Abstract

We present measurements and modeling of the effect of P2O5 doping on the acoustic damping and temperature sensitivity coefficients of silica fibers. In particular, the Brillouin gain spectrum of a highly P-doped fiber is measured and investigated at different temperatures. It is found that the acoustic damping coefficient (proportional to the Brillouin spectral width) of phosphorus pentoxide (1.41 × 105 m−1 for bulk P2O5 at 11 GHz) is similar to, but larger than, that of germanium dioxide. Additionally, the acoustic velocity (and thereby the Stokes’ shift) is found to be much less dependent on temperature in P2O5 ( + 0.12 m/s/°C) than in SiO2 ( + 0.56 m/s/°C). Using these coefficients (the thermo-acoustic coefficients), the modeled and unique slopes of the Stokes’-shift-versus-temperature curves for the four observed acoustic modes each lie within 3% of the measured values. Finally, utilizing both the thermo-optic and thermo-acoustic coefficients, a design example is presented where a composition is determined for which the dependence of the Brillouin frequency shift on temperature is minimized. In this example, the calculated temperature sensitivity is less than 5 kHz/°C over the temperature range −100 °C < T < 100 °C for the molar composition 0.54P2O5:0.46SiO2.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in CLEO/QELS2005, Vol. 3 of 2005 Conference on Lasers and Electro-Optics, Paper CThZ3.
  2. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
    [CrossRef] [PubMed]
  3. P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
    [CrossRef]
  4. C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
    [CrossRef]
  5. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
    [CrossRef]
  6. P. D. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B 26(8), 1614–1620 (2009).
    [CrossRef]
  7. P. D. Dragic, “Simplified model for the effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45(5), 256–257 (2009).
    [CrossRef]
  8. P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett. 22(22), 1698–1700 (2010).
    [CrossRef]
  9. C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” J. Acoust. Soc. Am. 48(5B), 1086–1092 (1970).
    [CrossRef]
  10. A. S. Pine, “Brillouin scattering study of acoustic attenuation in fused quartz,” Phys. Rev. 185(3), 1187–1193 (1969).
    [CrossRef]
  11. R. E. Youngman, J. Kieffer, J. D. Bass, and L. Duffrène, “Extended structural integrity in network glasses and liquids,” J. Non-Cryst. Solids 222, 190–198 (1997).
    [CrossRef]
  12. A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010).
    [CrossRef]
  13. M. M. Bubnov, E. M. Dianov, O. N. Egorova, S. L. Semjonov, A. N. Guryanov, V. F. Khopin, and E. M. DeLiso, “Fabrication and investigation of single-mode highly phosphorus-doped fibers for Raman lasers,” Proc. SPIE 4083, 12–22 (2000).
    [CrossRef]
  14. D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113(1), 58–64 (1989).
    [CrossRef]
  15. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
    [CrossRef] [PubMed]
  16. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [CrossRef]
  17. P.-C. Law and P. D. Dragic, “Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate optical fibers,” Opt. Express 18(18), 18852–18865 (2010).
    [CrossRef] [PubMed]
  18. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellimeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
    [CrossRef]
  19. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode–multimode–single-mode structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009).
    [CrossRef]
  20. E. T. Y. Lee and E. R. M. Taylor, “Thermo-optic coefficients of potassium alumino-metaphosphate glasses,” J. Phys. Chem. Solids 65(6), 1187–1192 (2004).
    [CrossRef]
  21. A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 176–183 (2006).
  22. R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter 18(32), 7507–7527 (2006).
    [CrossRef] [PubMed]
  23. W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
    [CrossRef]

2010 (3)

2009 (4)

2007 (2)

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
[CrossRef] [PubMed]

2006 (2)

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 176–183 (2006).

R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter 18(32), 7507–7527 (2006).
[CrossRef] [PubMed]

2004 (2)

E. T. Y. Lee and E. R. M. Taylor, “Thermo-optic coefficients of potassium alumino-metaphosphate glasses,” J. Phys. Chem. Solids 65(6), 1187–1192 (2004).
[CrossRef]

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
[CrossRef]

2000 (1)

M. M. Bubnov, E. M. Dianov, O. N. Egorova, S. L. Semjonov, A. N. Guryanov, V. F. Khopin, and E. M. DeLiso, “Fabrication and investigation of single-mode highly phosphorus-doped fibers for Raman lasers,” Proc. SPIE 4083, 12–22 (2000).
[CrossRef]

