Abstract

An ultrafast laser was used to fabricate waveguides in Yb:QX phosphate glass and BK7 borosilicate glass using linearly polarized and circularly polarized beams. Circularly polarized pulses were found to induce a higher refractive index change in Yb:QX phosphate glass, while in BK7 borosilicate glass circularly and linearly polarized pulses were found to induce the same refractive index change. An explanation for these contrasting results is proposed based on the fundamental polarization-dependence of photo-ionization. This explanation reconciles observations made in this study and also in a previous study in fused silica glass.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
    [CrossRef] [PubMed]
  3. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [CrossRef] [PubMed]
  4. Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses,” Opt. Express 16(24), 19520–19534 (2008).
    [CrossRef] [PubMed]
  5. M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14(26), 13158–13163 (2006).
    [CrossRef] [PubMed]
  6. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express 16(24), 20029–20037 (2008).
    [CrossRef] [PubMed]
  7. S. Gross, M. J. Withford, and A. Fuerbach, “Direct femtosecond laser written waveguides in bulk Ti3+ sapphire,” Proc. SPIE 7589, 75890U (2010).
    [CrossRef]
  8. A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: Lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31(20), 2987–2989 (2006).
    [CrossRef] [PubMed]
  9. R. S. Taylor, E. Simova, and C. Hnatovsky, “Creation of chiral structures inside fused silica glass,” Opt. Lett. 33(12), 1312–1314 (2008).
    [CrossRef] [PubMed]
  10. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  11. H. R. Reiss, “Polarization effects in high-order multiphoton ionization,” Phys. Rev. Lett. 29(17), 1129–1131 (1972).
    [CrossRef]
  12. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarizations,” Phys. Rev. Lett. 97(23), 237403 (2006).
    [CrossRef]
  13. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
    [CrossRef] [PubMed]
  14. N. F. Mott and E. F. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, 1979).
  15. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
    [CrossRef]
  16. H. Yoneda, K. Yamaguchi, and K. Ueda, “Dispersion of optical refractive index of Yb3+ doped laser glass and their fitting to a Lorentzian model,” Jpn. J. Appl. Phys. 38(Part 2, No. 6A/B), L639–L641 (1999).
    [CrossRef]
  17. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
    [CrossRef]

2011 (1)

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[CrossRef]

2010 (1)

S. Gross, M. J. Withford, and A. Fuerbach, “Direct femtosecond laser written waveguides in bulk Ti3+ sapphire,” Proc. SPIE 7589, 75890U (2010).
[CrossRef]

2008 (4)

2006 (3)

2005 (3)

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

1999 (1)

H. Yoneda, K. Yamaguchi, and K. Ueda, “Dispersion of optical refractive index of Yb3+ doped laser glass and their fitting to a Lorentzian model,” Jpn. J. Appl. Phys. 38(Part 2, No. 6A/B), L639–L641 (1999).
[CrossRef]

1996 (1)

1972 (1)

H. R. Reiss, “Polarization effects in high-order multiphoton ionization,” Phys. Rev. Lett. 29(17), 1129–1131 (1972).
[CrossRef]

Ams, M.

Bado, P.

Barthel, E.

Bellouard, Y.

Bhardwaj, V. R.

Corkum, P. B.

Couairon, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

Davis, K. M.

Dawes, J. M.

Dekker, P.

Dugan, M.

Eaton, S. M.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[CrossRef]

El-Khamhawy, A.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarizations,” Phys. Rev. Lett. 97(23), 237403 (2006).
[CrossRef]

Franco, M.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

Fuerbach, A.

S. Gross, M. J. Withford, and A. Fuerbach, “Direct femtosecond laser written waveguides in bulk Ti3+ sapphire,” Proc. SPIE 7589, 75890U (2010).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Gross, S.

S. Gross, M. J. Withford, and A. Fuerbach, “Direct femtosecond laser written waveguides in bulk Ti3+ sapphire,” Proc. SPIE 7589, 75890U (2010).
[CrossRef]

Herman, P. R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[CrossRef]

A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: Lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31(20), 2987–2989 (2006).
[CrossRef] [PubMed]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Little, D. J.

