Abstract

This paper demonstrates a laser direct-write method to form single crystal semiconductor ferroelectric SbSI features on chalcogenide glasses for integration into infrared devices. The method overcomes a major limitation of thin-film deposition techniques, viz. the uncontrolled stoichiometry of SbSI due to very different vapor pressure of its constituents. It promises advantages of selective single-crystal formation and control on the morphology of the crystal. Mechanism of and control parameters for laser crystallization are explored.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. I. Gerzanich, V. A. Lyakhovitskaya, V. M. Fridkin, and B. A. Popovkin, in Current Topics in Materials Science, E. Kaldis, ed. (North-Holland, Amsterdam 10, 55–190, (1982)).
  2. L. E. Cross, A. S. Bhalla, F. Ainger, and D. Damjanovic, “Pyro-optic detector and imager,” U. S. Patent 4994672, Feb. 19, 1991.
  3. M. Nowak, P. Szperlich, A. Kidawa, M. Kepinska, P. Gorczycki, and B. Kauch, “Optical and photoelectrical properties of SbSI,” Proc. SPIE 5136, 172–177 (2003).
    [CrossRef]
  4. S. Surthi, S. Kotru, and R. K. Pandey, “SbSI films for ferroelectric memory applications,” Integr. Ferroelectr. 48(1), 263–269 (2002).
    [CrossRef]
  5. M. Nowak, P. Mroczek, P. Duka, A. Kidawa, P. Szperlich, A. Grabowski, J. Szala, and G. Moskal, “Using of textured polycrystalline SbSI in actuators’,” Sens. Actuators A Phys. 150(2), 251–256 (2009).
    [CrossRef]
  6. A. Mansingh and T. Sudersena Rao, “Growth and characterization of flash-evaporated sulphoiodide thin films,” J. Appl. Phys. 58(9), 3530–3535 (1985).
    [CrossRef]
  7. P. K. Ghosh, A. S. Bhalla, and L. E. Cross, “Preparation and electrical properties of thin films of antimony sulphur iodide (SbSI),” Ferroelectrics 51(1), 29–33 (1983).
    [CrossRef]
  8. S. Surthi, S. Kotru, and R. K. Pandey, “Preparation and electrical properties of ferroelectric SbSI films by pulsed laser deposition,” J. Mater. Sci. Lett. 22(8), 591–593 (2003).
    [CrossRef]
  9. K. Nassau, J. W. Shiever, and M. Kowalchik, “The growth of large SbSI crystals: control of needle morphology,” J. Cryst. Growth 7(2), 237–245 (1970).
    [CrossRef]
  10. P. Muralt, “Micromachined infrared detectors based on pyroelectric thin films,” Rep. Prog. Phys. 64(10), 1339–1388 (2001).
    [CrossRef]
  11. T. Honma, “Laser-induced crystal growth of nonlinear optical crystal on glass surface,” J. Ceram. Soc. Jpn. 118(1374), 71–76 (2010).
    [CrossRef]
  12. T. Honma and T. Komatsu, “Patterning of two-dimensional planar lithium niobate architectures on glass surface by laser scanning,” Opt. Express 18(8), 8019–8024 (2010).
    [CrossRef] [PubMed]
  13. P. Gupta, H. Jain, D. B. Williams, T. Honma, Y. Benino, and T. Komatsu, “Creation of ferroelectric, single-crystal architecture in Sm0.5La0.5BGeO5 glass,” J. Am. Ceram. Soc. 91(1), 110–114 (2008).
    [CrossRef]
  14. A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express 17(25), 23284–23289 (2009).
    [CrossRef] [PubMed]
  15. P. Gupta, H. Jain, D. B. Williams, J. Toulouse, and I. Veltchev, “Creation of tailored features by laser heating of Nd0.2La0.8BGeO5 glass,” Opt. Mater. 29(4), 355–359 (2006).
    [CrossRef]
  16. L. Ding, D. Zhao, H. Jain, Y. Xu, S. Wang, and G. Chen, “Structure of GeS2-SbSI glasses by Raman spectroscopy,” J. Am. Ceram. Soc. 93(10), 2932–2934 (2010).
    [CrossRef]
  17. V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and crystallization pecularities of antimony containing chalcohalogenide glasses,” Ferroelectrics 372(1), 87–92 (2008).
    [CrossRef]
  18. V. M. Rubish, “Thermostimulated relaxation of SbSI glass structure,” J. Optoelectron. Adv. Mater. 3(4), 941–944 (2001).
  19. V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and Crystallization Peculiarities of Antimony Containing Chalcohalogenide Glasses,” Ferroelectrics 372(1), 87–89 (2008).
    [CrossRef]
  20. S. R. Lukic, D. M. Petrović, I. O. Guth, and M. I. Avramov, “Complex non-crystalline chalcogenides: technology of preparation and spectral characteristics,” J. Res. Phys. 30(2), 111–130 (2006).

