Abstract

Up conversion significantly affects Er:YAG lasers. Measurements performed here for low Er concentration are markedly different than reported high Er concentration. The results obtained here are used to predict laser performance and are compared with experimental results.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent oscillations From Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7(5), 127–129 (1965).
    [CrossRef]
  2. J. Simkin, J. A. Koningstein, P. Myslinski, S. A. Boothroyd, and J. Chrostowski, “Upconversion dynamics of Er3+:YAlO3,” J. Appl. Phys. 73(12), 8046–8049 (1993).
    [CrossRef]
  3. V. Lopez, G. Paez, and M. Strojnik, “Characterization of upconversion coefficient in erbium-doped materials,” Opt. Lett. 31(11), 1660–1662 (2006).
    [CrossRef] [PubMed]
  4. M. O. Iskandarov, A. A. Nikitichev, and A. I. Stepanov, “Quasi two level Er3+;Y3Al5O12 laser for the 1.6 μm range,” J. Opt. Technol. 68(12), 885–888 (2001).
    [CrossRef]
  5. E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65 μm Er:Yb:YAG Diode Pumped Laser Delivering 80 mJ,” Opt. Eng. 44(6), 064202 (2005).
    [CrossRef]
  6. D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6 μm erbium doped yttrium aluminum garnet solid state laser,” Appl. Phys. Lett. 86(13), 131115 (2005).
    [CrossRef]
  7. S. Bigotta and M. Eichhorn, “Q-switched resonantly diode upper Er3+:YAG laser with fiber like geometry,” Opt. Lett. 35(17), 2970–2972 (2010).
    [CrossRef] [PubMed]
  8. M. Eichhorn, “Multi kW class 1.64 μm Er3+:YAG lasers based on heat capacity operation,” Opt. Mater. Express 1(3), 321–331 (2011).
    [CrossRef]
  9. J. Koetke and G. Huber, “Infrared Excited State Absorption And Stimulated Emission Cross Section Of Er3+ Doper Crystals,” Appl. Phys. B 61(2), 151–158 (1995).
    [CrossRef]
  10. M. Eichhorn, “Numerical modeling of diode end pumped high power Er3+:YAG lasers,” IEEE J. Quantum Electron. 44(9), 803–810 (2008).
    [CrossRef]
  11. W. Q. Shi, M. Bass, and M. Birnbaum, “Effects Of Energy Transfer Among Er3+ Ions On The Fluorescence Decay And Lasing Properties Of Heavily Doped Er:Y3Al5O12,” J. Opt. Soc. Am. B 7(8), 1456–1462 (1990).
    [CrossRef]
  12. M. J. Shaw, S. D. Setzler, K. M. Dinndorf, J. A. Beattie, M. J. Kukla, and E. P. Chicklis, “400W Resonantly Pumped Cryogenic Er:YAG Slab Laser at 1645nm,” in Proceedings of Advanced Solid State Photonics (Optical Society of America, 2010), paper APDP2.

2011

2010

2008

M. Eichhorn, “Numerical modeling of diode end pumped high power Er3+:YAG lasers,” IEEE J. Quantum Electron. 44(9), 803–810 (2008).
[CrossRef]

2006

2005

E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65 μm Er:Yb:YAG Diode Pumped Laser Delivering 80 mJ,” Opt. Eng. 44(6), 064202 (2005).
[CrossRef]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6 μm erbium doped yttrium aluminum garnet solid state laser,” Appl. Phys. Lett. 86(13), 131115 (2005).
[CrossRef]

2001

1995

J. Koetke and G. Huber, “Infrared Excited State Absorption And Stimulated Emission Cross Section Of Er3+ Doper Crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[CrossRef]

1993

J. Simkin, J. A. Koningstein, P. Myslinski, S. A. Boothroyd, and J. Chrostowski, “Upconversion dynamics of Er3+:YAlO3,” J. Appl. Phys. 73(12), 8046–8049 (1993).
[CrossRef]

1990

1965

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent oscillations From Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7(5), 127–129 (1965).
[CrossRef]

Bass, M.

Bigotta, S.

Birnbaum, M.

Boothroyd, S. A.

J. Simkin, J. A. Koningstein, P. Myslinski, S. A. Boothroyd, and J. Chrostowski, “Upconversion dynamics of Er3+:YAlO3,” J. Appl. Phys. 73(12), 8046–8049 (1993).
[CrossRef]

Boquillon, J.-P.

E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65 μm Er:Yb:YAG Diode Pumped Laser Delivering 80 mJ,” Opt. Eng. 44(6), 064202 (2005).
[CrossRef]

Chrostowski, J.

J. Simkin, J. A. Koningstein, P. Myslinski, S. A. Boothroyd, and J. Chrostowski, “Upconversion dynamics of Er3+:YAlO3,” J. Appl. Phys. 73(12), 8046–8049 (1993).
[CrossRef]

Dubinskii, M.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6 μm erbium doped yttrium aluminum garnet solid state laser,” Appl. Phys. Lett. 86(13), 131115 (2005).
[CrossRef]

Eichhorn, M.

Garbuzov, D.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6 μm erbium doped yttrium aluminum garnet solid state laser,” Appl. Phys. Lett. 86(13), 131115 (2005).
[CrossRef]

Georgiou, E.

E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65 μm Er:Yb:YAG Diode Pumped Laser Delivering 80 mJ,” Opt. Eng. 44(6), 064202 (2005).
[CrossRef]

Geusic, J. E.

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent oscillations From Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7(5), 127–129 (1965).
[CrossRef]

Huber, G.