Marshall, G. D.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Miura, K.

Mysyrowicz, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

Nejadmalayeri, A. H.

Ng, M. L.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[CrossRef]

Osellame, R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[CrossRef]

Prade, B.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Rayner, D. M.

Reiss, H. R.

H. R. Reiss, “Polarization effects in high-order multiphoton ionization,” Phys. Rev. Lett. 29(17), 1129–1131 (1972).
[CrossRef]

Said, A. A.

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Simova, E.

Sokolowski-Tinten, K.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarizations,” Phys. Rev. Lett. 97(23), 237403 (2006).
[CrossRef]

Spence, D. J.

Sudrie, L.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

Sugimoto, N.

Taylor, R. S.

Temnov, V. V.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarizations,” Phys. Rev. Lett. 97(23), 237403 (2006).
[CrossRef]

Ueda, K.

H. Yoneda, K. Yamaguchi, and K. Ueda, “Dispersion of optical refractive index of Yb3+ doped laser glass and their fitting to a Lorentzian model,” Jpn. J. Appl. Phys. 38(Part 2, No. 6A/B), L639–L641 (1999).
[CrossRef]

von der Linde, D.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarizations,” Phys. Rev. Lett. 97(23), 237403 (2006).
[CrossRef]

Withford, M. J.

Yamaguchi, K.

H. Yoneda, K. Yamaguchi, and K. Ueda, “Dispersion of optical refractive index of Yb3+ doped laser glass and their fitting to a Lorentzian model,” Jpn. J. Appl. Phys. 38(Part 2, No. 6A/B), L639–L641 (1999).
[CrossRef]

Yoneda, H.

H. Yoneda, K. Yamaguchi, and K. Ueda, “Dispersion of optical refractive index of Yb3+ doped laser glass and their fitting to a Lorentzian model,” Jpn. J. Appl. Phys. 38(Part 2, No. 6A/B), L639–L641 (1999).
[CrossRef]

Zhou, P.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarizations,” Phys. Rev. Lett. 97(23), 237403 (2006).
[CrossRef]

J. Non-Cryst. Solids (1)

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Yoneda, K. Yamaguchi, and K. Ueda, “Dispersion of optical refractive index of Yb3+ doped laser glass and their fitting to a Lorentzian model,” Jpn. J. Appl. Phys. 38(Part 2, No. 6A/B), L639–L641 (1999).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. B (1)

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

H. R. Reiss, “Polarization effects in high-order multiphoton ionization,” Phys. Rev. Lett. 29(17), 1129–1131 (1972).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarizations,” Phys. Rev. Lett. 97(23), 237403 (2006).
[CrossRef]

Proc. SPIE (1)

S. Gross, M. J. Withford, and A. Fuerbach, “Direct femtosecond laser written waveguides in bulk Ti3+ sapphire,” Proc. SPIE 7589, 75890U (2010).
[CrossRef]

Other (1)

N. F. Mott and E. F. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online) Refractive index profiles of waveguides written in a) Kigre Yb:QX with circularly polarized pulses, b) Kigre Yb:QX with linearly polarized pulses, c) Schott BK7 with circularly polarized pulses, d) Schott BK7 with linearly polarized pulses. All waveguides in this image were written with a pulse energy of 700 nJ. The ultrafast writing beam propagated from left to right.

Fig. 2
Fig. 2

Peak refractive index change induced in BK7 by circularly and linearly polarized ultrafast pulses as a function of the peak irradiance.

Fig. 3
Fig. 3

Peak refractive index change induced in Yb:QX by circularly and linearly polarized ultrafast pulses as a function of the peak irradiance. The data points at 42 TW/cm2 overlap with one another.

Fig. 4
Fig. 4

N’ (solid lines) and (2Eg – Up)/2Ephoton (dashed lines) as a function of irradiance for Schott Lithosil fused silica, Kigre Yb:QX phosphate glass and Schott BK7 borosilicate glass.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ = E g 2 U p ,
U p = e 2 8 π 2 c 3 ε 0 m n I λ 2 ,
N = ( 2 E g U p ) / 2 E p h o t o n ,

Metrics