2010 (3)

T. Honma, “Laser-induced crystal growth of nonlinear optical crystal on glass surface,” J. Ceram. Soc. Jpn. 118(1374), 71–76 (2010).
[CrossRef]

T. Honma and T. Komatsu, “Patterning of two-dimensional planar lithium niobate architectures on glass surface by laser scanning,” Opt. Express 18(8), 8019–8024 (2010).
[CrossRef] [PubMed]

L. Ding, D. Zhao, H. Jain, Y. Xu, S. Wang, and G. Chen, “Structure of GeS2-SbSI glasses by Raman spectroscopy,” J. Am. Ceram. Soc. 93(10), 2932–2934 (2010).
[CrossRef]

2009 (2)

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express 17(25), 23284–23289 (2009).
[CrossRef] [PubMed]

M. Nowak, P. Mroczek, P. Duka, A. Kidawa, P. Szperlich, A. Grabowski, J. Szala, and G. Moskal, “Using of textured polycrystalline SbSI in actuators’,” Sens. Actuators A Phys. 150(2), 251–256 (2009).
[CrossRef]

2008 (3)

P. Gupta, H. Jain, D. B. Williams, T. Honma, Y. Benino, and T. Komatsu, “Creation of ferroelectric, single-crystal architecture in Sm0.5La0.5BGeO5 glass,” J. Am. Ceram. Soc. 91(1), 110–114 (2008).
[CrossRef]

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and crystallization pecularities of antimony containing chalcohalogenide glasses,” Ferroelectrics 372(1), 87–92 (2008).
[CrossRef]

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and Crystallization Peculiarities of Antimony Containing Chalcohalogenide Glasses,” Ferroelectrics 372(1), 87–89 (2008).
[CrossRef]

2006 (2)

S. R. Lukic, D. M. Petrović, I. O. Guth, and M. I. Avramov, “Complex non-crystalline chalcogenides: technology of preparation and spectral characteristics,” J. Res. Phys. 30(2), 111–130 (2006).

P. Gupta, H. Jain, D. B. Williams, J. Toulouse, and I. Veltchev, “Creation of tailored features by laser heating of Nd0.2La0.8BGeO5 glass,” Opt. Mater. 29(4), 355–359 (2006).
[CrossRef]

2003 (2)

S. Surthi, S. Kotru, and R. K. Pandey, “Preparation and electrical properties of ferroelectric SbSI films by pulsed laser deposition,” J. Mater. Sci. Lett. 22(8), 591–593 (2003).
[CrossRef]

M. Nowak, P. Szperlich, A. Kidawa, M. Kepinska, P. Gorczycki, and B. Kauch, “Optical and photoelectrical properties of SbSI,” Proc. SPIE 5136, 172–177 (2003).
[CrossRef]

2002 (1)

S. Surthi, S. Kotru, and R. K. Pandey, “SbSI films for ferroelectric memory applications,” Integr. Ferroelectr. 48(1), 263–269 (2002).
[CrossRef]

2001 (2)

