Abstract

Density changes of GeO2 and SiO2 glasses subjected to irradiation by tightly focused femtosecond pulses are observed by Raman scattering. It is shown that densification caused by the void formation in GeO2 glass is very similar to the changes under hydrostatic pressure. In contrast, the experimental observations in SiO2 glass could be explained by pressure effect or by the fictive temperature anomaly, i. e., a resultant smaller specific volume of the glass (a denser phase) at a high thermal quenching rate. Density changes of GeO2 and SiO2 glasses are opposite upon close-to-equilibrium heating; this gives new insights into the mechanisms of densification under highly non-equilibrium conditions: fs-laser induced micro-explosions, heating and void formation. The pressure and temperature effects of glass modification by ultra-short laser pulses are discussed considering applications in optical memory, waveguiding, and formation of micro-optical elements.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
    [CrossRef] [PubMed]
  2. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett . 27, 1938–1940 (2002).
    [CrossRef]
  3. A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: Fabrication and fluorescence imaging via ruby R lines,” Opt. Express 17, 10076–10081 (2009).
    [CrossRef] [PubMed]
  4. S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
    [CrossRef] [PubMed]
  5. W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett . 93, 121109 (2008).
    [CrossRef]
  6. S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett . 94, 241122 (2009).
    [CrossRef]
  7. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids . 354, 416–424 (2009).
    [CrossRef]
  8. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
    [CrossRef]
  9. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 151–255 (2009).
    [CrossRef]
  10. Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett . 89, 161911 (2006).
    [CrossRef]
  11. T. Kudrius, G. Šlekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys . 43, 145501 (2010).
    [CrossRef]
  12. G. T. Skublov, Y. B. Marin, V. M. Semikolennykh, S. G. Skublov, and Y. N. Tarasenko, “Volkhovite: A new type of tektite-like glass,” Geol. Ore Deposits 49, 681–696 (2007).
    [CrossRef]
  13. V. Bouška, Z. Borovec, A. Cimbálníková, I. Kraus, A. Lajcáková, and M. Pacesová, Natural Glasses , Academia, Prague and Ellis Horwood, London, 1993.
  14. A. Koike and M. Tomozawa, “IR investigations of density changes of silica glass and soda-lime silicate glass caused by micro-hardness indentation,” J. Non-Cryst. Solids . 353, 2318–2327 (2007).
    [CrossRef]
  15. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
    [CrossRef] [PubMed]
  16. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 5602–5610 (2011).
    [CrossRef] [PubMed]
  17. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys . 109, 023503 (2011).
    [CrossRef]
  18. C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys . 103, 063516 (2008).
    [CrossRef]
  19. S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
    [CrossRef]
  20. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express 18, 8300–8310 (2010).
    [CrossRef] [PubMed]
  21. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).
    [CrossRef]
  22. E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett . 82, 2901–2903 (2003).
    [CrossRef]
  23. A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A . 76, 257–260 (2003).
    [CrossRef]
  24. T. Hashimoto, S. Juodkazis, and H. Misawa, “Void recording in silica,” Appl. Phys. A 83, 337–340 (2006).
    [CrossRef]
  25. S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett . 88, 201909 (2006).
  26. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Cryst. Solids . 357, 2637–2640 (2011).
    [CrossRef]
  27. A. Perriot, Nanoindentation de couches minces déposés sur substrat de verre de silice (English title: Nanoindentation of thin films deposited on vitreous silica) . PhD thesis, Université Paris 6, 21 Dec. 2005.
    [PubMed]
  28. R. L. Parc, B. Champagnon, P. Guenot, and S. Dubois, “Thermal annealing and density fluctuation in silica glass,” J. Non-Cryst. Solids 293–295, 366–369 (2001).
    [CrossRef]
  29. T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids . 353, 4762–4766 (2007).
    [CrossRef]
  30. A. Agarwal and M. Tomozawa, “Surface and bulk structural relaxation kinetics of silics glass,” J. Non-Cryst. Solids 209, 264–272 (1997).
    [CrossRef]
  31. R. Brückner, “Properrties and structure of vitreous silica I,” J. Non-Cryst. Solids . 5, 123–175 (1970).
    [CrossRef]
  32. J. E. Shelby, “Properties and structure of vitreous silica,” J. Non-Cryst. Solids . 349, 331–336 (2004).
    [CrossRef]
  33. H. Kakiuchida, N. Shimodaira, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Refractive index and density in F-and Cl-doped silica glasses,” Appl. Phys. Lett. . 86, 161907 (2005).
    [CrossRef]
  34. M. Born and E. Wolf, Principles of Optics , 7 ed. (Cambridge University Press, 2002).
  35. S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
    [CrossRef]
  36. D. Durben and G. Wolf, “Raman spectroscopic study of the pressure-induced coordination change in GeO, glass,” Phys. Rev. B 43, 2355–2363 (1991).
    [CrossRef]
  37. M. Micoulaut, L. Cormier, and G. Henderson, “The structure of amorphous, crystalline and liquid GeO2,” J. Phys.: Condens. Matter . 18, R753–R784 (2006).
    [CrossRef]
  38. C. Martinet, V. Martinez, C. Coussa, B. Champagnon, and M. Tomozawa, “Radial distribution of the fictive temperature in pure silica optical fibers by micro-Raman spectroscopy,” J. Appl. Phys . 103, 083506 (2008).
    [CrossRef]
  39. B. Champagnon, C. Martinet, C. Coussa, and T. Deschamps, “Polyamorphism: Path to new high density glasses at ambient conditions,” J. Non-Cryst. Solids . 353, 4208–4211 (2007).
    [CrossRef]
  40. V. Martinez, R. L. Parc, C. Martinet, and B. Champagnon, “Structural studies of germanium doped silica glasses: the role of the fictive temperature,” Opt. Mater . 24, 59–62 (2003).
    [CrossRef]
  41. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett . 21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  42. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express 19, 5725–5734 (2011).
    [CrossRef] [PubMed]
  43. S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn . 81, 411–448 (2008).
    [CrossRef]
  44. Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express 19, 6807–6821 (2011).
    [CrossRef] [PubMed]
  45. S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett . 76, 2656–2658 (2000).
    [CrossRef]
  46. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett . 97, 221102 (2010).
    [CrossRef]

