Abstract

The defect and impurity states in ZnO nanocrystals synthesized using the plasma arc technique can be modified to optimize the nonlinear optical properties for optoelectronic and biophotonic applications. Highly efficient second harmonic signals over a wide range of near-infrared wavelengths, spanning from 735 nm-980 nm, has been observed and can be used in biological imaging. The use of further high energy excitation ranging from 700 nm-755 nm leads to two-photon absorption and yields broadband two photon emission extending from the 370 nm-450 nm wavelength regime which can be useful for therapeutic applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol. 10(3), 1707–1712 (2010).
    [CrossRef] [PubMed]
  2. A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy,” J. Phys. Chem. C 112(29), 10721–10724 (2008).
    [CrossRef]
  3. E. S. P. Leong, S. F. Yu, and S. P. Lau, “Directional edge-emitting UV random laser diodes,” Appl. Phys. Lett. 89(22), 221109 (2006).
    [CrossRef]
  4. U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
    [CrossRef]
  5. J. V. Foreman, H. O. Everitt, J. Yang, T. McNicholas, and J. Liu, “Effects of reabsorption and spatial trap distributions on the radiative quantum efficiencies of ZnO,” Phys. Rev. B 81(11), 115318 (2010).
    [CrossRef]
  6. Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology 19(34), 345605 (2008).
    [CrossRef] [PubMed]
  7. T. Voss, I. Kudyk, L. Wischmeier, and J. Gutowski, “Nonlinear optics with ZnO nanowires,” Phys. Status Solidi B 246(2), 311–314 (2009).
    [CrossRef]
  8. P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(33), 14535–14540 (2010).
    [CrossRef] [PubMed]
  9. C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, “Low-threshold two-photon pumped ZnO nanowire lasers,” Opt. Express 17(10), 7893–7900 (2009).
    [CrossRef] [PubMed]
  10. K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, J. Lin, B. Urban, A. Neogi, and Y. Fujita, “Multiphonon scattering and non-radiative decay in ZnO nanoparticles,” Phys. Status Solidi C 7(6), 1586–1588 (2010).
    [CrossRef]
  11. K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, and Y. Fujita, “Hydrogen related defect complexes in ZnO nanoparticles,” Appl. Phys. Lett. 97(9), 091907 (2010).
    [CrossRef]
  12. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equillibrium processes: Defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
    [CrossRef]
  13. M. D. McCluskey, S. J. Jokela, and W. M. Hlaing Oo, “Hydrogen donors in ZnO,” Materials Research Society Symposium Proceedings (2005), Vol. 864, pp. E10.4.1–E10.4.10.
  14. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
    [CrossRef]
  15. T. M. Bo̸rseth, B. G. Svensson, A. Y. Kuznetsov, P. Klason, Q. X. Zhao, and M. Willander, “Identification of oxygen and zinc vacancy optical signals in ZnO,” Appl. Phys. Lett. 89(26), 262112 (2006).
    [CrossRef]
  16. A. Zubiaga, J. A. García, F. Plazaola, F. Tuomisto, K. Saarinen, J. Zuñiga Pérez, and V. Muñoz-Sanjosé, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
    [CrossRef]
  17. M. G. Wardle, J. P. Goss, and P. R. Briddon, “Theory of Fe, Co, Ni, Cu, and their complexes with hydrogen in ZnO,” Phys. Rev. B 72(15), 155108 (2005).
    [CrossRef]
  18. K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
    [CrossRef]
  19. J. Bang and K. J. Chang, “Atomic structure and diffusion of hydrogen in ZnO,” J. Korean Phys. Soc. 55(1), 98–102 (2009).
    [CrossRef]
  20. F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, “Defect energetics in ZnO: a hybrid Hartree-Fock density functional study,” Phys. Rev. B 77(24), 245202 (2008).
    [CrossRef]
  21. J. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao, and B. Feng, “Effects of annealing temperature on the structure and optical properties of ZnO nanoparticles,” J. Alloy. Comp. 477(1-2), 632–635 (2009).
    [CrossRef]
  22. P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey, and R. N. Goyal, “In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition,” Bull. Mater. Sci. 31(3), 573–577 (2008).
    [CrossRef]

