Abstract

We report graphite-free laser etching of diamond surfaces using 266 nm laser pulses for a wide range of incident fluences below the threshold for ablation. The etching rate is proportional to the (fluence)x where x = 1.88 ± 0.16 over the range 10−6 - 10−2 nm per pulse for incident pulse fluences 1 – 60 J/cm2. Surface sensitive near edge x-ray fine absorption structure measurements (partial electron yield NEXAFS) reveal that etching does not significantly alter the surface structure from the initial oxygen terminated and graphite-free state. The etching process, which is consistent with a mechanism involving the desorption of carbon species via the decay of 2-photon excited excitons near the surface, appears to have no threshold and is promising for creating a range of high resolution structures.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
    [CrossRef]
  2. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
    [CrossRef]
  3. L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structures in nanocrystalline diamond,” Appl. Phys. Lett. 81(23), 4455–4457 (2002).
    [CrossRef]
  4. R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008).
    [CrossRef] [PubMed]
  5. M. Karlsson, K. Hjort, and F. Nikolajeff, “Transfer of continuous-relief diffractive structures into diamond by use of inductively coupled plasma dry etching,” Opt. Lett. 26(22), 1752–1754 (2001).
    [CrossRef] [PubMed]
  6. E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
    [CrossRef]
  7. M. Tarutani, Y. Takai, and R. Shimizu, “Application of the focused-ion-beam technique for preparing the cross-sectional sample of chemical vapor deposition diamond thin film for high-resolution transmission electron microscope observation,” Jpn. J. Appl. Phys. 31(Part 2, No. 9A), L1305–L1308 (1992).
    [CrossRef]
  8. S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
    [CrossRef]
  9. W. J. Zhang, Y. Wu, W. K. Wong, X. M. Meng, C. Y. Chan, I. Bello, Y. Lifshitz, and S. T. Lee, “Structuring nanodiamond cone arrays for improved field emission,” Appl. Phys. Lett. 83(16), 3365–3367 (2003).
    [CrossRef]
  10. P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2427–2430 (2005).
    [CrossRef]
  11. M. Rothschild, C. Arnone, and D. J. Ehrlich, “Excimer-laser etching of diamond and hard carbon films by direct writing and optical projection,” J. Vac. Sci. Technol. 4(1), 310–314 (1986).
    [CrossRef]
  12. A. Piqué and D. B. Chrisey, Direct-Write Technologies for Rapid Prototyping Applications: Sensor, Electronics, and Integrated Power Devices (Academic Press, 2002), p. 440.
  13. D. J. Ehrlich and J. Y. Tsao, “A review of laser–microchemical processing,” J. Vac. Sci. Technol. B 1(4), 969–984 (1983).
    [CrossRef]
  14. I. P. Sytov, “Estimation of the capabilities of maskless micropatterning by laser-induced chemical etching,” Appl. Phys., A Mater. Sci. Process. 61(1), 75–80 (1995).
    [CrossRef]
  15. V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007).
    [CrossRef]
  16. E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond Raman laser,” Opt. Express 19(11), 10857–10863 (2011).
    [CrossRef] [PubMed]
  17. S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
    [CrossRef]
  18. A. Stacey, B. Cowie, J. Orwa, S. Prawer, and A. Hoffman, “Diamond C 1s core-level excitons: surface sensitivity,” Phys. Rev. B 82(12), 125427 (2010).
    [CrossRef]
  19. V. V. Kononenko, T. V. Kononenko, S. M. Pimenov, V. I. Konov, P. Fischer, V. Romano, H. P. Weber, A. V. Khomich, R. A. Khmelnitskiy, and V. N. Strekalov, “Laser-induced structure transformations of diamonds,” Proc. SPIE 5121, 259–270 (2003).
    [CrossRef]
  20. A. Harasaki, J. Schmit, and J. C. Wyant, “Improved vertical-scanning interferometry,” Appl. Opt. 39(13), 2107–2115 (2000).
    [CrossRef] [PubMed]
  21. Y. Muramatsu, K. Shimomura, T. Katayama, and E. M. Gullikson, “Total electron yield soft x-ray absorption spectroscopy in the CK region of the mixtures of graphitic carbons and diamond for quantitative analysis of the sp2/sp3-hybridized carbon ratio,” Jpn. J. Appl. Phys. 48(6), 066514 (2009).
    [CrossRef]
  22. J. C. Zheng, X. N. Xie, A. T. S. Wee, and K. P. Loh, “Oxygen-induced surface state on diamond (100),” Diamond Related Materials 10(3-7), 500–505 (2001).
    [CrossRef]
  23. H. Jeschke and M. Garcia, “Theoretical description of the ultrafast ablation of diamond and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197–198, 107–113 (2002).
    [CrossRef]
  24. B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
    [CrossRef]
  25. M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
    [CrossRef]
  26. J. Smedley, C. Jaye, J. Bohon, T. Rao, and D. A. Fischer, “Laser patterning of diamond. Part II. Surface nondiamond carbon formation and its removal,” J. Appl. Phys. 105(12), 123108 (2009).
    [CrossRef]
  27. J. Smedley, J. Bohon, Q. Wu, and T. Rao, “Laser patterning of diamond. Part I. Characterization of surface morphology,” J. Appl. Phys. 105(12), 123107 (2009).
    [CrossRef]
  28. S. K. Sudheer, V. P. M. Pillai, and V. U. Nayar, “Characterization of laser processing of single-crystal natural diamonds using micro-Raman spectroscopic investigations,” J. Raman Spectrosc. 38(4), 427–435 (2007).
    [CrossRef]
  29. D. Ramanathan and P. A. Molian, “Micro- and sub-micromachining of Type IIa single crystal diamond using a Ti:sapphire femtosecond laser,” J. Manuf. Sci. Eng. 124(2), 389–396 (2002).
    [CrossRef]
  30. M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
    [CrossRef]
  31. C. Bandis and B. B. Pate, “Electron emission due to exciton breakup from negative electron affinity diamond,” Phys. Rev. Lett. 74(5), 777–780 (1995).
    [CrossRef] [PubMed]
  32. M. Frenklach, D. Huang, R. E. Thomas, R. A. Rudder, and R. J. Markunas, “Activation energy and mechanism of CO desorption from (100) diamond surface,” Appl. Phys. Lett. 63(22), 3090–3092 (1993).
    [CrossRef]
  33. J. Ristein, W. Stein, and L. Ley, “Defect spectroscopy and determination of the electron diffusion length in single crystal diamond by total photoelectron yield spectroscopy,” Phys. Rev. Lett. 78(9), 1803–1806 (1997).
    [CrossRef]
  34. J. Cui, J. Ristein, and L. Ley, “Low threshold electron emission from diamond,” Phys. Rev. B 60(23), 16135–16142 (1999).
    [CrossRef]
  35. D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68(18), 2491–2492 (1996).
    [CrossRef]
  36. H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93(24), 241106 (2008).
    [CrossRef]