2019 (1)

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett . 88, 201909 (2006).

2011 (5)

2010 (5)

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express 18, 8300–8310 (2010).
[CrossRef] [PubMed]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef] [PubMed]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[CrossRef]

T. Kudrius, G. Šlekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys . 43, 145501 (2010).
[CrossRef]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett . 97, 221102 (2010).
[CrossRef]

2009 (6)

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[CrossRef]

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett . 94, 241122 (2009).
[CrossRef]

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids . 354, 416–424 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 151–255 (2009).
[CrossRef]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
[CrossRef] [PubMed]

A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: Fabrication and fluorescence imaging via ruby R lines,” Opt. Express 17, 10076–10081 (2009).
[CrossRef] [PubMed]

2008 (5)

C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys . 103, 063516 (2008).
[CrossRef]

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett . 93, 121109 (2008).
[CrossRef]

S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn . 81, 411–448 (2008).
[CrossRef]

C. Martinet, V. Martinez, C. Coussa, B. Champagnon, and M. Tomozawa, “Radial distribution of the fictive temperature in pure silica optical fibers by micro-Raman spectroscopy,” J. Appl. Phys . 103, 083506 (2008).
[CrossRef]

2007 (4)

B. Champagnon, C. Martinet, C. Coussa, and T. Deschamps, “Polyamorphism: Path to new high density glasses at ambient conditions,” J. Non-Cryst. Solids . 353, 4208–4211 (2007).
[CrossRef]

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids . 353, 4762–4766 (2007).
[CrossRef]

G. T. Skublov, Y. B. Marin, V. M. Semikolennykh, S. G. Skublov, and Y. N. Tarasenko, “Volkhovite: A new type of tektite-like glass,” Geol. Ore Deposits 49, 681–696 (2007).
[CrossRef]

A. Koike and M. Tomozawa, “IR investigations of density changes of silica glass and soda-lime silicate glass caused by micro-hardness indentation,” J. Non-Cryst. Solids . 353, 2318–2327 (2007).
[CrossRef]

2006 (3)

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett . 89, 161911 (2006).
[CrossRef]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void recording in silica,” Appl. Phys. A 83, 337–340 (2006).
[CrossRef]

M. Micoulaut, L. Cormier, and G. Henderson, “The structure of amorphous, crystalline and liquid GeO2,” J. Phys.: Condens. Matter . 18, R753–R784 (2006).
[CrossRef]

2005 (1)

H. Kakiuchida, N. Shimodaira, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Refractive index and density in F-and Cl-doped silica glasses,” Appl. Phys. Lett. . 86, 161907 (2005).
[CrossRef]

2004 (2)

J. E. Shelby, “Properties and structure of vitreous silica,” J. Non-Cryst. Solids . 349, 331–336 (2004).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).
[CrossRef]

2003 (4)

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett . 82, 2901–2903 (2003).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A . 76, 257–260 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

V. Martinez, R. L. Parc, C. Martinet, and B. Champagnon, “Structural studies of germanium doped silica glasses: the role of the fictive temperature,” Opt. Mater . 24, 59–62 (2003).
[CrossRef]