2010 (6)

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol. 10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(33), 14535–14540 (2010).
[CrossRef] [PubMed]

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, J. Lin, B. Urban, A. Neogi, and Y. Fujita, “Multiphonon scattering and non-radiative decay in ZnO nanoparticles,” Phys. Status Solidi C 7(6), 1586–1588 (2010).
[CrossRef]

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, and Y. Fujita, “Hydrogen related defect complexes in ZnO nanoparticles,” Appl. Phys. Lett. 97(9), 091907 (2010).
[CrossRef]

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equillibrium processes: Defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[CrossRef]

J. V. Foreman, H. O. Everitt, J. Yang, T. McNicholas, and J. Liu, “Effects of reabsorption and spatial trap distributions on the radiative quantum efficiencies of ZnO,” Phys. Rev. B 81(11), 115318 (2010).
[CrossRef]

2009 (4)

J. Bang and K. J. Chang, “Atomic structure and diffusion of hydrogen in ZnO,” J. Korean Phys. Soc. 55(1), 98–102 (2009).
[CrossRef]

J. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao, and B. Feng, “Effects of annealing temperature on the structure and optical properties of ZnO nanoparticles,” J. Alloy. Comp. 477(1-2), 632–635 (2009).
[CrossRef]

T. Voss, I. Kudyk, L. Wischmeier, and J. Gutowski, “Nonlinear optics with ZnO nanowires,” Phys. Status Solidi B 246(2), 311–314 (2009).
[CrossRef]

C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, “Low-threshold two-photon pumped ZnO nanowire lasers,” Opt. Express 17(10), 7893–7900 (2009).
[CrossRef] [PubMed]

2008 (4)

P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey, and R. N. Goyal, “In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition,” Bull. Mater. Sci. 31(3), 573–577 (2008).
[CrossRef]

F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, “Defect energetics in ZnO: a hybrid Hartree-Fock density functional study,” Phys. Rev. B 77(24), 245202 (2008).
[CrossRef]

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology 19(34), 345605 (2008).
[CrossRef] [PubMed]

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy,” J. Phys. Chem. C 112(29), 10721–10724 (2008).
[CrossRef]

2006 (3)

E. S. P. Leong, S. F. Yu, and S. P. Lau, “Directional edge-emitting UV random laser diodes,” Appl. Phys. Lett. 89(22), 221109 (2006).
[CrossRef]

T. M. Bo̸rseth, B. G. Svensson, A. Y. Kuznetsov, P. Klason, Q. X. Zhao, and M. Willander, “Identification of oxygen and zinc vacancy optical signals in ZnO,” Appl. Phys. Lett. 89(26), 262112 (2006).
[CrossRef]

A. Zubiaga, J. A. García, F. Plazaola, F. Tuomisto, K. Saarinen, J. Zuñiga Pérez, and V. Muñoz-Sanjosé, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[CrossRef]

2005 (2)

M. G. Wardle, J. P. Goss, and P. R. Briddon, “Theory of Fe, Co, Ni, Cu, and their complexes with hydrogen in ZnO,” Phys. Rev. B 72(15), 155108 (2005).
[CrossRef]

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

2004 (1)

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[CrossRef]

2003 (1)

K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
[CrossRef]

Alivov, Y. I.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Alves, H.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[CrossRef]

Avrutin, V.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Bang, J.

J. Bang and K. J. Chang, “Atomic structure and diffusion of hydrogen in ZnO,” J. Korean Phys. Soc. 55(1), 98–102 (2009).
[CrossRef]

Bertram, F.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[CrossRef]

Bo?rseth, T. M.

T. M. Bo̸rseth, B. G. Svensson, A. Y. Kuznetsov, P. Klason, Q. X. Zhao, and M. Willander, “Identification of oxygen and zinc vacancy optical signals in ZnO,” Appl. Phys. Lett. 89(26), 262112 (2006).
[CrossRef]

Boey, F. C. Y.

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology 19(34), 345605 (2008).
[CrossRef] [PubMed]

Briddon, P. R.