2011

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[CrossRef]

E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond Raman laser,” Opt. Express 19(11), 10857–10863 (2011).
[CrossRef] [PubMed]

2010

A. Stacey, B. Cowie, J. Orwa, S. Prawer, and A. Hoffman, “Diamond C 1s core-level excitons: surface sensitivity,” Phys. Rev. B 82(12), 125427 (2010).
[CrossRef]

2009

Y. Muramatsu, K. Shimomura, T. Katayama, and E. M. Gullikson, “Total electron yield soft x-ray absorption spectroscopy in the CK region of the mixtures of graphitic carbons and diamond for quantitative analysis of the sp2/sp3-hybridized carbon ratio,” Jpn. J. Appl. Phys. 48(6), 066514 (2009).
[CrossRef]

J. Smedley, C. Jaye, J. Bohon, T. Rao, and D. A. Fischer, “Laser patterning of diamond. Part II. Surface nondiamond carbon formation and its removal,” J. Appl. Phys. 105(12), 123108 (2009).
[CrossRef]

J. Smedley, J. Bohon, Q. Wu, and T. Rao, “Laser patterning of diamond. Part I. Characterization of surface morphology,” J. Appl. Phys. 105(12), 123107 (2009).
[CrossRef]

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[CrossRef]

2008

R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008).
[CrossRef] [PubMed]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93(24), 241106 (2008).
[CrossRef]

2007

S. K. Sudheer, V. P. M. Pillai, and V. U. Nayar, “Characterization of laser processing of single-crystal natural diamonds using micro-Raman spectroscopic investigations,” J. Raman Spectrosc. 38(4), 427–435 (2007).
[CrossRef]

V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007).
[CrossRef]

2006

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

2005

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2427–2430 (2005).
[CrossRef]

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[CrossRef]

2004

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[CrossRef]

2003

W. J. Zhang, Y. Wu, W. K. Wong, X. M. Meng, C. Y. Chan, I. Bello, Y. Lifshitz, and S. T. Lee, “Structuring nanodiamond cone arrays for improved field emission,” Appl. Phys. Lett. 83(16), 3365–3367 (2003).
[CrossRef]

V. V. Kononenko, T. V. Kononenko, S. M. Pimenov, V. I. Konov, P. Fischer, V. Romano, H. P. Weber, A. V. Khomich, R. A. Khmelnitskiy, and V. N. Strekalov, “Laser-induced structure transformations of diamonds,” Proc. SPIE 5121, 259–270 (2003).
[CrossRef]