V. M. Rubish, “Thermostimulated relaxation of SbSI glass structure,” J. Optoelectron. Adv. Mater. 3(4), 941–944 (2001).

P. Muralt, “Micromachined infrared detectors based on pyroelectric thin films,” Rep. Prog. Phys. 64(10), 1339–1388 (2001).
[CrossRef]

1985 (1)

A. Mansingh and T. Sudersena Rao, “Growth and characterization of flash-evaporated sulphoiodide thin films,” J. Appl. Phys. 58(9), 3530–3535 (1985).
[CrossRef]

1983 (1)

P. K. Ghosh, A. S. Bhalla, and L. E. Cross, “Preparation and electrical properties of thin films of antimony sulphur iodide (SbSI),” Ferroelectrics 51(1), 29–33 (1983).
[CrossRef]

1970 (1)

K. Nassau, J. W. Shiever, and M. Kowalchik, “The growth of large SbSI crystals: control of needle morphology,” J. Cryst. Growth 7(2), 237–245 (1970).
[CrossRef]

Avramov, M. I.

S. R. Lukic, D. M. Petrović, I. O. Guth, and M. I. Avramov, “Complex non-crystalline chalcogenides: technology of preparation and spectral characteristics,” J. Res. Phys. 30(2), 111–130 (2006).

Benino, Y.

P. Gupta, H. Jain, D. B. Williams, T. Honma, Y. Benino, and T. Komatsu, “Creation of ferroelectric, single-crystal architecture in Sm0.5La0.5BGeO5 glass,” J. Am. Ceram. Soc. 91(1), 110–114 (2008).
[CrossRef]

Bhalla, A. S.

P. K. Ghosh, A. S. Bhalla, and L. E. Cross, “Preparation and electrical properties of thin films of antimony sulphur iodide (SbSI),” Ferroelectrics 51(1), 29–33 (1983).
[CrossRef]

Chen, G.

L. Ding, D. Zhao, H. Jain, Y. Xu, S. Wang, and G. Chen, “Structure of GeS2-SbSI glasses by Raman spectroscopy,” J. Am. Ceram. Soc. 93(10), 2932–2934 (2010).
[CrossRef]

Cross, L. E.

P. K. Ghosh, A. S. Bhalla, and L. E. Cross, “Preparation and electrical properties of thin films of antimony sulphur iodide (SbSI),” Ferroelectrics 51(1), 29–33 (1983).
[CrossRef]

Dierolf, V.

Ding, L.

L. Ding, D. Zhao, H. Jain, Y. Xu, S. Wang, and G. Chen, “Structure of GeS2-SbSI glasses by Raman spectroscopy,” J. Am. Ceram. Soc. 93(10), 2932–2934 (2010).
[CrossRef]

Duka, P.

M. Nowak, P. Mroczek, P. Duka, A. Kidawa, P. Szperlich, A. Grabowski, J. Szala, and G. Moskal, “Using of textured polycrystalline SbSI in actuators’,” Sens. Actuators A Phys. 150(2), 251–256 (2009).
[CrossRef]

Gasinets, S. M.

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and crystallization pecularities of antimony containing chalcohalogenide glasses,” Ferroelectrics 372(1), 87–92 (2008).
[CrossRef]

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and Crystallization Peculiarities of Antimony Containing Chalcohalogenide Glasses,” Ferroelectrics 372(1), 87–89 (2008).
[CrossRef]

Ghosh, P. K.

P. K. Ghosh, A. S. Bhalla, and L. E. Cross, “Preparation and electrical properties of thin films of antimony sulphur iodide (SbSI),” Ferroelectrics 51(1), 29–33 (1983).
[CrossRef]

Gorczycki, P.

M. Nowak, P. Szperlich, A. Kidawa, M. Kepinska, P. Gorczycki, and B. Kauch, “Optical and photoelectrical properties of SbSI,” Proc. SPIE 5136, 172–177 (2003).
[CrossRef]

Gorina, O. V.