1997 (2)

R. E. Youngman, J. Kieffer, J. D. Bass, and L. Duffrène, “Extended structural integrity in network glasses and liquids,” J. Non-Cryst. Solids 222, 190–198 (1997).
[CrossRef]

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

1994 (1)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellimeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[CrossRef]

1993 (1)

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

1990 (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

1989 (1)

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113(1), 58–64 (1989).
[CrossRef]

1970 (1)

C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” J. Acoust. Soc. Am. 48(5B), 1086–1092 (1970).
[CrossRef]

1969 (1)

A. S. Pine, “Brillouin scattering study of acoustic attenuation in fused quartz,” Phys. Rev. 185(3), 1187–1193 (1969).
[CrossRef]

Abe, K.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Bass, J. D.

R. E. Youngman, J. Kieffer, J. D. Bass, and L. Duffrène, “Extended structural integrity in network glasses and liquids,” J. Non-Cryst. Solids 222, 190–198 (1997).
[CrossRef]

Bonnell, L.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Boyd, R. W.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Bubnov, M. M.

M. M. Bubnov, E. M. Dianov, O. N. Egorova, S. L. Semjonov, A. N. Guryanov, V. F. Khopin, and E. M. DeLiso, “Fabrication and investigation of single-mode highly phosphorus-doped fibers for Raman lasers,” Proc. SPIE 4083, 12–22 (2000).
[CrossRef]

Champagnon, B.

R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter 18(32), 7507–7527 (2006).
[CrossRef] [PubMed]

Chen, X.

Chujo, W.

Crowley, A. M.

DeLiso, E. M.

M. M. Bubnov, E. M. Dianov, O. N. Egorova, S. L. Semjonov, A. N. Guryanov, V. F. Khopin, and E. M. DeLiso, “Fabrication and investigation of single-mode highly phosphorus-doped fibers for Raman lasers,” Proc. SPIE 4083, 12–22 (2000).
[CrossRef]

Demeritt, J. A.

Dianov, E. M.

M. M. Bubnov, E. M. Dianov, O. N. Egorova, S. L. Semjonov, A. N. Guryanov, V. F. Khopin, and E. M. DeLiso, “Fabrication and investigation of single-mode highly phosphorus-doped fibers for Raman lasers,” Proc. SPIE 4083, 12–22 (2000).
[CrossRef]

DiGiovanni, D. J.

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113(1), 58–64 (1989).
[CrossRef]

Dragic, P. D.

P.-C. Law and P. D. Dragic, “Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate optical fibers,” Opt. Express 18(18), 18852–18865 (2010).
[CrossRef] [PubMed]

P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett. 22(22), 1698–1700 (2010).
[CrossRef]

P. D. Dragic, “Simplified model for the effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45(5), 256–257 (2009).
[CrossRef]

P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
[CrossRef]

P. D. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B 26(8), 1614–1620 (2009).
[CrossRef]

Duffrène, L.

R. E. Youngman, J. Kieffer, J. D. Bass, and L. Duffrène, “Extended structural integrity in network glasses and liquids,” J. Non-Cryst. Solids 222, 190–198 (1997).
[CrossRef]

Egorova, O. N.

M. M. Bubnov, E. M. Dianov, O. N. Egorova, S. L. Semjonov, A. N. Guryanov, V. F. Khopin, and E. M. DeLiso, “Fabrication and investigation of single-mode highly phosphorus-doped fibers for Raman lasers,” Proc. SPIE 4083, 12–22 (2000).
[CrossRef]

Endo, M.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellimeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[CrossRef]

Ghosh, G.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellimeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[CrossRef]

Gray, S.

Guryanov, A. N.

M. M. Bubnov, E. M. Dianov, O. N. Egorova, S. L. Semjonov, A. N. Guryanov, V. F. Khopin, and E. M. DeLiso, “Fabrication and investigation of single-mode highly phosphorus-doped fibers for Raman lasers,” Proc. SPIE 4083, 12–22 (2000).
[CrossRef]

He, Z.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

Hotate, K.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

Iwasaki, T.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellimeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[CrossRef]

Jen, C.-K.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Khopin, V. F.

M. M. Bubnov, E. M. Dianov, O. N. Egorova, S. L. Semjonov, A. N. Guryanov, V. F. Khopin, and E. M. DeLiso, “Fabrication and investigation of single-mode highly phosphorus-doped fibers for Raman lasers,” Proc. SPIE 4083, 12–22 (2000).
[CrossRef]

Kieffer, J.