M. G. Wardle, J. P. Goss, and P. R. Briddon, “Theory of Fe, Co, Ni, Cu, and their complexes with hydrogen in ZnO,” Phys. Rev. B 72(15), 155108 (2005).
[CrossRef]

Cai, W.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equillibrium processes: Defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[CrossRef]

Chang, K. J.

J. Bang and K. J. Chang, “Atomic structure and diffusion of hydrogen in ZnO,” J. Korean Phys. Soc. 55(1), 98–102 (2009).
[CrossRef]

Cho, S. J.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Christen, J.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[CrossRef]

Dogan, S.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Duan, G.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equillibrium processes: Defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[CrossRef]

Dworzak, M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[CrossRef]

Everitt, H. O.

J. V. Foreman, H. O. Everitt, J. Yang, T. McNicholas, and J. Liu, “Effects of reabsorption and spatial trap distributions on the radiative quantum efficiencies of ZnO,” Phys. Rev. B 81(11), 115318 (2010).
[CrossRef]

Feng, B.

J. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao, and B. Feng, “Effects of annealing temperature on the structure and optical properties of ZnO nanoparticles,” J. Alloy. Comp. 477(1-2), 632–635 (2009).
[CrossRef]

Foreman, J. V.

J. V. Foreman, H. O. Everitt, J. Yang, T. McNicholas, and J. Liu, “Effects of reabsorption and spatial trap distributions on the radiative quantum efficiencies of ZnO,” Phys. Rev. B 81(11), 115318 (2010).
[CrossRef]

Forster, D.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[CrossRef]

Fraser, S. E.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(33), 14535–14540 (2010).
[CrossRef] [PubMed]

Fu, S.

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology 19(34), 345605 (2008).
[CrossRef] [PubMed]

Fujita, Y.

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol. 10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, J. Lin, B. Urban, A. Neogi, and Y. Fujita, “Multiphonon scattering and non-radiative decay in ZnO nanoparticles,” Phys. Status Solidi C 7(6), 1586–1588 (2010).
[CrossRef]

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, and Y. Fujita, “Hydrogen related defect complexes in ZnO nanoparticles,” Appl. Phys. Lett. 97(9), 091907 (2010).
[CrossRef]

Gao, M.

J. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao, and B. Feng, “Effects of annealing temperature on the structure and optical properties of ZnO nanoparticles,” J. Alloy. Comp. 477(1-2), 632–635 (2009).
[CrossRef]

García, J. A.

A. Zubiaga, J. A. García, F. Plazaola, F. Tuomisto, K. Saarinen, J. Zuñiga Pérez, and V. Muñoz-Sanjosé, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[CrossRef]

Goss, J. P.

M. G. Wardle, J. P. Goss, and P. R. Briddon, “Theory of Fe, Co, Ni, Cu, and their complexes with hydrogen in ZnO,” Phys. Rev. B 72(15), 155108 (2005).
[CrossRef]

Goyal, R. N.

P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey, and R. N. Goyal, “In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition,” Bull. Mater. Sci. 31(3), 573–577 (2008).
[CrossRef]

Gutowski, J.

T. Voss, I. Kudyk, L. Wischmeier, and J. Gutowski, “Nonlinear optics with ZnO nanowires,” Phys. Status Solidi B 246(2), 311–314 (2009).
[CrossRef]

Haboeck, U.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[CrossRef]

Hahm, J. I.

Heo, Y. W.

K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
[CrossRef]

Hoffmann, A.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[CrossRef]

Hofmann, D. M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[CrossRef]

Hu, Z.

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol. 10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

Ip, K.

K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
[CrossRef]

Jagadish, C.

K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
[CrossRef]

John, S.

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol. 10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

Kachynski, A. V.

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy,” J. Phys. Chem. C 112(29), 10721–10724 (2008).
[CrossRef]

Kaur, D.

P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey, and R. N. Goyal, “In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition,” Bull. Mater. Sci. 31(3), 573–577 (2008).
[CrossRef]

Kaushal, A.