2002 (1)

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett . 27, 1938–1940 (2002).
[CrossRef]

2001 (1)

R. L. Parc, B. Champagnon, P. Guenot, and S. Dubois, “Thermal annealing and density fluctuation in silica glass,” J. Non-Cryst. Solids 293–295, 366–369 (2001).
[CrossRef]

2000 (1)

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett . 76, 2656–2658 (2000).
[CrossRef]

1997 (1)

A. Agarwal and M. Tomozawa, “Surface and bulk structural relaxation kinetics of silics glass,” J. Non-Cryst. Solids 209, 264–272 (1997).
[CrossRef]

1996 (1)

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett . 21, 1729–1731 (1996).
[CrossRef] [PubMed]

1991 (1)

D. Durben and G. Wolf, “Raman spectroscopic study of the pressure-induced coordination change in GeO, glass,” Phys. Rev. B 43, 2355–2363 (1991).
[CrossRef]

1970 (1)

R. Brückner, “Properrties and structure of vitreous silica I,” J. Non-Cryst. Solids . 5, 123–175 (1970).
[CrossRef]

Agarwal, A.

A. Agarwal and M. Tomozawa, “Surface and bulk structural relaxation kinetics of silics glass,” J. Non-Cryst. Solids 209, 264–272 (1997).
[CrossRef]

Audouard, E.

Bado, P.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett . 89, 161911 (2006).
[CrossRef]

Bellouard, Y.

Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express 19, 6807–6821 (2011).
[CrossRef] [PubMed]

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett . 89, 161911 (2006).
[CrossRef]

Benayas, A.

Bickauskaite, G.

Born, M.

M. Born and E. Wolf, Principles of Optics , 7 ed. (Cambridge University Press, 2002).

Borovec, Z.

V. Bouška, Z. Borovec, A. Cimbálníková, I. Kraus, A. Lajcáková, and M. Pacesová, Natural Glasses , Academia, Prague and Ellis Horwood, London, 1993.

Bouška, V.

V. Bouška, Z. Borovec, A. Cimbálníková, I. Kraus, A. Lajcáková, and M. Pacesová, Natural Glasses , Academia, Prague and Ellis Horwood, London, 1993.

Bressel, L.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Cryst. Solids . 357, 2637–2640 (2011).
[CrossRef]

Brückner, R.

R. Brückner, “Properrties and structure of vitreous silica I,” J. Non-Cryst. Solids . 5, 123–175 (1970).
[CrossRef]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Cerullo, G.

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett . 27, 1938–1940 (2002).
[CrossRef]

Champagnon, B.

C. Martinet, V. Martinez, C. Coussa, B. Champagnon, and M. Tomozawa, “Radial distribution of the fictive temperature in pure silica optical fibers by micro-Raman spectroscopy,” J. Appl. Phys . 103, 083506 (2008).
[CrossRef]

B. Champagnon, C. Martinet, C. Coussa, and T. Deschamps, “Polyamorphism: Path to new high density glasses at ambient conditions,” J. Non-Cryst. Solids . 353, 4208–4211 (2007).
[CrossRef]

V. Martinez, R. L. Parc, C. Martinet, and B. Champagnon, “Structural studies of germanium doped silica glasses: the role of the fictive temperature,” Opt. Mater . 24, 59–62 (2003).
[CrossRef]

R. L. Parc, B. Champagnon, P. Guenot, and S. Dubois, “Thermal annealing and density fluctuation in silica glass,” J. Non-Cryst. Solids 293–295, 366–369 (2001).
[CrossRef]

Chen, K. P.

Chen, W. J.

Cheng, G.

Cimbálníková, A.

V. Bouška, Z. Borovec, A. Cimbálníková, I. Kraus, A. Lajcáková, and M. Pacesová, Natural Glasses , Academia, Prague and Ellis Horwood, London, 1993.

Cormier, L.

M. Micoulaut, L. Cormier, and G. Henderson, “The structure of amorphous, crystalline and liquid GeO2,” J. Phys.: Condens. Matter . 18, R753–R784 (2006).
[CrossRef]

Coussa, C.

C. Martinet, V. Martinez, C. Coussa, B. Champagnon, and M. Tomozawa, “Radial distribution of the fictive temperature in pure silica optical fibers by micro-Raman spectroscopy,” J. Appl. Phys . 103, 083506 (2008).
[CrossRef]

B. Champagnon, C. Martinet, C. Coussa, and T. Deschamps, “Polyamorphism: Path to new high density glasses at ambient conditions,” J. Non-Cryst. Solids . 353, 4208–4211 (2007).
[CrossRef]

Danilevicius, P.