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and Crystallization Peculiarities of Antimony Containing Chalcohalogenide Glasses,” Ferroelectrics 372(1), 87–89 (2008).
[CrossRef]

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and crystallization pecularities of antimony containing chalcohalogenide glasses,” Ferroelectrics 372(1), 87–92 (2008).
[CrossRef]

Grabowski, A.

M. Nowak, P. Mroczek, P. Duka, A. Kidawa, P. Szperlich, A. Grabowski, J. Szala, and G. Moskal, “Using of textured polycrystalline SbSI in actuators’,” Sens. Actuators A Phys. 150(2), 251–256 (2009).
[CrossRef]

Gupta, P.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express 17(25), 23284–23289 (2009).
[CrossRef] [PubMed]

P. Gupta, H. Jain, D. B. Williams, T. Honma, Y. Benino, and T. Komatsu, “Creation of ferroelectric, single-crystal architecture in Sm0.5La0.5BGeO5 glass,” J. Am. Ceram. Soc. 91(1), 110–114 (2008).
[CrossRef]

P. Gupta, H. Jain, D. B. Williams, J. Toulouse, and I. Veltchev, “Creation of tailored features by laser heating of Nd0.2La0.8BGeO5 glass,” Opt. Mater. 29(4), 355–359 (2006).
[CrossRef]

Guth, I. O.

S. R. Lukic, D. M. Petrović, I. O. Guth, and M. I. Avramov, “Complex non-crystalline chalcogenides: technology of preparation and spectral characteristics,” J. Res. Phys. 30(2), 111–130 (2006).

Hirao, K.

Honma, T.

T. Honma, “Laser-induced crystal growth of nonlinear optical crystal on glass surface,” J. Ceram. Soc. Jpn. 118(1374), 71–76 (2010).
[CrossRef]

T. Honma and T. Komatsu, “Patterning of two-dimensional planar lithium niobate architectures on glass surface by laser scanning,” Opt. Express 18(8), 8019–8024 (2010).
[CrossRef] [PubMed]

P. Gupta, H. Jain, D. B. Williams, T. Honma, Y. Benino, and T. Komatsu, “Creation of ferroelectric, single-crystal architecture in Sm0.5La0.5BGeO5 glass,” J. Am. Ceram. Soc. 91(1), 110–114 (2008).
[CrossRef]

Jain, H.

L. Ding, D. Zhao, H. Jain, Y. Xu, S. Wang, and G. Chen, “Structure of GeS2-SbSI glasses by Raman spectroscopy,” J. Am. Ceram. Soc. 93(10), 2932–2934 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express 17(25), 23284–23289 (2009).
[CrossRef] [PubMed]

P. Gupta, H. Jain, D. B. Williams, T. Honma, Y. Benino, and T. Komatsu, “Creation of ferroelectric, single-crystal architecture in Sm0.5La0.5BGeO5 glass,” J. Am. Ceram. Soc. 91(1), 110–114 (2008).
[CrossRef]

P. Gupta, H. Jain, D. B. Williams, J. Toulouse, and I. Veltchev, “Creation of tailored features by laser heating of Nd0.2La0.8BGeO5 glass,” Opt. Mater. 29(4), 355–359 (2006).
[CrossRef]

Kauch, B.

M. Nowak, P. Szperlich, A. Kidawa, M. Kepinska, P. Gorczycki, and B. Kauch, “Optical and photoelectrical properties of SbSI,” Proc. SPIE 5136, 172–177 (2003).
[CrossRef]

Kaynts, D. I.

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and crystallization pecularities of antimony containing chalcohalogenide glasses,” Ferroelectrics 372(1), 87–92 (2008).
[CrossRef]

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and Crystallization Peculiarities of Antimony Containing Chalcohalogenide Glasses,” Ferroelectrics 372(1), 87–89 (2008).
[CrossRef]

Kepinska, M.