P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey, and R. N. Goyal, “In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition,” Bull. Mater. Sci. 31(3), 573–577 (2008).
[CrossRef]

Klason, P.

T. M. Bo̸rseth, B. G. Svensson, A. Y. Kuznetsov, P. Klason, Q. X. Zhao, and M. Willander, “Identification of oxygen and zinc vacancy optical signals in ZnO,” Appl. Phys. Lett. 89(26), 262112 (2006).
[CrossRef]

Kresse, G.

F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, “Defect energetics in ZnO: a hybrid Hartree-Fock density functional study,” Phys. Rev. B 77(24), 245202 (2008).
[CrossRef]

Kriegseis, W.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[CrossRef]

Kucheyev, S. O.

K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
[CrossRef]

Kudyk, I.

T. Voss, I. Kudyk, L. Wischmeier, and J. Gutowski, “Nonlinear optics with ZnO nanowires,” Phys. Status Solidi B 246(2), 311–314 (2009).
[CrossRef]

Kumar, A.

P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey, and R. N. Goyal, “In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition,” Bull. Mater. Sci. 31(3), 573–577 (2008).
[CrossRef]

Kumar, N.

Kuzmin, A. N.

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy,” J. Phys. Chem. C 112(29), 10721–10724 (2008).
[CrossRef]

Kuznetsov, A. Y.

T. M. Bo̸rseth, B. G. Svensson, A. Y. Kuznetsov, P. Klason, Q. X. Zhao, and M. Willander, “Identification of oxygen and zinc vacancy optical signals in ZnO,” Appl. Phys. Lett. 89(26), 262112 (2006).
[CrossRef]

Kwek, L. C.

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology 19(34), 345605 (2008).
[CrossRef] [PubMed]

Lang, J.

J. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao, and B. Feng, “Effects of annealing temperature on the structure and optical properties of ZnO nanoparticles,” J. Alloy. Comp. 477(1-2), 632–635 (2009).
[CrossRef]

Lau, S. P.

E. S. P. Leong, S. F. Yu, and S. P. Lau, “Directional edge-emitting UV random laser diodes,” Appl. Phys. Lett. 89(22), 221109 (2006).
[CrossRef]

Leong, E. S. P.

E. S. P. Leong, S. F. Yu, and S. P. Lau, “Directional edge-emitting UV random laser diodes,” Appl. Phys. Lett. 89(22), 221109 (2006).
[CrossRef]

Li, J.

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol. 10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

Li, Y.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equillibrium processes: Defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[CrossRef]

Lim, C. S.

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology 19(34), 345605 (2008).
[CrossRef] [PubMed]

Lin, J.

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, J. Lin, B. Urban, A. Neogi, and Y. Fujita, “Multiphonon scattering and non-radiative decay in ZnO nanoparticles,” Phys. Status Solidi C 7(6), 1586–1588 (2010).
[CrossRef]

Liu, C.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Liu, J.

J. V. Foreman, H. O. Everitt, J. Yang, T. McNicholas, and J. Liu, “Effects of reabsorption and spatial trap distributions on the radiative quantum efficiencies of ZnO,” Phys. Rev. B 81(11), 115318 (2010).
[CrossRef]

C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, “Low-threshold two-photon pumped ZnO nanowire lasers,” Opt. Express 17(10), 7893–7900 (2009).
[CrossRef] [PubMed]

Liu, X.

J. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao, and B. Feng, “Effects of annealing temperature on the structure and optical properties of ZnO nanoparticles,” J. Alloy. Comp. 477(1-2), 632–635 (2009).
[CrossRef]

Look, D. C.

K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
[CrossRef]

Luo, B.

K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
[CrossRef]

Maloney, J.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(33), 14535–14540 (2010).
[CrossRef] [PubMed]

Marpu, S.

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol. 10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

McNicholas, T.

J. V. Foreman, H. O. Everitt, J. Yang, T. McNicholas, and J. Liu, “Effects of reabsorption and spatial trap distributions on the radiative quantum efficiencies of ZnO,” Phys. Rev. B 81(11), 115318 (2010).
[CrossRef]

Meyer, B. K.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[CrossRef]

Morkoc, H.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Muñoz-Sanjosé, V.