Davis, K. M.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett . 21, 1729–1731 (1996).
[CrossRef] [PubMed]

de la Cruz, A. R.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett . 93, 121109 (2008).
[CrossRef]

de Ligny, D.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Cryst. Solids . 357, 2637–2640 (2011).
[CrossRef]

Deschamps, T.

B. Champagnon, C. Martinet, C. Coussa, and T. Deschamps, “Polyamorphism: Path to new high density glasses at ambient conditions,” J. Non-Cryst. Solids . 353, 4208–4211 (2007).
[CrossRef]

Dubois, S.

R. L. Parc, B. Champagnon, P. Guenot, and S. Dubois, “Thermal annealing and density fluctuation in silica glass,” J. Non-Cryst. Solids 293–295, 366–369 (2001).
[CrossRef]

Dugan, M.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett . 89, 161911 (2006).
[CrossRef]

Durben, D.

D. Durben and G. Wolf, “Raman spectroscopic study of the pressure-induced coordination change in GeO, glass,” Phys. Rev. B 43, 2355–2363 (1991).
[CrossRef]

Eaton, S. M.

Fernandez, H.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett . 93, 121109 (2008).
[CrossRef]

Ferrer, A.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett . 93, 121109 (2008).
[CrossRef]

Fischer, J.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett . 97, 221102 (2010).
[CrossRef]

Gadonas, R.

Gamaly, E.

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett . 88, 201909 (2006).

Gamaly, E. G.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[CrossRef]

Gawelda, W.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett . 93, 121109 (2008).
[CrossRef]

Gross, T. M.

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids . 353, 4762–4766 (2007).
[CrossRef]

Guenot, P.

R. L. Parc, B. Champagnon, P. Guenot, and S. Dubois, “Thermal annealing and density fluctuation in silica glass,” J. Non-Cryst. Solids 293–295, 366–369 (2001).
[CrossRef]

Hallo, L.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[CrossRef]

Hashimoto, T.

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett . 88, 201909 (2006).

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express 18, 8300–8310 (2010).
[CrossRef] [PubMed]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void recording in silica,” Appl. Phys. A 83, 337–340 (2006).
[CrossRef]

Hayasaki, Y.

Henderson, G.

M. Micoulaut, L. Cormier, and G. Henderson, “The structure of amorphous, crystalline and liquid GeO2,” J. Phys.: Condens. Matter . 18, R753–R784 (2006).
[CrossRef]

Herman, P. R.

Hirao, K.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys . 109, 023503 (2011).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett . 21, 1729–1731 (1996).
[CrossRef] [PubMed]

Hirao, N.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[CrossRef]

Hirono, S.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett . 94, 241122 (2009).
[CrossRef]

Ho, S.

Hongler, M.-O.

Huber, G.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 151–255 (2009).
[CrossRef]

Ikushima, A. J.

H. Kakiuchida, N. Shimodaira, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Refractive index and density in F-and Cl-doped silica glasses,” Appl. Phys. Lett. . 86, 161907 (2005).
[CrossRef]

Ikuta, K.

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett . 76, 2656–2658 (2000).
[CrossRef]

Isaka, M.

Itoh, K.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett . 94, 241122 (2009).
[CrossRef]

Jaque, D.

Juodkazis, S.

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett . 88, 201909 (2006).

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express 19, 5725–5734 (2011).
[CrossRef] [PubMed]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 5602–5610 (2011).
[CrossRef] [PubMed]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Cryst. Solids . 357, 2637–2640 (2011).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express 18, 8300–8310 (2010).
[CrossRef] [PubMed]

T. Kudrius, G. Šlekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys . 43, 145501 (2010).
[CrossRef]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef] [PubMed]

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn . 81, 411–448 (2008).
[CrossRef]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void recording in silica,” Appl. Phys. A 83, 337–340 (2006).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).
[CrossRef]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett . 82, 2901–2903 (2003).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A . 76, 257–260 (2003).
[CrossRef]

Kakiuchida, H.

H. Kakiuchida, N. Shimodaira, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Refractive index and density in F-and Cl-doped silica glasses,” Appl. Phys. Lett. . 86, 161907 (2005).
[CrossRef]

Kasuya, M.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett . 94, 241122 (2009).
[CrossRef]

Kohara, S.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[CrossRef]

Koike, A.

A. Koike and M. Tomozawa, “IR investigations of density changes of silica glass and soda-lime silicate glass caused by micro-hardness indentation,” J. Non-Cryst. Solids . 353, 2318–2327 (2007).
[CrossRef]

Kraus, I.

V. Bouška, Z. Borovec, A. Cimbálníková, I. Kraus, A. Lajcáková, and M. Pacesová, Natural Glasses , Academia, Prague and Ellis Horwood, London, 1993.

