Abstract

We report on the inscription of chirped fiber Bragg Gratings (FBGs) with a phase mask and a deformed wavefront using a femtosecond laser. A qualitative model is developed to predict the behavior of the resulting grating period for a deformed wavefront. In addition the quantitative change of the period was simulated based on a ray optical solution of the diffraction behind the phase mask. For deforming the wavefront experimentally a cylindrical tuning lens was used. Tilting of the lens increased the higher order aberrations like coma and spherical aberration, which leads to chirped FBGs. A chirped FBG with a FWHM bandwidth of 2.5 nm could be realized. The change of the resulting fiber Bragg grating period was measured using a side diffraction setup yielding good agreement with the measured spectra.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [CrossRef]
  2. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2005).
    [CrossRef]
  3. A. Szameit, T. Pertsch, F. Dreisow, S. Nolte, A. Tünnermann, U. Peschel, and F. Lederer, “Light evolution in arbitrary two-dimensional waveguide arrays,” Phys. Rev. A 75, 053814 (2007).
    [CrossRef]
  4. M. Ams, G. Marshall, P. Dekker, and J. Piper, “Ultrafast laser written active devices,” Laser Photonics Rev. 3, 535–544 (2008).
    [CrossRef]
  5. E. Wikszak, J. Thomas, J. Burghoff, B. Ortac, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31, 2390–2392 (2006).
    [CrossRef]
  6. Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31, 1672–1674 (2006).
    [CrossRef]
  7. N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
    [CrossRef]
  8. F. Stutzki, C. Jauregui, C. Voigtländer, J. U. Thomas, J. Limpert, S. Nolte, and A. Tünnermann, “Passively stabilized 215-W monolithic cw LMA-fiber laser with innovative transversal mode filter,” Proc. SPIE 7580, 75801K (2010).
  9. G. Marshall, R. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18, 19844–19859 (2010).
    [CrossRef]
  10. S. J. Mihailov, C.W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
    [CrossRef]
  11. J. U. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19, 325–341 (2011).
    [CrossRef]
  12. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond ir laser and a phase mask,” IEEE Photon. Technol. Lett. 16, 1864–1866 (2004).
    [CrossRef]
  13. J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fiber Bragg gratings,” Proc. SPIE 7589, 75890J (2010).
  14. A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
    [CrossRef]
  15. R. Kashyap, Fiber Bragg Gratings (Academics Press, 1999).
  16. M. Bernier, Y. Sheng, and R. Vallée, “Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and infrared femtosecond pulses,” Opt. Express 17, 3285–3290 (2009).
    [CrossRef]
  17. J. U. Thomas, C. Voigtländer, D. Schimpf, F. Stutzki, E. Wikszak, J. Limpert, S. Nolte, and A. Tünnermann, “Continuously chirped fiber Bragg gratings by femtosecond laser structuring,” Opt. Lett. 33, 1560–1562 (2008).
    [CrossRef]
  18. C. Voigtländer, J. U. Thomas, E. Wikszak, P. Dannberg, S. Nolte, and A. Tünnermann, “Chirped fiber Bragg gratings written with ultrashort pulses and a tunable phase mask,” Opt. Lett. 34, 1888–1890 (2009).
    [CrossRef]
  19. J. D. Prohaska, E. Snitzer, S. Rishton, and V. Boegli, “Magnification of mask fabricated fibre Bragg gratings,” Electron. Lett. 29, 1614–1615 (1993).
    [CrossRef]
  20. J. D. Mills, C. W. J. Hillman, B. H. Blott, and W. S. Brocklesby, “Imaging of free-space interference patterns used to manufacture fiber Bragg gratings,” Appl. Opt. 39, 6128–6135 (2000).
    [CrossRef]
  21. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29, 1730–1732 (2004).
    [CrossRef]
  22. J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys. A: Mater. Sci. Process. 86, 153–157 (2007).
  23. D. Park and M. Kim, “Simple analysis of the energy density distribution of the diffracted ultraviolet beam from a fiber Bragg grating phase mask,” Opt. Lett. 29, 1849–1851 (2004).
    [CrossRef]
  24. V. N. Mahajan, “Zernike circle polynomials and optical aberrations of systems with circular pupils,” Appl. Opt. 33, 8125–8127 (1994).
    [CrossRef]
  25. F. El-Diasty, A. Heaney, and T. Erdogan, “Analysis of fiber Bragg gratings by a side-diffraction interference technique,” Appl. Opt. 40, 890–896 (2001).
    [CrossRef]
  26. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1520 (1997).
    [CrossRef]

2011

2010

2009

2008

J. U. Thomas, C. Voigtländer, D. Schimpf, F. Stutzki, E. Wikszak, J. Limpert, S. Nolte, and A. Tünnermann, “Continuously chirped fiber Bragg gratings by femtosecond laser structuring,” Opt. Lett. 33, 1560–1562 (2008).
[CrossRef]

M. Ams, G. Marshall, P. Dekker, and J. Piper, “Ultrafast laser written active devices,” Laser Photonics Rev. 3, 535–544 (2008).
[CrossRef]

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

2007

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys. A: Mater. Sci. Process. 86, 153–157 (2007).