A. Zubiaga, J. A. García, F. Plazaola, F. Tuomisto, K. Saarinen, J. Zuñiga Pérez, and V. Muñoz-Sanjosé, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[CrossRef]

Neogi, A.

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol. 10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, J. Lin, B. Urban, A. Neogi, and Y. Fujita, “Multiphonon scattering and non-radiative decay in ZnO nanoparticles,” Phys. Status Solidi C 7(6), 1586–1588 (2010).
[CrossRef]

Norton, D. P.

K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
[CrossRef]

Nyk, M.

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy,” J. Phys. Chem. C 112(29), 10721–10724 (2008).
[CrossRef]

Oba, F.

F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, “Defect energetics in ZnO: a hybrid Hartree-Fock density functional study,” Phys. Rev. B 77(24), 245202 (2008).
[CrossRef]

Okamoto, H.

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, and Y. Fujita, “Hydrogen related defect complexes in ZnO nanoparticles,” Appl. Phys. Lett. 97(9), 091907 (2010).
[CrossRef]

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, J. Lin, B. Urban, A. Neogi, and Y. Fujita, “Multiphonon scattering and non-radiative decay in ZnO nanoparticles,” Phys. Status Solidi C 7(6), 1586–1588 (2010).
[CrossRef]

Omary, M.

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol. 10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

Overberg, M. E.

K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
[CrossRef]

Özgür, U.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Paier, J.

F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, “Defect energetics in ZnO: a hybrid Hartree-Fock density functional study,” Phys. Rev. B 77(24), 245202 (2008).
[CrossRef]

Pandey, A.

P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey, and R. N. Goyal, “In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition,” Bull. Mater. Sci. 31(3), 573–577 (2008).
[CrossRef]

Pantazis, P.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(33), 14535–14540 (2010).
[CrossRef] [PubMed]

Pearton, S. J.

K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
[CrossRef]

Plazaola, F.

A. Zubiaga, J. A. García, F. Plazaola, F. Tuomisto, K. Saarinen, J. Zuñiga Pérez, and V. Muñoz-Sanjosé, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[CrossRef]

Prasad, P. N.

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy,” J. Phys. Chem. C 112(29), 10721–10724 (2008).
[CrossRef]

Ren, F.

K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
[CrossRef]

Reshchikov, M. A.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Rodina, A. V.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[CrossRef]

Roy, I.

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy,” J. Phys. Chem. C 112(29), 10721–10724 (2008).
[CrossRef]

Saarinen, K.

A. Zubiaga, J. A. García, F. Plazaola, F. Tuomisto, K. Saarinen, J. Zuñiga Pérez, and V. Muñoz-Sanjosé, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[CrossRef]

Senthilkumar, K.

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, J. Lin, B. Urban, A. Neogi, and Y. Fujita, “Multiphonon scattering and non-radiative decay in ZnO nanoparticles,” Phys. Status Solidi C 7(6), 1586–1588 (2010).
[CrossRef]

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, and Y. Fujita, “Hydrogen related defect complexes in ZnO nanoparticles,” Appl. Phys. Lett. 97(9), 091907 (2010).
[CrossRef]

Senthilkumar, O.

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, and Y. Fujita, “Hydrogen related defect complexes in ZnO nanoparticles,” Appl. Phys. Lett. 97(9), 091907 (2010).
[CrossRef]

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, J. Lin, B. Urban, A. Neogi, and Y. Fujita, “Multiphonon scattering and non-radiative decay in ZnO nanoparticles,” Phys. Status Solidi C 7(6), 1586–1588 (2010).
[CrossRef]

Singh, P.

P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey, and R. N. Goyal, “In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition,” Bull. Mater. Sci. 31(3), 573–577 (2008).
[CrossRef]

Straßburg, M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[CrossRef]

Stutz, C. E.

K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
[CrossRef]

Svensson, B. G.

T. M. Bo̸rseth, B. G. Svensson, A. Y. Kuznetsov, P. Klason, Q. X. Zhao, and M. Willander, “Identification of oxygen and zinc vacancy optical signals in ZnO,” Appl. Phys. Lett. 89(26), 262112 (2006).
[CrossRef]

Tanaka, I.