Krol, D. M.

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids . 354, 416–424 (2009).
[CrossRef]

Kudrius, T.

T. Kudrius, G. Šlekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys . 43, 145501 (2010).
[CrossRef]

Kudryashov, I.

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett . 82, 2901–2903 (2003).
[CrossRef]

Lajcáková, A.

V. Bouška, Z. Borovec, A. Cimbálníková, I. Kraus, A. Lajcáková, and M. Pacesová, Natural Glasses , Academia, Prague and Ellis Horwood, London, 1993.

Laporta, P.

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett . 27, 1938–1940 (2002).
[CrossRef]

Li, J. Z.

Luther-Davies, B.

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett . 88, 201909 (2006).

Luther-Davis, B.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[CrossRef]

Malinauskas, M.

Marangoni, M.

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett . 27, 1938–1940 (2002).
[CrossRef]

Marcinkevicius, A.

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A . 76, 257–260 (2003).
[CrossRef]

Marin, Y. B.

G. T. Skublov, Y. B. Marin, V. M. Semikolennykh, S. G. Skublov, and Y. N. Tarasenko, “Volkhovite: A new type of tektite-like glass,” Geol. Ore Deposits 49, 681–696 (2007).
[CrossRef]

Martinet, C.

C. Martinet, V. Martinez, C. Coussa, B. Champagnon, and M. Tomozawa, “Radial distribution of the fictive temperature in pure silica optical fibers by micro-Raman spectroscopy,” J. Appl. Phys . 103, 083506 (2008).
[CrossRef]

B. Champagnon, C. Martinet, C. Coussa, and T. Deschamps, “Polyamorphism: Path to new high density glasses at ambient conditions,” J. Non-Cryst. Solids . 353, 4208–4211 (2007).
[CrossRef]

V. Martinez, R. L. Parc, C. Martinet, and B. Champagnon, “Structural studies of germanium doped silica glasses: the role of the fictive temperature,” Opt. Mater . 24, 59–62 (2003).
[CrossRef]

Martinez, V.

C. Martinet, V. Martinez, C. Coussa, B. Champagnon, and M. Tomozawa, “Radial distribution of the fictive temperature in pure silica optical fibers by micro-Raman spectroscopy,” J. Appl. Phys . 103, 083506 (2008).
[CrossRef]

V. Martinez, R. L. Parc, C. Martinet, and B. Champagnon, “Structural studies of germanium doped silica glasses: the role of the fictive temperature,” Opt. Mater . 24, 59–62 (2003).
[CrossRef]

Martinez-Andrieux, V.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Cryst. Solids . 357, 2637–2640 (2011).
[CrossRef]

Maruo, S.

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett . 76, 2656–2658 (2000).
[CrossRef]

Matsuda, K.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett . 94, 241122 (2009).
[CrossRef]

Matsuo, S.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn . 81, 411–448 (2008).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A . 76, 257–260 (2003).
[CrossRef]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett . 82, 2901–2903 (2003).
[CrossRef]

Mauclair, C.

McMillen, B.

Micoulaut, M.

M. Micoulaut, L. Cormier, and G. Henderson, “The structure of amorphous, crystalline and liquid GeO2,” J. Phys.: Condens. Matter . 18, R753–R784 (2006).
[CrossRef]

Misawa, H.

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett . 88, 201909 (2006).

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn . 81, 411–448 (2008).
[CrossRef]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void recording in silica,” Appl. Phys. A 83, 337–340 (2006).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).
[CrossRef]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett . 82, 2901–2903 (2003).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A . 76, 257–260 (2003).
[CrossRef]

Mishchik, K.

Miura, K.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys . 109, 023503 (2011).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett . 21, 1729–1731 (1996).
[CrossRef] [PubMed]

Mizeikis, V.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[CrossRef]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn . 81, 411–448 (2008).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A . 76, 257–260 (2003).
[CrossRef]

Mochizuki, H.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett . 94, 241122 (2009).
[CrossRef]

Morikawa, J.

Ng, M. L.

Nicolai, P.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[CrossRef]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Ohishi, Y.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[CrossRef]

Orie, A.

Osellame, R.

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett . 27, 1938–1940 (2002).
[CrossRef]

Ozeki, Y.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett . 94, 241122 (2009).
[CrossRef]

Pacesová, M.

V. Bouška, Z. Borovec, A. Cimbálníková, I. Kraus, A. Lajcáková, and M. Pacesová, Natural Glasses , Academia, Prague and Ellis Horwood, London, 1993.

Parc, R. L.

