Abstract

In this work, we perform drilling of micro-holes and micro-patterning in indium tin oxide (ITO) and titanium thin films. In ITO films the drilling is performed by thermocavitation only; meanwhile in titanium two competing processes are identified: (i) laser-induced sublimation producing high-quality micro-holes comparable to those produced with femtosecond pulses but at a reduced cost and (ii) erosion by thermocavitation which tend to degrade the quality of the micro-holes. The micro-holes can be employed as micrometer light sources for use in point-diffraction interferometers or spatial filters; in addition, micron-sized resolution patterning can be performed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [CrossRef]
  2. C. E. Webb and J. D. Jones, Handbook of: Laser Technology and Applications IOP Publishing, England (2004).
  3. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
    [CrossRef]
  4. W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
    [CrossRef]
  5. R. Stewart and L. Li, “Enclosed laser ablation of 20 nm aluminium films using a continuous wave diode laser: II-Theorical heating considerations and proposed mechanisms,” Opt. Laser Technol. 36(5), 377–382 (2004).
    [CrossRef]
  6. Y. Tomita and A. Shima, “Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse,” J. Fluid Mech. 169(-1), 535–564 (1986).
    [CrossRef]
  7. A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid Mech. 361, 75–116 (1998).
    [CrossRef]
  8. C. A. Sacchi, “Laser-induced electric breakdown in water,” J. Opt. Soc. Am. B 8(2), 337–345 (1991).
    [CrossRef]
  9. P. A. Barnes and K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13(8), 282–284 (1968).
    [CrossRef]
  10. K.-T. Byun, H.-Y. Kwak, and S. W. Karng, “Bubble Evolution and Radiation Mechanism for Laser-Induced Collapsing Bubble in Water,” Jpn. J. Appl. Phys. 43(9A), 6364–6370 (2004).
    [CrossRef]
  11. J. C. Ramirez-San-Juan, E. Rodriguez-Aboytes, A. E. Martinez-Canton, O. Baldovino-Pantaleon, A. Robledo-Martinez, N. Korneev, and R. Ramos-Garcia, “Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids,” Opt. Express 18(9), 8735–8742 (2010).
    [CrossRef] [PubMed]
  12. N. Korneev, P. R. Montero, R. Ramos-García, J. C. Ramirez-San-Juan, and J. P. Padilla-Martinez, “Ultrasound induced by CW laser cavitation bubbles,” J. Phys.: Conf. Ser. 278, 012029 (2011).
    [CrossRef]
  13. G. Lutjering and J. C. Williams, “Titanium,” 2nd Edition, Springer Berlin Heidelberg New York (2007).
  14. F. Rosebury, “Handbook of electron tube and vacuum techniques,” Addison-Wesley, Reading, Mass (1965).
  15. Heat Transfer module User’s Guide; COMSOL INC., USA, (2007)
  16. I. E. Molodetsky, E. P. Vicenzi, E. L. Dreizin, and C. K. Law, “Phases of titanium combustion in air,” Combust. Flame 112(4), 522–532 (1998).
    [CrossRef]
  17. T. A. Andrzejak, E. Shafirovich, and A. Varma, ““On the Mechanisms of Titanium Particle Reactions in O2/N2 and O2/Ar Atmospheres,” Propellants, Explos., Pyrotech. 34(1), 53–58 (2009).
    [CrossRef]

2011 (1)

N. Korneev, P. R. Montero, R. Ramos-García, J. C. Ramirez-San-Juan, and J. P. Padilla-Martinez, “Ultrasound induced by CW laser cavitation bubbles,” J. Phys.: Conf. Ser. 278, 012029 (2011).
[CrossRef]

2010 (1)

2009 (1)

T. A. Andrzejak, E. Shafirovich, and A. Varma, ““On the Mechanisms of Titanium Particle Reactions in O2/N2 and O2/Ar Atmospheres,” Propellants, Explos., Pyrotech. 34(1), 53–58 (2009).
[CrossRef]

2004 (2)

K.-T. Byun, H.-Y. Kwak, and S. W. Karng, “Bubble Evolution and Radiation Mechanism for Laser-Induced Collapsing Bubble in Water,” Jpn. J. Appl. Phys. 43(9A), 6364–6370 (2004).
[CrossRef]

R. Stewart and L. Li, “Enclosed laser ablation of 20 nm aluminium films using a continuous wave diode laser: II-Theorical heating considerations and proposed mechanisms,” Opt. Laser Technol. 36(5), 377–382 (2004).
[CrossRef]

1998 (2)

A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid Mech. 361, 75–116 (1998).
[CrossRef]

I. E. Molodetsky, E. P. Vicenzi, E. L. Dreizin, and C. K. Law, “Phases of titanium combustion in air,” Combust. Flame 112(4), 522–532 (1998).
[CrossRef]

1997 (1)

1996 (2)

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

1991 (1)

1986 (1)

Y. Tomita and A. Shima, “Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse,” J. Fluid Mech. 169(-1), 535–564 (1986).
[CrossRef]

1968 (1)

P. A. Barnes and K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13(8), 282–284 (1968).
[CrossRef]

Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Andrzejak, T. A.