F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, “Defect energetics in ZnO: a hybrid Hartree-Fock density functional study,” Phys. Rev. B 77(24), 245202 (2008).
[CrossRef]

Teke, A.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Togo, A.

F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, “Defect energetics in ZnO: a hybrid Hartree-Fock density functional study,” Phys. Rev. B 77(24), 245202 (2008).
[CrossRef]

Tok, A. I. Y.

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology 19(34), 345605 (2008).
[CrossRef] [PubMed]

Tokunaga, M.

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, and Y. Fujita, “Hydrogen related defect complexes in ZnO nanoparticles,” Appl. Phys. Lett. 97(9), 091907 (2010).
[CrossRef]

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, J. Lin, B. Urban, A. Neogi, and Y. Fujita, “Multiphonon scattering and non-radiative decay in ZnO nanoparticles,” Phys. Status Solidi C 7(6), 1586–1588 (2010).
[CrossRef]

Tuomisto, F.

A. Zubiaga, J. A. García, F. Plazaola, F. Tuomisto, K. Saarinen, J. Zuñiga Pérez, and V. Muñoz-Sanjosé, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[CrossRef]

Urban, B.

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, J. Lin, B. Urban, A. Neogi, and Y. Fujita, “Multiphonon scattering and non-radiative decay in ZnO nanoparticles,” Phys. Status Solidi C 7(6), 1586–1588 (2010).
[CrossRef]

Voss, T.

T. Voss, I. Kudyk, L. Wischmeier, and J. Gutowski, “Nonlinear optics with ZnO nanowires,” Phys. Status Solidi B 246(2), 311–314 (2009).
[CrossRef]

Wang, Y.

J. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao, and B. Feng, “Effects of annealing temperature on the structure and optical properties of ZnO nanoparticles,” J. Alloy. Comp. 477(1-2), 632–635 (2009).
[CrossRef]

Wang, Z. L.

Wardle, M. G.

M. G. Wardle, J. P. Goss, and P. R. Briddon, “Theory of Fe, Co, Ni, Cu, and their complexes with hydrogen in ZnO,” Phys. Rev. B 72(15), 155108 (2005).
[CrossRef]

Willander, M.

T. M. Bo̸rseth, B. G. Svensson, A. Y. Kuznetsov, P. Klason, Q. X. Zhao, and M. Willander, “Identification of oxygen and zinc vacancy optical signals in ZnO,” Appl. Phys. Lett. 89(26), 262112 (2006).
[CrossRef]

Williams, J. S.

K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
[CrossRef]

Wischmeier, L.

T. Voss, I. Kudyk, L. Wischmeier, and J. Gutowski, “Nonlinear optics with ZnO nanowires,” Phys. Status Solidi B 246(2), 311–314 (2009).
[CrossRef]

Wu, D.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(33), 14535–14540 (2010).
[CrossRef] [PubMed]

Wu, Y. L.

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology 19(34), 345605 (2008).
[CrossRef] [PubMed]

Xia, T.

Xu, J.

Xu, X.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equillibrium processes: Defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[CrossRef]

Yang, J.

J. V. Foreman, H. O. Everitt, J. Yang, T. McNicholas, and J. Liu, “Effects of reabsorption and spatial trap distributions on the radiative quantum efficiencies of ZnO,” Phys. Rev. B 81(11), 115318 (2010).
[CrossRef]

J. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao, and B. Feng, “Effects of annealing temperature on the structure and optical properties of ZnO nanoparticles,” J. Alloy. Comp. 477(1-2), 632–635 (2009).
[CrossRef]

Yang, L.

J. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao, and B. Feng, “Effects of annealing temperature on the structure and optical properties of ZnO nanoparticles,” J. Alloy. Comp. 477(1-2), 632–635 (2009).
[CrossRef]

Yang, S.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equillibrium processes: Defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[CrossRef]

Yu, S. F.