V. Martinez, R. L. Parc, C. Martinet, and B. Champagnon, “Structural studies of germanium doped silica glasses: the role of the fictive temperature,” Opt. Mater . 24, 59–62 (2003).
[CrossRef]

R. L. Parc, B. Champagnon, P. Guenot, and S. Dubois, “Thermal annealing and density fluctuation in silica glass,” J. Non-Cryst. Solids 293–295, 366–369 (2001).
[CrossRef]

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 151–255 (2009).
[CrossRef]

Polli, D.

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett . 27, 1938–1940 (2002).
[CrossRef]

Ponader, C. W.

C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys . 103, 063516 (2008).
[CrossRef]

Puerto, D.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett . 93, 121109 (2008).
[CrossRef]

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 151–255 (2009).
[CrossRef]

Ramponi, R.

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett . 27, 1938–1940 (2002).
[CrossRef]

Rode, A.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[CrossRef]

Said, A. A.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett . 89, 161911 (2006).
[CrossRef]

Saito, A.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[CrossRef]

Saito, K.

H. Kakiuchida, N. Shimodaira, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Refractive index and density in F-and Cl-doped silica glasses,” Appl. Phys. Lett. . 86, 161907 (2005).
[CrossRef]

Sakakura, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys . 109, 023503 (2011).
[CrossRef]

Schroeder, J. F.

C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys . 103, 063516 (2008).
[CrossRef]

Sekiya, E. H.

H. Kakiuchida, N. Shimodaira, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Refractive index and density in F-and Cl-doped silica glasses,” Appl. Phys. Lett. . 86, 161907 (2005).
[CrossRef]

Semikolennykh, V. M.

G. T. Skublov, Y. B. Marin, V. M. Semikolennykh, S. G. Skublov, and Y. N. Tarasenko, “Volkhovite: A new type of tektite-like glass,” Geol. Ore Deposits 49, 681–696 (2007).
[CrossRef]

Shelby, J. E.

J. E. Shelby, “Properties and structure of vitreous silica,” J. Non-Cryst. Solids . 349, 331–336 (2004).
[CrossRef]

Shimodaira, N.

H. Kakiuchida, N. Shimodaira, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Refractive index and density in F-and Cl-doped silica glasses,” Appl. Phys. Lett. . 86, 161907 (2005).
[CrossRef]

Shimotsuma, Y.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys . 109, 023503 (2011).
[CrossRef]

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 151–255 (2009).
[CrossRef]

Siegel, J.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett . 93, 121109 (2008).
[CrossRef]

Silvestri, S. D.

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett . 27, 1938–1940 (2002).
[CrossRef]

Skublov, G. T.

G. T. Skublov, Y. B. Marin, V. M. Semikolennykh, S. G. Skublov, and Y. N. Tarasenko, “Volkhovite: A new type of tektite-like glass,” Geol. Ore Deposits 49, 681–696 (2007).
[CrossRef]

Skublov, S. G.

G. T. Skublov, Y. B. Marin, V. M. Semikolennykh, S. G. Skublov, and Y. N. Tarasenko, “Volkhovite: A new type of tektite-like glass,” Geol. Ore Deposits 49, 681–696 (2007).
[CrossRef]

Šlekys, G.

T. Kudrius, G. Šlekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys . 43, 145501 (2010).
[CrossRef]

Solis, J.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett . 93, 121109 (2008).
[CrossRef]

Sonneville, C.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Cryst. Solids . 357, 2637–2640 (2011).
[CrossRef]

Stoian, R.

Streltsov, A. M.

C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys . 103, 063516 (2008).
[CrossRef]

Sugimoto, N.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett . 21, 1729–1731 (1996).
[CrossRef] [PubMed]

Taccheo, S.

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett . 27, 1938–1940 (2002).
[CrossRef]

Takita, A.

Tarasenko, Y. N.

G. T. Skublov, Y. B. Marin, V. M. Semikolennykh, S. G. Skublov, and Y. N. Tarasenko, “Volkhovite: A new type of tektite-like glass,” Geol. Ore Deposits 49, 681–696 (2007).
[CrossRef]

Terazima, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys . 109, 023503 (2011).
[CrossRef]

Thiel, M.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett . 97, 221102 (2010).
[CrossRef]

Tikhonchuk, V.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[CrossRef]

Tomozawa, M.

C. Martinet, V. Martinez, C. Coussa, B. Champagnon, and M. Tomozawa, “Radial distribution of the fictive temperature in pure silica optical fibers by micro-Raman spectroscopy,” J. Appl. Phys . 103, 083506 (2008).
[CrossRef]

A. Koike and M. Tomozawa, “IR investigations of density changes of silica glass and soda-lime silicate glass caused by micro-hardness indentation,” J. Non-Cryst. Solids . 353, 2318–2327 (2007).
[CrossRef]

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids . 353, 4762–4766 (2007).
[CrossRef]

A. Agarwal and M. Tomozawa, “Surface and bulk structural relaxation kinetics of silics glass,” J. Non-Cryst. Solids 209, 264–272 (1997).
[CrossRef]

Tünnermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Tünnermann, S. N. A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 151–255 (2009).
[CrossRef]

Tuzhilin, D.