M. Nowak, P. Szperlich, A. Kidawa, M. Kepinska, P. Gorczycki, and B. Kauch, “Optical and photoelectrical properties of SbSI,” Proc. SPIE 5136, 172–177 (2003).
[CrossRef]

Kidawa, A.

M. Nowak, P. Mroczek, P. Duka, A. Kidawa, P. Szperlich, A. Grabowski, J. Szala, and G. Moskal, “Using of textured polycrystalline SbSI in actuators’,” Sens. Actuators A Phys. 150(2), 251–256 (2009).
[CrossRef]

M. Nowak, P. Szperlich, A. Kidawa, M. Kepinska, P. Gorczycki, and B. Kauch, “Optical and photoelectrical properties of SbSI,” Proc. SPIE 5136, 172–177 (2003).
[CrossRef]

Komatsu, T.

T. Honma and T. Komatsu, “Patterning of two-dimensional planar lithium niobate architectures on glass surface by laser scanning,” Opt. Express 18(8), 8019–8024 (2010).
[CrossRef] [PubMed]

P. Gupta, H. Jain, D. B. Williams, T. Honma, Y. Benino, and T. Komatsu, “Creation of ferroelectric, single-crystal architecture in Sm0.5La0.5BGeO5 glass,” J. Am. Ceram. Soc. 91(1), 110–114 (2008).
[CrossRef]

Kotru, S.

S. Surthi, S. Kotru, and R. K. Pandey, “Preparation and electrical properties of ferroelectric SbSI films by pulsed laser deposition,” J. Mater. Sci. Lett. 22(8), 591–593 (2003).
[CrossRef]

S. Surthi, S. Kotru, and R. K. Pandey, “SbSI films for ferroelectric memory applications,” Integr. Ferroelectr. 48(1), 263–269 (2002).
[CrossRef]

Kowalchik, M.

K. Nassau, J. W. Shiever, and M. Kowalchik, “The growth of large SbSI crystals: control of needle morphology,” J. Cryst. Growth 7(2), 237–245 (1970).
[CrossRef]

Lukic, S. R.

S. R. Lukic, D. M. Petrović, I. O. Guth, and M. I. Avramov, “Complex non-crystalline chalcogenides: technology of preparation and spectral characteristics,” J. Res. Phys. 30(2), 111–130 (2006).

Mansingh, A.

A. Mansingh and T. Sudersena Rao, “Growth and characterization of flash-evaporated sulphoiodide thin films,” J. Appl. Phys. 58(9), 3530–3535 (1985).
[CrossRef]

Miura, K.

Moskal, G.

M. Nowak, P. Mroczek, P. Duka, A. Kidawa, P. Szperlich, A. Grabowski, J. Szala, and G. Moskal, “Using of textured polycrystalline SbSI in actuators’,” Sens. Actuators A Phys. 150(2), 251–256 (2009).
[CrossRef]

Mroczek, P.

M. Nowak, P. Mroczek, P. Duka, A. Kidawa, P. Szperlich, A. Grabowski, J. Szala, and G. Moskal, “Using of textured polycrystalline SbSI in actuators’,” Sens. Actuators A Phys. 150(2), 251–256 (2009).
[CrossRef]

Muralt, P.

P. Muralt, “Micromachined infrared detectors based on pyroelectric thin films,” Rep. Prog. Phys. 64(10), 1339–1388 (2001).
[CrossRef]

Nassau, K.

K. Nassau, J. W. Shiever, and M. Kowalchik, “The growth of large SbSI crystals: control of needle morphology,” J. Cryst. Growth 7(2), 237–245 (1970).
[CrossRef]

Nowak, M.

M. Nowak, P. Mroczek, P. Duka, A. Kidawa, P. Szperlich, A. Grabowski, J. Szala, and G. Moskal, “Using of textured polycrystalline SbSI in actuators’,” Sens. Actuators A Phys. 150(2), 251–256 (2009).
[CrossRef]

M. Nowak, P. Szperlich, A. Kidawa, M. Kepinska, P. Gorczycki, and B. Kauch, “Optical and photoelectrical properties of SbSI,” Proc. SPIE 5136, 172–177 (2003).
[CrossRef]

Pandey, R. K.