R. E. Youngman, J. Kieffer, J. D. Bass, and L. Duffrène, “Extended structural integrity in network glasses and liquids,” J. Non-Cryst. Solids 222, 190–198 (1997).
[CrossRef]

Koike, A.

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 176–183 (2006).

Kometani, T. Y.

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113(1), 58–64 (1989).
[CrossRef]

Koyamada, Y.

Krischer, C.

C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” J. Acoust. Soc. Am. 48(5B), 1086–1092 (1970).
[CrossRef]

Kumar, A.

Kumar, Y. B. P.

Kushibiki, J.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Law, P.-C.

Le Parc, R.

R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter 18(32), 7507–7527 (2006).
[CrossRef] [PubMed]

Lee, E. T. Y.

E. T. Y. Lee and E. R. M. Taylor, “Thermo-optic coefficients of potassium alumino-metaphosphate glasses,” J. Phys. Chem. Solids 65(6), 1187–1192 (2004).
[CrossRef]

Levelut, C.

R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter 18(32), 7507–7527 (2006).
[CrossRef] [PubMed]

Li, M. J.

Liu, A.

MacChesney, J. B.

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113(1), 58–64 (1989).
[CrossRef]

Marin, E.

Martinez, V.

R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter 18(32), 7507–7527 (2006).
[CrossRef] [PubMed]

Meunier, J.-P.

Nakamura, S.

Narum, P.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Neron, C.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Niklès, M.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Pelous, J.

R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter 18(32), 7507–7527 (2006).
[CrossRef] [PubMed]

Pine, A. S.

A. S. Pine, “Brillouin scattering study of acoustic attenuation in fused quartz,” Phys. Rev. 185(3), 1187–1193 (1969).
[CrossRef]

Robert, P. A.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Ruffin, A. B.

Rzaewski, K.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Sato, S.

Semjonov, S. L.

M. M. Bubnov, E. M. Dianov, O. N. Egorova, S. L. Semjonov, A. N. Guryanov, V. F. Khopin, and E. M. DeLiso, “Fabrication and investigation of single-mode highly phosphorus-doped fibers for Raman lasers,” Proc. SPIE 4083, 12–22 (2000).
[CrossRef]

Shang, A.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Sotobayashi, H.

Sugimoto, N.

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 176–183 (2006).

Taylor, E. R. M.

E. T. Y. Lee and E. R. M. Taylor, “Thermo-optic coefficients of potassium alumino-metaphosphate glasses,” J. Phys. Chem. Solids 65(6), 1187–1192 (2004).
[CrossRef]

Thévenaz, L.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Tripathi, S. M.

Varshney, R. K.

Walton, D. T.

Wang, J.

Ward, B. G.

P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett. 22(22), 1698–1700 (2010).
[CrossRef]

Yablon, A. D.

A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010).
[CrossRef]

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

Youngman, R. E.

R. E. Youngman, J. Kieffer, J. D. Bass, and L. Duffrène, “Extended structural integrity in network glasses and liquids,” J. Non-Cryst. Solids 222, 190–198 (1997).
[CrossRef]

Zenteno, L. A.

Zou, W.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

Electron. Lett. (1)

P. D. Dragic, “Simplified model for the effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45(5), 256–257 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett. 22(22), 1698–1700 (2010).
[CrossRef]

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

J. Acoust. Soc. Am. (1)

C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” J. Acoust. Soc. Am. 48(5B), 1086–1092 (1970).
[CrossRef]

J. Am. Ceram. Soc. (1)

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

J. Lightwave Technol. (5)

J. Non-Cryst. Solids (2)

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113(1), 58–64 (1989).
[CrossRef]

R. E. Youngman, J. Kieffer, J. D. Bass, and L. Duffrène, “Extended structural integrity in network glasses and liquids,” J. Non-Cryst. Solids 222, 190–198 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

E. T. Y. Lee and E. R. M. Taylor, “Thermo-optic coefficients of potassium alumino-metaphosphate glasses,” J. Phys. Chem. Solids 65(6), 1187–1192 (2004).
[CrossRef]

J. Phys. Condens. Matter (1)

R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter 18(32), 7507–7527 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. (1)

A. S. Pine, “Brillouin scattering study of acoustic attenuation in fused quartz,” Phys. Rev. 185(3), 1187–1193 (1969).
[CrossRef]

Phys. Rev. A (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Proc. SPIE (3)

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 176–183 (2006).