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett . 82, 2901–2903 (2003).
[CrossRef]

Ueno, K.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn . 81, 411–448 (2008).
[CrossRef]

Vailionis, A.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[CrossRef]

Vanagas, E.

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett . 82, 2901–2903 (2003).
[CrossRef]

von Freymann, G.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett . 97, 221102 (2010).
[CrossRef]

Watanabe, W.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett . 94, 241122 (2009).
[CrossRef]

Wegener, M.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett . 97, 221102 (2010).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics , 7 ed. (Cambridge University Press, 2002).

Wolf, G.

D. Durben and G. Wolf, “Raman spectroscopic study of the pressure-induced coordination change in GeO, glass,” Phys. Rev. B 43, 2355–2363 (1991).
[CrossRef]

Yamasaki, K.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).
[CrossRef]

Zhang, H.

Žukauskas, A.

Appl. Phys. Lett. (1)

H. Kakiuchida, N. Shimodaira, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Refractive index and density in F-and Cl-doped silica glasses,” Appl. Phys. Lett. . 86, 161907 (2005).
[CrossRef]

Appl. Phys. Lett (1)

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett . 94, 241122 (2009).
[CrossRef]

Appl. Phys. Lett (1)

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett . 93, 121109 (2008).
[CrossRef]

Appl. Phys. A (4)

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A . 76, 257–260 (2003).
[CrossRef]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void recording in silica,” Appl. Phys. A 83, 337–340 (2006).
[CrossRef]

Appl. Phys. B (1)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 151–255 (2009).
[CrossRef]

Appl. Phys. Lett (5)

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett . 89, 161911 (2006).
[CrossRef]

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett . 88, 201909 (2006).

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett . 82, 2901–2903 (2003).
[CrossRef]

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett . 76, 2656–2658 (2000).
[CrossRef]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett . 97, 221102 (2010).
[CrossRef]

Bull. Chem. Soc. Jpn (1)

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn . 81, 411–448 (2008).
[CrossRef]

Geol. Ore Deposits (1)

G. T. Skublov, Y. B. Marin, V. M. Semikolennykh, S. G. Skublov, and Y. N. Tarasenko, “Volkhovite: A new type of tektite-like glass,” Geol. Ore Deposits 49, 681–696 (2007).
[CrossRef]

J. Non-Cryst. Solids (5)

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Cryst. Solids . 357, 2637–2640 (2011).
[CrossRef]

A. Koike and M. Tomozawa, “IR investigations of density changes of silica glass and soda-lime silicate glass caused by micro-hardness indentation,” J. Non-Cryst. Solids . 353, 2318–2327 (2007).
[CrossRef]

R. L. Parc, B. Champagnon, P. Guenot, and S. Dubois, “Thermal annealing and density fluctuation in silica glass,” J. Non-Cryst. Solids 293–295, 366–369 (2001).
[CrossRef]

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids . 353, 4762–4766 (2007).
[CrossRef]

A. Agarwal and M. Tomozawa, “Surface and bulk structural relaxation kinetics of silics glass,” J. Non-Cryst. Solids 209, 264–272 (1997).
[CrossRef]

J. Appl. Phys (3)

C. Martinet, V. Martinez, C. Coussa, B. Champagnon, and M. Tomozawa, “Radial distribution of the fictive temperature in pure silica optical fibers by micro-Raman spectroscopy,” J. Appl. Phys . 103, 083506 (2008).
[CrossRef]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys . 109, 023503 (2011).
[CrossRef]

C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys . 103, 063516 (2008).
[CrossRef]

J. Non-Cryst. Solids (2)

R. Brückner, “Properrties and structure of vitreous silica I,” J. Non-Cryst. Solids . 5, 123–175 (1970).
[CrossRef]

J. E. Shelby, “Properties and structure of vitreous silica,” J. Non-Cryst. Solids . 349, 331–336 (2004).
[CrossRef]

J. Non-Cryst. Solids (3)

B. Champagnon, C. Martinet, C. Coussa, and T. Deschamps, “Polyamorphism: Path to new high density glasses at ambient conditions,” J. Non-Cryst. Solids . 353, 4208–4211 (2007).
[CrossRef]

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[CrossRef]

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids . 354, 416–424 (2009).
[CrossRef]

J. Opt. (1)

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[CrossRef]