A. Szameit, T. Pertsch, F. Dreisow, S. Nolte, A. Tünnermann, U. Peschel, and F. Lederer, “Light evolution in arbitrary two-dimensional waveguide arrays,” Phys. Rev. A 75, 053814 (2007).
[CrossRef]

N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
[CrossRef]

2006

2005

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2005).
[CrossRef]

2004

2001

2000

1997

1995

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[CrossRef]

1994

1993

J. D. Prohaska, E. Snitzer, S. Rishton, and V. Boegli, “Magnification of mask fabricated fibre Bragg gratings,” Electron. Lett. 29, 1614–1615 (1993).
[CrossRef]

Ams, M.

M. Ams, G. Marshall, P. Dekker, and J. Piper, “Ultrafast laser written active devices,” Laser Photonics Rev. 3, 535–544 (2008).
[CrossRef]

Åslund, M.

Becker, R. G.

Bennion, I.

Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31, 1672–1674 (2006).
[CrossRef]

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[CrossRef]

Bernier, M.

Blott, B. H.

Boegli, V.

J. D. Prohaska, E. Snitzer, S. Rishton, and V. Boegli, “Magnification of mask fabricated fibre Bragg gratings,” Electron. Lett. 29, 1614–1615 (1993).
[CrossRef]

Brocklesby, W. S.

Burghoff, J.

E. Wikszak, J. Thomas, J. Burghoff, B. Ortac, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31, 2390–2392 (2006).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2005).
[CrossRef]

Clausnitzer, T.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys. A: Mater. Sci. Process. 86, 153–157 (2007).

Dannberg, P.

Dekker, P.

M. Ams, G. Marshall, P. Dekker, and J. Piper, “Ultrafast laser written active devices,” Laser Photonics Rev. 3, 535–544 (2008).
[CrossRef]

Ding, H.

Dreisow, F.

A. Szameit, T. Pertsch, F. Dreisow, S. Nolte, A. Tünnermann, U. Peschel, and F. Lederer, “Light evolution in arbitrary two-dimensional waveguide arrays,” Phys. Rev. A 75, 053814 (2007).
[CrossRef]

El-Diasty, F.

Erdogan, T.

Fermann, M. E.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[CrossRef]

Fuchs, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys. A: Mater. Sci. Process. 86, 153–157 (2007).

E. Wikszak, J. Thomas, J. Burghoff, B. Ortac, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31, 2390–2392 (2006).
[CrossRef]

Fuerbach, A.

Galvanauskas, A.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[CrossRef]

Gattass, R.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Grobnic, D.

Harter, D.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[CrossRef]

Heaney, A.

Hillman, C. W. J.

Jackson, S. D.

Jovanovic, N.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academics Press, 1999).

Khrushchev, I.

Kim, M.

Lai, Y.

Lederer, F.

A. Szameit, T. Pertsch, F. Dreisow, S. Nolte, A. Tünnermann, U. Peschel, and F. Lederer, “Light evolution in arbitrary two-dimensional waveguide arrays,” Phys. Rev. A 75, 053814 (2007).
[CrossRef]

Limpert, J.

Love, G. D.

Lu, P.

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond ir laser and a phase mask,” IEEE Photon. Technol. Lett. 16, 1864–1866 (2004).
[CrossRef]

S. J. Mihailov, C.W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
[CrossRef]

Mahajan, V. N.

Marshall, G.

Marshall, G. D.

Martinez, A.

Mazur, E.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Mihailov, S. J.

Mills, J. D.

Nolte, S.

J. U. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19, 325–341 (2011).
[CrossRef]

C. Voigtländer, J. U. Thomas, E. Wikszak, P. Dannberg, S. Nolte, and A. Tünnermann, “Chirped fiber Bragg gratings written with ultrashort pulses and a tunable phase mask,” Opt. Lett. 34, 1888–1890 (2009).
[CrossRef]

J. U. Thomas, C. Voigtländer, D. Schimpf, F. Stutzki, E. Wikszak, J. Limpert, S. Nolte, and A. Tünnermann, “Continuously chirped fiber Bragg gratings by femtosecond laser structuring,” Opt. Lett. 33, 1560–1562 (2008).
[CrossRef]

A. Szameit, T. Pertsch, F. Dreisow, S. Nolte, A. Tünnermann, U. Peschel, and F. Lederer, “Light evolution in arbitrary two-dimensional waveguide arrays,” Phys. Rev. A 75, 053814 (2007).
[CrossRef]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys. A: Mater. Sci. Process. 86, 153–157 (2007).