S. Surthi, S. Kotru, and R. K. Pandey, “Preparation and electrical properties of ferroelectric SbSI films by pulsed laser deposition,” J. Mater. Sci. Lett. 22(8), 591–593 (2003).
[CrossRef]

S. Surthi, S. Kotru, and R. K. Pandey, “SbSI films for ferroelectric memory applications,” Integr. Ferroelectr. 48(1), 263–269 (2002).
[CrossRef]

Petrovic, D. M.

S. R. Lukic, D. M. Petrović, I. O. Guth, and M. I. Avramov, “Complex non-crystalline chalcogenides: technology of preparation and spectral characteristics,” J. Res. Phys. 30(2), 111–130 (2006).

Rigan, M. Y.

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and crystallization pecularities of antimony containing chalcohalogenide glasses,” Ferroelectrics 372(1), 87–92 (2008).
[CrossRef]

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and Crystallization Peculiarities of Antimony Containing Chalcohalogenide Glasses,” Ferroelectrics 372(1), 87–89 (2008).
[CrossRef]

Rubish, V. M.

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and crystallization pecularities of antimony containing chalcohalogenide glasses,” Ferroelectrics 372(1), 87–92 (2008).
[CrossRef]

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and Crystallization Peculiarities of Antimony Containing Chalcohalogenide Glasses,” Ferroelectrics 372(1), 87–89 (2008).
[CrossRef]

V. M. Rubish, “Thermostimulated relaxation of SbSI glass structure,” J. Optoelectron. Adv. Mater. 3(4), 941–944 (2001).

Sakakura, M.

Shiever, J. W.

K. Nassau, J. W. Shiever, and M. Kowalchik, “The growth of large SbSI crystals: control of needle morphology,” J. Cryst. Growth 7(2), 237–245 (1970).
[CrossRef]

Shimotsuma, Y.

Stone, A.

Stone, G.

Sudersena Rao, T.

A. Mansingh and T. Sudersena Rao, “Growth and characterization of flash-evaporated sulphoiodide thin films,” J. Appl. Phys. 58(9), 3530–3535 (1985).
[CrossRef]

Surthi, S.

S. Surthi, S. Kotru, and R. K. Pandey, “Preparation and electrical properties of ferroelectric SbSI films by pulsed laser deposition,” J. Mater. Sci. Lett. 22(8), 591–593 (2003).
[CrossRef]

S. Surthi, S. Kotru, and R. K. Pandey, “SbSI films for ferroelectric memory applications,” Integr. Ferroelectr. 48(1), 263–269 (2002).
[CrossRef]

Szala, J.

M. Nowak, P. Mroczek, P. Duka, A. Kidawa, P. Szperlich, A. Grabowski, J. Szala, and G. Moskal, “Using of textured polycrystalline SbSI in actuators’,” Sens. Actuators A Phys. 150(2), 251–256 (2009).
[CrossRef]

Szperlich, P.

M. Nowak, P. Mroczek, P. Duka, A. Kidawa, P. Szperlich, A. Grabowski, J. Szala, and G. Moskal, “Using of textured polycrystalline SbSI in actuators’,” Sens. Actuators A Phys. 150(2), 251–256 (2009).
[CrossRef]

M. Nowak, P. Szperlich, A. Kidawa, M. Kepinska, P. Gorczycki, and B. Kauch, “Optical and photoelectrical properties of SbSI,” Proc. SPIE 5136, 172–177 (2003).
[CrossRef]

Toulouse, J.

P. Gupta, H. Jain, D. B. Williams, J. Toulouse, and I. Veltchev, “Creation of tailored features by laser heating of Nd0.2La0.8BGeO5 glass,” Opt. Mater. 29(4), 355–359 (2006).
[CrossRef]

Tovt, V. V.