J. Phys. D: Appl. Phys (1)

T. Kudrius, G. Šlekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys . 43, 145501 (2010).
[CrossRef]

J. Phys.: Condens. Matter (1)

M. Micoulaut, L. Cormier, and G. Henderson, “The structure of amorphous, crystalline and liquid GeO2,” J. Phys.: Condens. Matter . 18, R753–R784 (2006).
[CrossRef]

Opt. Express (8)

S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
[CrossRef] [PubMed]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
[CrossRef] [PubMed]

A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: Fabrication and fluorescence imaging via ruby R lines,” Opt. Express 17, 10076–10081 (2009).
[CrossRef] [PubMed]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express 18, 8300–8310 (2010).
[CrossRef] [PubMed]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef] [PubMed]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 5602–5610 (2011).
[CrossRef] [PubMed]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express 19, 5725–5734 (2011).
[CrossRef] [PubMed]

Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express 19, 6807–6821 (2011).
[CrossRef] [PubMed]

Opt. Lett (2)

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett . 21, 1729–1731 (1996).
[CrossRef] [PubMed]

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett . 27, 1938–1940 (2002).
[CrossRef]

Opt. Mater (1)

V. Martinez, R. L. Parc, C. Martinet, and B. Champagnon, “Structural studies of germanium doped silica glasses: the role of the fictive temperature,” Opt. Mater . 24, 59–62 (2003).
[CrossRef]

Phys. Rev. B (1)

D. Durben and G. Wolf, “Raman spectroscopic study of the pressure-induced coordination change in GeO, glass,” Phys. Rev. B 43, 2355–2363 (1991).
[CrossRef]

Other (3)

M. Born and E. Wolf, Principles of Optics , 7 ed. (Cambridge University Press, 2002).

A. Perriot, Nanoindentation de couches minces déposés sur substrat de verre de silice (English title: Nanoindentation of thin films deposited on vitreous silica) . PhD thesis, Université Paris 6, 21 Dec. 2005.
[PubMed]

V. Bouška, Z. Borovec, A. Cimbálníková, I. Kraus, A. Lajcáková, and M. Pacesová, Natural Glasses , Academia, Prague and Ellis Horwood, London, 1993.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) An optical image of a GeO2 region modified by single pulses of 300 nJ/pulse energy (at the entrance of microscope), 800 nm wavelength and 150 fs pulse duration focused at 10 μm depth. (b) Map of the region boxed in (a) at the 520 cm−1 D2-band. (c) Raman spectra of laser irradiated regions at different pulse energies 200, 300, and 400 nJ and at different hydrostatic pressures; measured using 532 and 633 nm wavelength illumination. Arrows in (c) shows the observed tendencies with increasing pulse energy and/or pressure. Wavelengths of laser irradiation for Raman measurements are denoted.

Fig. 2
Fig. 2

(a) An optical image of a GeO2 region modified by single pulses of 300 nJ/pulse energy (at the entrance of microscope), 800 nm wavelength and 150 fs pulse duration focused at 10 μm depth. (b) Cross section of the two void structures (marked in (a)) at the 520 cm−1 D2-band vs pulse energy. Arrows in (b) denote main tendency of Raman intensity vs pulse energy.

Fig. 3
Fig. 3

Raman spectra from different SiO2 glasses (Eqs. (1,2)): fs-laser treated (density ρ = 2.201 g/cm3, fictive temperature Tf = 1175°C), hydrostatic pressure-densified ρ = 2.25 g/cm3, thermally quenched (ρ = 2.202 g/cm3, Tf = 1350°C) and initial silica (ρ = 2.198 g/cm3, Tf = 925°C). Pulse energy was 200 nJ, wavelength 800 nm, pulse duration 150 fs, lateral separation between irradiation sites was 2 μm and intra layer separation 2.5 μm (ten layer structure). The inset shows an optical image of a 80 × 80 μm2 area packed with void-structures.

Fig. 4
Fig. 4

Typical normal (a) and anomalous (b) glass transition VolumeTemperature dependence observed in most of glasses (a) and silica (b), respectively (adopted from ref. [13, 31]). For silica: higher Tf corresponds to the larger density glass (anomalous behavior); The crystal melting is a first order phase transition and marked by the dotted-line; Tm is the melting temperature. Note, volume is increasing upwards (a) and downwards (b); a darker shade background corresponds to the higher density, ρ. The cycle ABC schematically shows how laser-induced melting and fast quenching results in waveguiding structure (higher mass density glass) in material with anomalous fictive temperature behavior.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ρ [ g / cm 3 ] = 2.1898 + 9.3 × 10 6 T f [ ° C ] .
v [ cm 1 ] = 0.02 T f [ ° C ] + 419.5.

Metrics