J. Koetke and G. Huber, “Infrared Excited State Absorption And Stimulated Emission Cross Section Of Er3+ Doper Crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[CrossRef]

Iskandarov, M. O.

Johnson, L. F.

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent oscillations From Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7(5), 127–129 (1965).
[CrossRef]

Kiriakidi, F.

E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65 μm Er:Yb:YAG Diode Pumped Laser Delivering 80 mJ,” Opt. Eng. 44(6), 064202 (2005).
[CrossRef]

Koetke, J.

J. Koetke and G. Huber, “Infrared Excited State Absorption And Stimulated Emission Cross Section Of Er3+ Doper Crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[CrossRef]

Koningstein, J. A.

J. Simkin, J. A. Koningstein, P. Myslinski, S. A. Boothroyd, and J. Chrostowski, “Upconversion dynamics of Er3+:YAlO3,” J. Appl. Phys. 73(12), 8046–8049 (1993).
[CrossRef]

Kudryashov, I.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6 μm erbium doped yttrium aluminum garnet solid state laser,” Appl. Phys. Lett. 86(13), 131115 (2005).
[CrossRef]

Lopez, V.

Musset, O.

E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65 μm Er:Yb:YAG Diode Pumped Laser Delivering 80 mJ,” Opt. Eng. 44(6), 064202 (2005).
[CrossRef]

Myslinski, P.

J. Simkin, J. A. Koningstein, P. Myslinski, S. A. Boothroyd, and J. Chrostowski, “Upconversion dynamics of Er3+:YAlO3,” J. Appl. Phys. 73(12), 8046–8049 (1993).
[CrossRef]

Nikitichev, A. A.

Paez, G.

Shi, W. Q.

Simkin, J.

J. Simkin, J. A. Koningstein, P. Myslinski, S. A. Boothroyd, and J. Chrostowski, “Upconversion dynamics of Er3+:YAlO3,” J. Appl. Phys. 73(12), 8046–8049 (1993).
[CrossRef]

Stepanov, A. I.

Strojnik, M.

Van Uitert, L. G.

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent oscillations From Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7(5), 127–129 (1965).
[CrossRef]

Appl. Phys. B

J. Koetke and G. Huber, “Infrared Excited State Absorption And Stimulated Emission Cross Section Of Er3+ Doper Crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[CrossRef]

Appl. Phys. Lett.

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent oscillations From Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7(5), 127–129 (1965).
[CrossRef]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6 μm erbium doped yttrium aluminum garnet solid state laser,” Appl. Phys. Lett. 86(13), 131115 (2005).
[CrossRef]

IEEE J. Quantum Electron.

M. Eichhorn, “Numerical modeling of diode end pumped high power Er3+:YAG lasers,” IEEE J. Quantum Electron. 44(9), 803–810 (2008).
[CrossRef]

J. Appl. Phys.

J. Simkin, J. A. Koningstein, P. Myslinski, S. A. Boothroyd, and J. Chrostowski, “Upconversion dynamics of Er3+:YAlO3,” J. Appl. Phys. 73(12), 8046–8049 (1993).
[CrossRef]

J. Opt. Soc. Am. B

J. Opt. Technol.

Opt. Eng.

E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65 μm Er:Yb:YAG Diode Pumped Laser Delivering 80 mJ,” Opt. Eng. 44(6), 064202 (2005).
[CrossRef]

Opt. Lett.

Opt. Mater. Express

Other

M. J. Shaw, S. D. Setzler, K. M. Dinndorf, J. A. Beattie, M. J. Kukla, and E. P. Chicklis, “400W Resonantly Pumped Cryogenic Er:YAG Slab Laser at 1645nm,” in Proceedings of Advanced Solid State Photonics (Optical Society of America, 2010), paper APDP2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Er:YAG energy level diagram and dynamical processes.

Fig. 2
Fig. 2

Rise and decay of Er:YAG, 0.005 Er and 50.9 mJ incident pump.

Fig. 3
Fig. 3

Rise and decay of Er:YAG. 0.010 Er and 111.5 mJ incident pump.

Fig. 4
Fig. 4

Experimental arrangement provides wide range of pump waist and beam radii.

Fig. 5
Fig. 5

Normal Mode performance achieves 0.406 optical to optical efficiency.

Fig. 6
Fig. 6

Short pump pulses improve Q-switch performance.

Tables (1)

Tables Icon

Table 1 Up Conversion Parameter, (2 – ηQ)P22, During Pumping and During Decay*

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

N 1 + N 2 = C E N S ,
d N 1 d t = d N 2 d t ,
d N 2 d t = N 2 τ 2 ( 2 η Q ) P 22 N 2 2 + S P ( C E N S γ a N 2 ) F S A T .
N 2 = 2 C E N S S P F S A T τ [ 1 exp ( D t / τ ) ( D + 1 ) + ( D 1 ) exp ( D t / τ ) ] ,
1 τ = 1 τ 2 + S P γ a F S A T ,
D = [ 1 + 4 ( 2 η Q ) P 22 C E N S S P F S A T τ 2 ] 1 / 2 .
N 2 = N 20 exp ( t / τ 2 ) 1 + α [ 1 exp ( t / τ 2 ) ] ,
α = ( 2 η Q ) P 22 τ 2 N 20 .
η S = ( τ 2 τ I ) exp ( τ 2 / τ I ) .
P F = N 2 T H h c λ L π w p 2 l τ I ,
P U P = ( 2 η Q ) P 22 N 2 T H 2 h c λ L π w p 2 l .

Metrics