T. A. Andrzejak, E. Shafirovich, and A. Varma, ““On the Mechanisms of Titanium Particle Reactions in O2/N2 and O2/Ar Atmospheres,” Propellants, Explos., Pyrotech. 34(1), 53–58 (2009).
[CrossRef]

Baldovino-Pantaleon, O.

Barnes, P. A.

P. A. Barnes and K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13(8), 282–284 (1968).
[CrossRef]

Byun, K.-T.

K.-T. Byun, H.-Y. Kwak, and S. W. Karng, “Bubble Evolution and Radiation Mechanism for Laser-Induced Collapsing Bubble in Water,” Jpn. J. Appl. Phys. 43(9A), 6364–6370 (2004).
[CrossRef]

Chichkov, B. N.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Dreizin, E. L.

I. E. Molodetsky, E. P. Vicenzi, E. L. Dreizin, and C. K. Law, “Phases of titanium combustion in air,” Combust. Flame 112(4), 522–532 (1998).
[CrossRef]

Jacobs, H.

Karng, S. W.

K.-T. Byun, H.-Y. Kwak, and S. W. Karng, “Bubble Evolution and Radiation Mechanism for Laser-Induced Collapsing Bubble in Water,” Jpn. J. Appl. Phys. 43(9A), 6364–6370 (2004).
[CrossRef]

Kautek, W.

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

Korneev, N.

Krausz, F.

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

Krüger, J.

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

Kwak, H.-Y.

K.-T. Byun, H.-Y. Kwak, and S. W. Karng, “Bubble Evolution and Radiation Mechanism for Laser-Induced Collapsing Bubble in Water,” Jpn. J. Appl. Phys. 43(9A), 6364–6370 (2004).
[CrossRef]

Lauterborn, W.

A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid Mech. 361, 75–116 (1998).
[CrossRef]

Law, C. K.

I. E. Molodetsky, E. P. Vicenzi, E. L. Dreizin, and C. K. Law, “Phases of titanium combustion in air,” Combust. Flame 112(4), 522–532 (1998).
[CrossRef]

Lenzner, M.

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

Li, L.

R. Stewart and L. Li, “Enclosed laser ablation of 20 nm aluminium films using a continuous wave diode laser: II-Theorical heating considerations and proposed mechanisms,” Opt. Laser Technol. 36(5), 377–382 (2004).
[CrossRef]

Martinez-Canton, A. E.

Molodetsky, I. E.

I. E. Molodetsky, E. P. Vicenzi, E. L. Dreizin, and C. K. Law, “Phases of titanium combustion in air,” Combust. Flame 112(4), 522–532 (1998).
[CrossRef]

Momma, C.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Montero, P. R.

N. Korneev, P. R. Montero, R. Ramos-García, J. C. Ramirez-San-Juan, and J. P. Padilla-Martinez, “Ultrasound induced by CW laser cavitation bubbles,” J. Phys.: Conf. Ser. 278, 012029 (2011).
[CrossRef]

Nolte, S.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Padilla-Martinez, J. P.

N. Korneev, P. R. Montero, R. Ramos-García, J. C. Ramirez-San-Juan, and J. P. Padilla-Martinez, “Ultrasound induced by CW laser cavitation bubbles,” J. Phys.: Conf. Ser. 278, 012029 (2011).
[CrossRef]

Philipp, A.

A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid Mech. 361, 75–116 (1998).
[CrossRef]

Ramirez-San-Juan, J. C.

Ramos-Garcia, R.

Ramos-García, R.

N. Korneev, P. R. Montero, R. Ramos-García, J. C. Ramirez-San-Juan, and J. P. Padilla-Martinez, “Ultrasound induced by CW laser cavitation bubbles,” J. Phys.: Conf. Ser. 278, 012029 (2011).
[CrossRef]

Rieckhoff, K. E.

P. A. Barnes and K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13(8), 282–284 (1968).
[CrossRef]

Robledo-Martinez, A.

Rodriguez-Aboytes, E.

Sacchi, C. A.

Sartania, S.

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

Shafirovich, E.