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and Crystallization Peculiarities of Antimony Containing Chalcohalogenide Glasses,” Ferroelectrics 372(1), 87–89 (2008).
[CrossRef]

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and crystallization pecularities of antimony containing chalcohalogenide glasses,” Ferroelectrics 372(1), 87–92 (2008).
[CrossRef]

Veltchev, I.

P. Gupta, H. Jain, D. B. Williams, J. Toulouse, and I. Veltchev, “Creation of tailored features by laser heating of Nd0.2La0.8BGeO5 glass,” Opt. Mater. 29(4), 355–359 (2006).
[CrossRef]

Wang, S.

L. Ding, D. Zhao, H. Jain, Y. Xu, S. Wang, and G. Chen, “Structure of GeS2-SbSI glasses by Raman spectroscopy,” J. Am. Ceram. Soc. 93(10), 2932–2934 (2010).
[CrossRef]

Williams, D. B.

P. Gupta, H. Jain, D. B. Williams, T. Honma, Y. Benino, and T. Komatsu, “Creation of ferroelectric, single-crystal architecture in Sm0.5La0.5BGeO5 glass,” J. Am. Ceram. Soc. 91(1), 110–114 (2008).
[CrossRef]

P. Gupta, H. Jain, D. B. Williams, J. Toulouse, and I. Veltchev, “Creation of tailored features by laser heating of Nd0.2La0.8BGeO5 glass,” Opt. Mater. 29(4), 355–359 (2006).
[CrossRef]

Xu, Y.

L. Ding, D. Zhao, H. Jain, Y. Xu, S. Wang, and G. Chen, “Structure of GeS2-SbSI glasses by Raman spectroscopy,” J. Am. Ceram. Soc. 93(10), 2932–2934 (2010).
[CrossRef]

Zhao, D.

L. Ding, D. Zhao, H. Jain, Y. Xu, S. Wang, and G. Chen, “Structure of GeS2-SbSI glasses by Raman spectroscopy,” J. Am. Ceram. Soc. 93(10), 2932–2934 (2010).
[CrossRef]

Ferroelectrics (3)

P. K. Ghosh, A. S. Bhalla, and L. E. Cross, “Preparation and electrical properties of thin films of antimony sulphur iodide (SbSI),” Ferroelectrics 51(1), 29–33 (1983).
[CrossRef]

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and crystallization pecularities of antimony containing chalcohalogenide glasses,” Ferroelectrics 372(1), 87–92 (2008).
[CrossRef]

V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and Crystallization Peculiarities of Antimony Containing Chalcohalogenide Glasses,” Ferroelectrics 372(1), 87–89 (2008).
[CrossRef]

Integr. Ferroelectr. (1)

S. Surthi, S. Kotru, and R. K. Pandey, “SbSI films for ferroelectric memory applications,” Integr. Ferroelectr. 48(1), 263–269 (2002).
[CrossRef]

J. Am. Ceram. Soc. (2)

P. Gupta, H. Jain, D. B. Williams, T. Honma, Y. Benino, and T. Komatsu, “Creation of ferroelectric, single-crystal architecture in Sm0.5La0.5BGeO5 glass,” J. Am. Ceram. Soc. 91(1), 110–114 (2008).
[CrossRef]

L. Ding, D. Zhao, H. Jain, Y. Xu, S. Wang, and G. Chen, “Structure of GeS2-SbSI glasses by Raman spectroscopy,” J. Am. Ceram. Soc. 93(10), 2932–2934 (2010).
[CrossRef]

J. Appl. Phys. (1)

A. Mansingh and T. Sudersena Rao, “Growth and characterization of flash-evaporated sulphoiodide thin films,” J. Appl. Phys. 58(9), 3530–3535 (1985).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

T. Honma, “Laser-induced crystal growth of nonlinear optical crystal on glass surface,” J. Ceram. Soc. Jpn. 118(1374), 71–76 (2010).
[CrossRef]