M. M. Bubnov, E. M. Dianov, O. N. Egorova, S. L. Semjonov, A. N. Guryanov, V. F. Khopin, and E. M. DeLiso, “Fabrication and investigation of single-mode highly phosphorus-doped fibers for Raman lasers,” Proc. SPIE 4083, 12–22 (2000).
[CrossRef]

P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
[CrossRef]

Other (1)

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in CLEO/QELS2005, Vol. 3 of 2005 Conference on Lasers and Electro-Optics, Paper CThZ3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Refractive index profile of the mother preform.

Fig. 2
Fig. 2

Measured compositional profile of the cane precursor to the P2O5-doped silica optical fiber. Fluorine (F) is present only in the inner cladding with a small amount of phosphorus (P) to create an index-matched inner cladding. The MCVD layers are visible in the P2O5 data.

Fig. 3
Fig. 3

Refractive index profile of the final P-doped silica fiber measured at 670 nm (dashed line) and 1000 nm (solid line).

Fig. 4
Fig. 4

Index difference vs. [P2O5] calculated via 1) the additive model (solid line) using the bulk parameters and 2) the linear approximation in [13].

Fig. 5
Fig. 5

Brillouin spectrum of a 3.5 m segment of the P2O5-doped optical fiber at 1534 nm and at two different temperatures, 21.5°C and 118.3°C. Four acoustic modes primarily located in the core are observed, while five reside mainly in the inner cladding. The two peaks near 11 GHz are due to the measurement apparatus.

Fig. 6
Fig. 6

The bulk acoustic velocity nonlinearly decreases with increasing P2O5 concentration (mol%). It is not simply linear as a whole according to the additive model.

Fig. 7
Fig. 7

Normalized longitudinal acoustic modes L01 and L04 with the measured RIP. The red-dashed curve is the RIP. The green curve is the spatial distribution of L01 and the brown curve is the spatial distribution of L04. The spatial distribution of L04 has a bigger mode diameter than that of L01 and occupies more of the outer-core region.

Fig. 8
Fig. 8

The trends are both approximately linear in the available measurement range, with the Stokes’ shift increasing at a rate of ~ + 0.74 MHz/°C and the spectral width decreasing at a rate of ~−77.7 kHz/°C for the main mode.

Fig. 9
Fig. 9

The linear equation for the frequency shift of Z-fiberTM as a function of fiber temperature as a best fit to the measured data. We use this linear equation to obtain the temperature-dependent acoustic velocity of SiO2.

Fig. 10
Fig. 10

The modeled frequency shift (solid line) and the measured frequency shift (circle) vs. temperature. All the trends are approximately linear in the available measurement range. The modeled data of each of the modes are very close to the measured points.

Fig. 11
Fig. 11

Brillouin frequency shift versus temperature for the molar composition 0.54P2O5:0.46SiO2. In the range, −100 °C < T < 100 °C, the Stokes’ shift changes by less than 5 kHz per °C. An absolute minimum frequency shift variation is around 10°C where the constant ratio of VL to n is about 2946 m/sec. The inset shows the derivative of the frequency-versus-temperature curve.

Tables (3)

Tables Icon

Table 1 Measured Parameters for All Observed Acoustic Modes m

Tables Icon

Table 2 Approximation (best-fit) to the Profile Provided in Fig. 3

Tables Icon

Table 3 The Comparison of Measured and Modeled Linear Equations of the Temperature-Dependent Frequency Shift

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n = m n P + ( 1 m ) n S ,
m = ρ S M S M P ρ P [ P 2 O 5 ] 1 + [ P 2 O 5 ] ( ρ S M S M P ρ P 1 ) ,
Δ ν m = 0 Δ ν B ( ν m , r ) u ( r ) u * ( r ) r d r ,
V a P 2 O 5 ( T ) = C p ( T 21.5 C ) + 3936 m / s ,
V a S i O 2 ( T ) = 0.555 ( T 21.5 C ) + 5968.65 m / s .
ν a ( T ) = 2 n ( T ) V L ( T ) λ o .
d n ( T ) d T 1 n ( T ) = d V L ( T ) d T 1 V L ( T ) .
V L ( T ) n ( T ) = C o n s t a n t .

Metrics