E. Wikszak, J. Thomas, J. Burghoff, B. Ortac, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31, 2390–2392 (2006).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2005).
[CrossRef]

Ortac, B.

Park, D.

Pertsch, T.

A. Szameit, T. Pertsch, F. Dreisow, S. Nolte, A. Tünnermann, U. Peschel, and F. Lederer, “Light evolution in arbitrary two-dimensional waveguide arrays,” Phys. Rev. A 75, 053814 (2007).
[CrossRef]

Peschel, U.

A. Szameit, T. Pertsch, F. Dreisow, S. Nolte, A. Tünnermann, U. Peschel, and F. Lederer, “Light evolution in arbitrary two-dimensional waveguide arrays,” Phys. Rev. A 75, 053814 (2007).
[CrossRef]

Piper, J.

M. Ams, G. Marshall, P. Dekker, and J. Piper, “Ultrafast laser written active devices,” Laser Photonics Rev. 3, 535–544 (2008).
[CrossRef]

Prohaska, J. D.

J. D. Prohaska, E. Snitzer, S. Rishton, and V. Boegli, “Magnification of mask fabricated fibre Bragg gratings,” Electron. Lett. 29, 1614–1615 (1993).
[CrossRef]

Rishton, S.

J. D. Prohaska, E. Snitzer, S. Rishton, and V. Boegli, “Magnification of mask fabricated fibre Bragg gratings,” Electron. Lett. 29, 1614–1615 (1993).
[CrossRef]

Schimpf, D.

Sheng, Y.

Smelser, C. W.

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29, 1730–1732 (2004).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond ir laser and a phase mask,” IEEE Photon. Technol. Lett. 16, 1864–1866 (2004).
[CrossRef]

Smelser, C.W.

Snitzer, E.

J. D. Prohaska, E. Snitzer, S. Rishton, and V. Boegli, “Magnification of mask fabricated fibre Bragg gratings,” Electron. Lett. 29, 1614–1615 (1993).
[CrossRef]

Steel, M. J.

Stutzki, F.

Sugden, K.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[CrossRef]

Szameit, A.

A. Szameit, T. Pertsch, F. Dreisow, S. Nolte, A. Tünnermann, U. Peschel, and F. Lederer, “Light evolution in arbitrary two-dimensional waveguide arrays,” Phys. Rev. A 75, 053814 (2007).
[CrossRef]

Thomas, J.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys. A: Mater. Sci. Process. 86, 153–157 (2007).

E. Wikszak, J. Thomas, J. Burghoff, B. Ortac, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31, 2390–2392 (2006).
[CrossRef]

Thomas, J. U.

Tünnermann, A.

J. U. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19, 325–341 (2011).
[CrossRef]

C. Voigtländer, J. U. Thomas, E. Wikszak, P. Dannberg, S. Nolte, and A. Tünnermann, “Chirped fiber Bragg gratings written with ultrashort pulses and a tunable phase mask,” Opt. Lett. 34, 1888–1890 (2009).
[CrossRef]

J. U. Thomas, C. Voigtländer, D. Schimpf, F. Stutzki, E. Wikszak, J. Limpert, S. Nolte, and A. Tünnermann, “Continuously chirped fiber Bragg gratings by femtosecond laser structuring,” Opt. Lett. 33, 1560–1562 (2008).
[CrossRef]

A. Szameit, T. Pertsch, F. Dreisow, S. Nolte, A. Tünnermann, U. Peschel, and F. Lederer, “Light evolution in arbitrary two-dimensional waveguide arrays,” Phys. Rev. A 75, 053814 (2007).
[CrossRef]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys. A: Mater. Sci. Process. 86, 153–157 (2007).

E. Wikszak, J. Thomas, J. Burghoff, B. Ortac, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31, 2390–2392 (2006).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2005).
[CrossRef]

Unruh, J.

Vallée, R.

Voigtländer, C.

Walker, R. B.

S. J. Mihailov, C.W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond ir laser and a phase mask,” IEEE Photon. Technol. Lett. 16, 1864–1866 (2004).
[CrossRef]

Wikszak, E.

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2005).
[CrossRef]

Williams, R.

Withford, M. J.

Zeitner, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys. A: Mater. Sci. Process. 86, 153–157 (2007).

Appl. Opt.

Appl. Phys. A: Mater. Sci. Process.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys. A: Mater. Sci. Process. 86, 153–157 (2007).

Appl. Phys. Lett.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[CrossRef]

Electron. Lett.

J. D. Prohaska, E. Snitzer, S. Rishton, and V. Boegli, “Magnification of mask fabricated fibre Bragg gratings,” Electron. Lett. 29, 1614–1615 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond ir laser and a phase mask,” IEEE Photon. Technol. Lett. 16, 1864–1866 (2004).
[CrossRef]

J. Lightwave Technol.

J. Mod. Opt.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2005).
[CrossRef]

Laser Photonics Rev.