E. S. P. Leong, S. F. Yu, and S. P. Lau, “Directional edge-emitting UV random laser diodes,” Appl. Phys. Lett. 89(22), 221109 (2006).
[CrossRef]

Zavada, J. M.

K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
[CrossRef]

Zeng, H.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equillibrium processes: Defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[CrossRef]

Zeng, X. T.

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology 19(34), 345605 (2008).
[CrossRef] [PubMed]

Zhang, C.

Zhang, F.

Zhang, Y.

J. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao, and B. Feng, “Effects of annealing temperature on the structure and optical properties of ZnO nanoparticles,” J. Alloy. Comp. 477(1-2), 632–635 (2009).
[CrossRef]

Zhao, Q. X.

T. M. Bo̸rseth, B. G. Svensson, A. Y. Kuznetsov, P. Klason, Q. X. Zhao, and M. Willander, “Identification of oxygen and zinc vacancy optical signals in ZnO,” Appl. Phys. Lett. 89(26), 262112 (2006).
[CrossRef]

Zubiaga, A.

A. Zubiaga, J. A. García, F. Plazaola, F. Tuomisto, K. Saarinen, J. Zuñiga Pérez, and V. Muñoz-Sanjosé, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[CrossRef]

Zuñiga Pérez, J.

A. Zubiaga, J. A. García, F. Plazaola, F. Tuomisto, K. Saarinen, J. Zuñiga Pérez, and V. Muñoz-Sanjosé, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[CrossRef]

Adv. Funct. Mater. (1)

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equillibrium processes: Defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

T. M. Bo̸rseth, B. G. Svensson, A. Y. Kuznetsov, P. Klason, Q. X. Zhao, and M. Willander, “Identification of oxygen and zinc vacancy optical signals in ZnO,” Appl. Phys. Lett. 89(26), 262112 (2006).
[CrossRef]

E. S. P. Leong, S. F. Yu, and S. P. Lau, “Directional edge-emitting UV random laser diodes,” Appl. Phys. Lett. 89(22), 221109 (2006).
[CrossRef]

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, and Y. Fujita, “Hydrogen related defect complexes in ZnO nanoparticles,” Appl. Phys. Lett. 97(9), 091907 (2010).
[CrossRef]

Bull. Mater. Sci. (1)

P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey, and R. N. Goyal, “In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition,” Bull. Mater. Sci. 31(3), 573–577 (2008).
[CrossRef]

J. Alloy. Comp. (1)

J. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao, and B. Feng, “Effects of annealing temperature on the structure and optical properties of ZnO nanoparticles,” J. Alloy. Comp. 477(1-2), 632–635 (2009).
[CrossRef]

J. Appl. Phys. (2)

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

A. Zubiaga, J. A. García, F. Plazaola, F. Tuomisto, K. Saarinen, J. Zuñiga Pérez, and V. Muñoz-Sanjosé, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[CrossRef]

J. Korean Phys. Soc. (1)

J. Bang and K. J. Chang, “Atomic structure and diffusion of hydrogen in ZnO,” J. Korean Phys. Soc. 55(1), 98–102 (2009).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol. 10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy,” J. Phys. Chem. C 112(29), 10721–10724 (2008).
[CrossRef]

Nanotechnology (1)

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology 19(34), 345605 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (3)

J. V. Foreman, H. O. Everitt, J. Yang, T. McNicholas, and J. Liu, “Effects of reabsorption and spatial trap distributions on the radiative quantum efficiencies of ZnO,” Phys. Rev. B 81(11), 115318 (2010).
[CrossRef]

F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, “Defect energetics in ZnO: a hybrid Hartree-Fock density functional study,” Phys. Rev. B 77(24), 245202 (2008).
[CrossRef]

M. G. Wardle, J. P. Goss, and P. R. Briddon, “Theory of Fe, Co, Ni, Cu, and their complexes with hydrogen in ZnO,” Phys. Rev. B 72(15), 155108 (2005).
[CrossRef]

Phys. Status Solidi B (1)

T. Voss, I. Kudyk, L. Wischmeier, and J. Gutowski, “Nonlinear optics with ZnO nanowires,” Phys. Status Solidi B 246(2), 311–314 (2009).
[CrossRef]