T. A. Andrzejak, E. Shafirovich, and A. Varma, ““On the Mechanisms of Titanium Particle Reactions in O2/N2 and O2/Ar Atmospheres,” Propellants, Explos., Pyrotech. 34(1), 53–58 (2009).
[CrossRef]

Shima, A.

Y. Tomita and A. Shima, “Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse,” J. Fluid Mech. 169(-1), 535–564 (1986).
[CrossRef]

Spielmann, C.

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

Stewart, R.

R. Stewart and L. Li, “Enclosed laser ablation of 20 nm aluminium films using a continuous wave diode laser: II-Theorical heating considerations and proposed mechanisms,” Opt. Laser Technol. 36(5), 377–382 (2004).
[CrossRef]

Tomita, Y.

Y. Tomita and A. Shima, “Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse,” J. Fluid Mech. 169(-1), 535–564 (1986).
[CrossRef]

Tünnermann, A.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Varma, A.

T. A. Andrzejak, E. Shafirovich, and A. Varma, ““On the Mechanisms of Titanium Particle Reactions in O2/N2 and O2/Ar Atmospheres,” Propellants, Explos., Pyrotech. 34(1), 53–58 (2009).
[CrossRef]

Vicenzi, E. P.

I. E. Molodetsky, E. P. Vicenzi, E. L. Dreizin, and C. K. Law, “Phases of titanium combustion in air,” Combust. Flame 112(4), 522–532 (1998).
[CrossRef]

Wellegehausen, B.

Welling, H.

Appl. Phys. Lett. (2)

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

P. A. Barnes and K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13(8), 282–284 (1968).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Combust. Flame (1)

I. E. Molodetsky, E. P. Vicenzi, E. L. Dreizin, and C. K. Law, “Phases of titanium combustion in air,” Combust. Flame 112(4), 522–532 (1998).
[CrossRef]

J. Fluid Mech. (2)

Y. Tomita and A. Shima, “Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse,” J. Fluid Mech. 169(-1), 535–564 (1986).
[CrossRef]

A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid Mech. 361, 75–116 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys.: Conf. Ser. (1)

N. Korneev, P. R. Montero, R. Ramos-García, J. C. Ramirez-San-Juan, and J. P. Padilla-Martinez, “Ultrasound induced by CW laser cavitation bubbles,” J. Phys.: Conf. Ser. 278, 012029 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K.-T. Byun, H.-Y. Kwak, and S. W. Karng, “Bubble Evolution and Radiation Mechanism for Laser-Induced Collapsing Bubble in Water,” Jpn. J. Appl. Phys. 43(9A), 6364–6370 (2004).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

R. Stewart and L. Li, “Enclosed laser ablation of 20 nm aluminium films using a continuous wave diode laser: II-Theorical heating considerations and proposed mechanisms,” Opt. Laser Technol. 36(5), 377–382 (2004).
[CrossRef]

Propellants, Explos., Pyrotech. (1)

T. A. Andrzejak, E. Shafirovich, and A. Varma, ““On the Mechanisms of Titanium Particle Reactions in O2/N2 and O2/Ar Atmospheres,” Propellants, Explos., Pyrotech. 34(1), 53–58 (2009).
[CrossRef]

Other (4)

G. Lutjering and J. C. Williams, “Titanium,” 2nd Edition, Springer Berlin Heidelberg New York (2007).

F. Rosebury, “Handbook of electron tube and vacuum techniques,” Addison-Wesley, Reading, Mass (1965).

Heat Transfer module User’s Guide; COMSOL INC., USA, (2007)

C. E. Webb and J. D. Jones, Handbook of: Laser Technology and Applications IOP Publishing, England (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental set up for micro-hole fabrication. PG is pulse delay generator used to pulse the laser’s current.

Fig. 2
Fig. 2

SEM images of 65 nm titanium thin film. a) An array of four micro-holes produced by the focused beam on a cell filled with a saturated solution of copper nitrate salt; b) close up of the top right corner image.

Fig. 3
Fig. 3

Temperature profile at the titanium film for three different powers after 180 µs of illumination by highly focused laser beam.

Fig. 4
Fig. 4

The top row has SEM images while the bottom row has AFM images of the corresponding micro-holes in titanium thin film produced by the CW laser in air. The micro-holes are produced with a) 1, b) 3 and c) 320 pulses.

Fig. 5
Fig. 5

Damage due to cavitation in saturated solution of copper nitrate. Damage produced by single cavitation (a) and a line produced by many cavitations when the sample is scanned (b). Both images were taken with an atomic force microscope (AFM).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ d C p T t + d ( k T ) = Q + h a ( T e x t , a T ) + h g ( T e x t , g T )                                         + ε a σ ( T a m b , a 4 T 4 ) + ε g σ ( T a m b , g 4 T 4 ) ,

Metrics