M. Ams, G. Marshall, P. Dekker, and J. Piper, “Ultrafast laser written active devices,” Laser Photonics Rev. 3, 535–544 (2008).
[CrossRef]

Nat. Photonics

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

C. Voigtländer, J. U. Thomas, E. Wikszak, P. Dannberg, S. Nolte, and A. Tünnermann, “Chirped fiber Bragg gratings written with ultrashort pulses and a tunable phase mask,” Opt. Lett. 34, 1888–1890 (2009).
[CrossRef]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29, 1730–1732 (2004).
[CrossRef]

D. Park and M. Kim, “Simple analysis of the energy density distribution of the diffracted ultraviolet beam from a fiber Bragg grating phase mask,” Opt. Lett. 29, 1849–1851 (2004).
[CrossRef]

Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31, 1672–1674 (2006).
[CrossRef]

E. Wikszak, J. Thomas, J. Burghoff, B. Ortac, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31, 2390–2392 (2006).
[CrossRef]

N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
[CrossRef]

J. U. Thomas, C. Voigtländer, D. Schimpf, F. Stutzki, E. Wikszak, J. Limpert, S. Nolte, and A. Tünnermann, “Continuously chirped fiber Bragg gratings by femtosecond laser structuring,” Opt. Lett. 33, 1560–1562 (2008).
[CrossRef]

Phys. Rev. A

A. Szameit, T. Pertsch, F. Dreisow, S. Nolte, A. Tünnermann, U. Peschel, and F. Lederer, “Light evolution in arbitrary two-dimensional waveguide arrays,” Phys. Rev. A 75, 053814 (2007).
[CrossRef]

Other

F. Stutzki, C. Jauregui, C. Voigtländer, J. U. Thomas, J. Limpert, S. Nolte, and A. Tünnermann, “Passively stabilized 215-W monolithic cw LMA-fiber laser with innovative transversal mode filter,” Proc. SPIE 7580, 75801K (2010).

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fiber Bragg gratings,” Proc. SPIE 7589, 75890J (2010).

R. Kashyap, Fiber Bragg Gratings (Academics Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Illustration of the magnification of the grating period. (b) Schematic for derivation of f.

Fig. 2
Fig. 2

Schematic of the diffraction of an arbitrary wavefront approximated by ray optics.

Fig. 3
Fig. 3

Wavefronts for selected Zernike polynomials and resulting computed periods for the FBG, respectively. (a) plane wavefront (black line) and defocus term (blue line). (b) coma (red line) and spherical aberration (green line).

Fig. 4
Fig. 4

Schematic phase mask scanning setup.

Fig. 5
Fig. 5

Side diffraction setup for measuring the period of the FBGs.

Fig. 6
Fig. 6

Deformation of the wavefront with an additional tuning lens.

Fig. 7
Fig. 7

(a) Transmission spectra of two FBGs inscribed through the center (Δx =0) of the non-tilted (blue line) and tilted (red line α = 5.7°) tuning lens with a focal length of f = −50 mm. (b) Corresponding reflection spectra to (a).

Fig. 8
Fig. 8

Measured (solid) and simulated (dashed) grating period for a FBG inscribed without tilted lens (blue line α = 0°) and a tilted lens (red line α = 5.7°).

Fig. 9
Fig. 9

Chirped FBG inscribed by scanning along a tilted tuning lens (α = 12°) from the center to the edge.

Tables (1)

Tables Icon

Table 1 Simplified Zernike Polynomials for Specific Aberrations [24]

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

M = Λ F B G Λ P M / 2 = 1 z 0 f ,
tan γ 2 = x 1 + x 2 x 1 f = tan γ 1 + x 2 x 1 f ,
1 f = tan γ 2 tan γ 1 x 2 x 1 = W ( x 2 ) W ( x 1 ) x 2 x 1
1 f d 2 W d x 2 .
U 0 ( x , z ) = A 0 exp i [ k 0 z + k 0 W ( x ) ] ,
U ± 1 ( x , z ) = A ± 1 exp i [ k ± 1 , x ( x ) x + k ± 1 , z ( x ) z + k 0 W ( x ) ] .
x z 0 = x ± 1 z 0 tan ( θ ± 1 ( x ± 1 ) ) .
I ( x z 0 , z 0 ) A 2 [ 2 + e i [ ( k + 1 , x ( x + 1 ) k 1 , x ( x 1 ) ) x z 0 + ( k + 1 , z ( x + 1 ) k 1 , z ( x 1 ) ) z 0 + k 0 W ( x + 1 ) k 0 W ( x 1 ) ] + c . c . ]

Metrics