Phys. Status Solidi C (1)

K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, J. Lin, B. Urban, A. Neogi, and Y. Fujita, “Multiphonon scattering and non-radiative decay in ZnO nanoparticles,” Phys. Status Solidi C 7(6), 1586–1588 (2010).
[CrossRef]

Phys. Status Solidi, B Basic Res. (1)

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi, B Basic Res. 241(2), 231–260 (2004).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(33), 14535–14540 (2010).
[CrossRef] [PubMed]

Solid-State Electron. (1)

K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, S. O. Kucheyev, C. Jagadish, J. S. Williams, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, “Hydrogen incorporation, diffusivity and evolution in bulk ZnO,” Solid-State Electron. 47(12), 2255–2259 (2003).
[CrossRef]

Other (1)

M. D. McCluskey, S. J. Jokela, and W. M. Hlaing Oo, “Hydrogen donors in ZnO,” Materials Research Society Symposium Proceedings (2005), Vol. 864, pp. E10.4.1–E10.4.10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

SEM pictures of samples 1(a), 2(b), 3(c) and 4(d). After annealing at high temperatures the shapes of the crystals change from nanorods, tetrapods and nanoparticles to that of semi-spherical particles. The white scale in the SEM pictures is 100 nm.

Fig. 2
Fig. 2

(a) shows the TEM image at the interface of a annealed particle, whereas (b) shows the high resolution TEM surface image of the same ZnO particle. The scale bar is 2 nm for both TEM figures. One can see structural defects at the surface.

Fig. 3
Fig. 3

The size distribution of samples 1 (a), 2 (b), 3 (c) and 4 (d) measured by dynamic light scattering. The ZnO nanocrystals of dimensions less than 20 nm were homogenized into a colloidal solution by centrifugation, and the particle size was reconfirmed by the SEM images.

Fig. 4
Fig. 4

A schematic of the experimental setup used to measure the TPE and SHG of all samples. A special holder for the cuvette was made to allow it to return to the same position after removing it to change samples. Samples were packed into the cuvette to get the same densities. However, both annealed sampled proved to be less dense after taking volume and weight measurements of the samples in the cuvette.

Fig. 5
Fig. 5

The graph represents the average deviation of each sample from the JCPDS standard 2θ values and the average FWHM of all standard peaks of ZnO in the powder form.

Fig. 6
Fig. 6

Raman spectra of all ZnO samples taken using the 514 nm beam of an argon ion laser. Sample 1 clearly shows a peak around 1057 cm−1 and several hydrogen related peaks around 3500 cm−1. The Raman signal for sample 3 was weaker compared to the other samples and therefore has a larger background. The reason is believed to be due to the poor crystal quality of sample 3, creating less phonon-photon interactions.

Fig. 7
Fig. 7

Single photon photoluminescence from ZnO nanoparticles showing bandedge and surface defects relate emission from each sample due to the change in absorption efficiency of photons above the bandedge.

Fig. 8
Fig. 8

A comparison of all the four samples at a power of 500 mW with identical focusing conditions at the fundamental wavelength ~850 nm. It demonstrates the increase in SHG after annealing.

Fig. 9
Fig. 9

Tunable range of SHG emission for various fundamental wavelengths from sample 2 at 500 mW. The quadratic SHG power dependence on the input intensity was also confirmed.

Fig. 10
Fig. 10

TPEF spectra of all samples taken with the 736 nm beam of a pulsed laser at a power of 1.5 W. The units are absolute with respect to each other.

Fig. 11
Fig. 11

(a) SHG as seen from a non-sensitive CCD camera, being generated by the 955 nm light. (b) SHG seen from the same CCD camera, generated using 800 nm pulsed laser. The signal is saturating the detector and shows the diffraction pattern of the incident beam. (c) Simultaneous SHG and TPEF at incident wavelength 755 nm. The yellow arrows mark TPEF spots. (d) TPEF using the 750 nm beam of a pulsed laser.

Tables (1)

Tables Icon

Table 1 Summary of the Effect of Hydrogen Content and Defects on the SHG, Single Photon and TPE Processes

Metrics