T. M. Cooper, D. M. Krein, A. R. Burke, D. G. McLean, J. E. Rogers, J. E. Slagle, and P. A. Fleitz, “Spectroscopic characterization of a series of platinum acetylide complexes having a localized triplet exciton,” J. Phys. Chem. A 110(13), 4369–4375 (2006).
[CrossRef] [PubMed]

J. E. Rogers, T. M. Cooper, P. A. Fleitz, D. J. Glass, and D. G. McLean, “Photophysical characterization of a series of platinum(II)-containing phenyl-ethynyl oligomers,” J. Phys. Chem. A 106(43), 10108–10115 (2002).
[CrossRef]

J. Phys. Chem. B (1)

K. D. Belfield, M. V. Bondar, F. E. Hernandez, O. V. Przhonska, and S. Yao, “Two-photon absorption cross section determination for fluorene derivatives: analysis of the methodology and elucidation of the origin of the absorption processes,” J. Phys. Chem. B 111(44), 12723–12729 (2007).
[CrossRef] [PubMed]

Nature (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

Opt. Lett. (1)

Organometallics (1)

C. E. Powell, S. K. Hurst, J. P. Morrall, M. P. Cifuentes, R. L. Roberts, M. Samoc, and M. G. Humphrey, “Organometallic complexes for nonlinear optics. 39. Syntheses and third-order nonlinear optical properties of first-generation peripherally metalated arylalkynyl dendrimers,” Organometallics 26(18), 4456–4463 (2007).
[CrossRef]

Phys. Rev. B (1)

S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, “Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev. B 69(11), 115421 (2004).
[CrossRef]

Polym. Mater. Sci. Eng. (1)

K. D. Belfield, F. E. Hernandez, I. Cohanoschi, M. V. Bondar, and E. W. Van Stryland, “Two-photon and beyond: 2, 3 and 4 photon absorption in conjugated fluorenes,” Polym. Mater. Sci. Eng. 91, 346–347 (2004).

Proc. SPIE (1)

J. Staromlynska, P. B. Chapple, J. R. Davy, and T. J. McKay, “A platinum ethynyl compound for optical limiting,” Proc. SPIE 2229, 59–66 (1994).
[CrossRef]

Science (1)

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989).
[CrossRef] [PubMed]

Other (1)

E. C. Lim, Excited States (Academic Press, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Molecular structures of the platinum acetylide complexes; trans-Pt(PBu3)2 (C≡C-C6H4-C≡C-C6H5)2 (I), trans-Pt(PBu3)2(C≡C-C6H4-C≡C-C6H4-C≡C-C6H5)2 (II), trans-Pt(PBu3)2(C≡C-C6H4-C5H10-C6H4-N(C6H4)2)2 (III) and trans-Pt(PBu3)2(C≡C-C6H4-C5H10-C6H4-CNS-C6H4)2 (IV).

Fig. 2
Fig. 2

One-photon cross-section (solid line – left axes), linear fluorescence (empty squares) and three-photon absorption (empty circles – right axes) spectra of platinum acetylide complexes. The solid line along the empty circles represents the theoretical fitting obtained with the sum-over-essential-states approach. It should be observed that for compound (I) the 1PA and 3PA cross-section spectra were multiplied by 2 and 3, respectively.

Fig. 3
Fig. 3

Normalized transmittance change (ΔT) as a function of the excitation irradiance at 900 nm for the four acetylide platinum complexes. The inset shows the slope for each molecule.

Fig. 4
Fig. 4

Experimental open aperture Z-scan signature for compound III at 900 nm. The dotted and solid line represents the best fitting obtained considering a 2PA and 3PA process.

Fig. 5
Fig. 5

Experimental open aperture Z-scan signature obtained for compound I, II, III and IV at 900 nm. Each curve in this figure corresponds to a distinct excitation intensity, which gives the dependence of ΔT with the intensity included in Fig. 3. The solid line represent the Z-scan data fitting obtained using Eq. (1).

Fig. 6
Fig. 6

Three-energy level diagram for platinum acetylide complexes. The contribution of the intermediate level, | e , is determined by the detuning between the excitation photon energy and the band gap of the material.

Tables (1)

Tables Icon

Table 1 Spectroscopic Parameters Used/Obtained in the Sum-Essential-States Model

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T 3 P A ( z ) = 1 π q 1 3 0 1 ln ( 1 + q 1 x 2 + q 1 x 2 ) x ln ( x ) d x ,  
q 1 = 2 γ L ( I 0 w 0 2 I 0 w 0 2 / w z 2 ) 2
S f g ( 3 P A ) = m , n [ ω f n ω n m ω m g ( e ^ · f | μ | n ) ( e ^ · n | μ | m ) ( m | μ | g · e ^ ) ( ω m g ω i Γ ) ( ω n g 2 ω i Γ ) ] ,
σ f g ( 3 P A ) = 8 ( 2 π ) 7 ( h c ) 3 L 6 ω 3 | m , n [ ( e ^ · μ f n ) ( e ^ · μ n m ) ( μ m g · e ^ ) [ ( ω f g ω ) i Γ f g ( ω ) ] [ ( ω n g 2 ω ) i Γ n g ( ω ) ] ]   | 2 g ( 3 ω )
σ e ' g ( 3 ) ( ω ) 2 7 ( 2 π ) 7 ( h c ) 3 L 6 ω 3 { ( | μ e g | | Δ μ e g | 2 | μ e g | 3 2 ) 2 ω 4 + [ ( | μ e ' e | 2 | μ e ' g | + 2 | μ e ' e | | μ e g | | Δ μ e g | ) 2 ω 2 [ ( ω e ' g 2 ω ) 2 + Γ e ' g 2 ( ω ) ] ] + + 2 ( ω e g 2 ω ) | μ e ' e | | μ e g | ω 3 [ ( ω e g 2 ω ) 2 + Γ e g 2 ( ω ) ] ( | μ e ' e | | μ e ' g | | Δ μ e g | 2 + 2 | Δ μ e g | 3 | μ e g | | μ e ' e | | μ e ' g | | μ e g | 2 2 | Δ μ e g | | μ e g | 3 ) } g ( 3 ω ) .
σ e ' g ( 3 ) ( ω ) 2 7 π ( 2 π ) 7 ( h c ) 3 L 6 { 1 ω ( | μ e g | | Δ μ e g | 2 | μ e g | 3 2 ) 2 Γ e g ( ω ) ( ω e g 3 ω ) 2 + Γ e g 2 ( ω ) + ω ( ω e g 2 ω ) 2 + Γ e g 2 ( ω ) ( ( | μ e ' e | 2 | μ e ' g | + 2 | μ e ' e | | μ e g | | Δ μ e g | ) 2 Γ e ' g ( ω ) ( ω e ' g 3 ω ) 2 + Γ e ' g 2 ( ω ) ) + 2 ( ω e g 2 ω ) | μ e ' e | | μ e g | Γ e ' g ( ω ) [ ( ω e g 2 ω ) 2 + Γ e g 2 ( ω ) ] [ ( ω e ' g 3 ω ) 2 + Γ e ' g 2 ( ω ) ] ( | μ e ' e | | μ e ' g | | Δ μ e g | 2 + 2 | Δ μ e g | 3 | μ e g | | μ e ' e | | μ e ' g | | μ e g | 2 2 | Δ μ e g | | μ e g | 3 ) }

Metrics