J. Cryst. Growth (1)

K. Nassau, J. W. Shiever, and M. Kowalchik, “The growth of large SbSI crystals: control of needle morphology,” J. Cryst. Growth 7(2), 237–245 (1970).
[CrossRef]

J. Mater. Sci. Lett. (1)

S. Surthi, S. Kotru, and R. K. Pandey, “Preparation and electrical properties of ferroelectric SbSI films by pulsed laser deposition,” J. Mater. Sci. Lett. 22(8), 591–593 (2003).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

V. M. Rubish, “Thermostimulated relaxation of SbSI glass structure,” J. Optoelectron. Adv. Mater. 3(4), 941–944 (2001).

J. Res. Phys. (1)

S. R. Lukic, D. M. Petrović, I. O. Guth, and M. I. Avramov, “Complex non-crystalline chalcogenides: technology of preparation and spectral characteristics,” J. Res. Phys. 30(2), 111–130 (2006).

Opt. Express (2)

Opt. Mater. (1)

P. Gupta, H. Jain, D. B. Williams, J. Toulouse, and I. Veltchev, “Creation of tailored features by laser heating of Nd0.2La0.8BGeO5 glass,” Opt. Mater. 29(4), 355–359 (2006).
[CrossRef]

Proc. SPIE (1)

M. Nowak, P. Szperlich, A. Kidawa, M. Kepinska, P. Gorczycki, and B. Kauch, “Optical and photoelectrical properties of SbSI,” Proc. SPIE 5136, 172–177 (2003).
[CrossRef]

Rep. Prog. Phys. (1)

P. Muralt, “Micromachined infrared detectors based on pyroelectric thin films,” Rep. Prog. Phys. 64(10), 1339–1388 (2001).
[CrossRef]

Sens. Actuators A Phys. (1)

M. Nowak, P. Mroczek, P. Duka, A. Kidawa, P. Szperlich, A. Grabowski, J. Szala, and G. Moskal, “Using of textured polycrystalline SbSI in actuators’,” Sens. Actuators A Phys. 150(2), 251–256 (2009).
[CrossRef]

Other (2)

E. I. Gerzanich, V. A. Lyakhovitskaya, V. M. Fridkin, and B. A. Popovkin, in Current Topics in Materials Science, E. Kaldis, ed. (North-Holland, Amsterdam 10, 55–190, (1982)).

L. E. Cross, A. S. Bhalla, F. Ainger, and D. Damjanovic, “Pyro-optic detector and imager,” U. S. Patent 4994672, Feb. 19, 1991.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The setup for the laser crystallization experiment. The full names of abbreviations are: M: Mirror, DM: Dichroic Mirror, L: Lens, LF: Laser Line Filter, LP: Linear Polarizer, MO: Microscope Objective, P: Paddles, NS: Nano-positioning Stage, WL: White Light Source, PC: Personal Computer, CCD: Charged-Coupled Device Camera.

Fig. 2
Fig. 2

Differential scanning calorimetric (DSC) curves for Sb37S43.3I19.7, Sb35.7S39.3I25, Ge10 and Ge20 glasses. Arrows on curves show peaks corresponding to crystalline phases. The ternary phase diagram in the inset also shows glass forming region of Sb-S-I system [20] and positions of two compositions (Sb37S43.3I19.7 and Sb35.7S39.3I25) chosen for investigation.

Fig. 3
Fig. 3

Comparison of X-ray diffraction pattern from laser crystallized surface of Ge10 sample (image in inset) and standard powder diffraction file of SbSI crystalline phase.

Fig. 4
Fig. 4

Polarized optical micrograph of lines written at laser scanning speed of 20 - 100 µm/s. Laser was scanned top to bottom direction. A scanning electron micrograph is included to show higher resolution image of the microstructure of lines. Kikuchi diffraction patterns from different parts of the line corresponding to numbers from SEM image are included in the inset.

Fig. 5
Fig. 5

Scanning electron micrograph of the crystal line created using laser. Electron backscattered diffraction from several different spots on the line and glass have been included.

Metrics