2002

L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structures in nanocrystalline diamond,” Appl. Phys. Lett. 81(23), 4455–4457 (2002).
[CrossRef]

H. Jeschke and M. Garcia, “Theoretical description of the ultrafast ablation of diamond and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197–198, 107–113 (2002).
[CrossRef]

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[CrossRef]

D. Ramanathan and P. A. Molian, “Micro- and sub-micromachining of Type IIa single crystal diamond using a Ti:sapphire femtosecond laser,” J. Manuf. Sci. Eng. 124(2), 389–396 (2002).
[CrossRef]

2001

M. Karlsson, K. Hjort, and F. Nikolajeff, “Transfer of continuous-relief diffractive structures into diamond by use of inductively coupled plasma dry etching,” Opt. Lett. 26(22), 1752–1754 (2001).
[CrossRef] [PubMed]

J. C. Zheng, X. N. Xie, A. T. S. Wee, and K. P. Loh, “Oxygen-induced surface state on diamond (100),” Diamond Related Materials 10(3-7), 500–505 (2001).
[CrossRef]

2000

1999

J. Cui, J. Ristein, and L. Ley, “Low threshold electron emission from diamond,” Phys. Rev. B 60(23), 16135–16142 (1999).
[CrossRef]

1997

J. Ristein, W. Stein, and L. Ley, “Defect spectroscopy and determination of the electron diffusion length in single crystal diamond by total photoelectron yield spectroscopy,” Phys. Rev. Lett. 78(9), 1803–1806 (1997).
[CrossRef]

1996

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68(18), 2491–2492 (1996).
[CrossRef]

1995

C. Bandis and B. B. Pate, “Electron emission due to exciton breakup from negative electron affinity diamond,” Phys. Rev. Lett. 74(5), 777–780 (1995).
[CrossRef] [PubMed]

I. P. Sytov, “Estimation of the capabilities of maskless micropatterning by laser-induced chemical etching,” Appl. Phys., A Mater. Sci. Process. 61(1), 75–80 (1995).
[CrossRef]

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[CrossRef]

1993

M. Frenklach, D. Huang, R. E. Thomas, R. A. Rudder, and R. J. Markunas, “Activation energy and mechanism of CO desorption from (100) diamond surface,” Appl. Phys. Lett. 63(22), 3090–3092 (1993).
[CrossRef]

1992

M. Tarutani, Y. Takai, and R. Shimizu, “Application of the focused-ion-beam technique for preparing the cross-sectional sample of chemical vapor deposition diamond thin film for high-resolution transmission electron microscope observation,” Jpn. J. Appl. Phys. 31(Part 2, No. 9A), L1305–L1308 (1992).
[CrossRef]

1986

M. Rothschild, C. Arnone, and D. J. Ehrlich, “Excimer-laser etching of diamond and hard carbon films by direct writing and optical projection,” J. Vac. Sci. Technol. 4(1), 310–314 (1986).
[CrossRef]

1983

D. J. Ehrlich and J. Y. Tsao, “A review of laser–microchemical processing,” J. Vac. Sci. Technol. B 1(4), 969–984 (1983).
[CrossRef]

Arnone, C.

M. Rothschild, C. Arnone, and D. J. Ehrlich, “Excimer-laser etching of diamond and hard carbon films by direct writing and optical projection,” J. Vac. Sci. Technol. 4(1), 310–314 (1986).
[CrossRef]

Bandis, C.

C. Bandis and B. B. Pate, “Electron emission due to exciton breakup from negative electron affinity diamond,” Phys. Rev. Lett. 74(5), 777–780 (1995).
[CrossRef] [PubMed]

Barclay, P. E.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[CrossRef]

Beausoleil, R. G.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[CrossRef]

Bello, I.

W. J. Zhang, Y. Wu, W. K. Wong, X. M. Meng, C. Y. Chan, I. Bello, Y. Lifshitz, and S. T. Lee, “Structuring nanodiamond cone arrays for improved field emission,” Appl. Phys. Lett. 83(16), 3365–3367 (2003).
[CrossRef]

Bohon, J.

J. Smedley, J. Bohon, Q. Wu, and T. Rao, “Laser patterning of diamond. Part I. Characterization of surface morphology,” J. Appl. Phys. 105(12), 123107 (2009).
[CrossRef]

J. Smedley, C. Jaye, J. Bohon, T. Rao, and D. A. Fischer, “Laser patterning of diamond. Part II. Surface nondiamond carbon formation and its removal,” J. Appl. Phys. 105(12), 123108 (2009).
[CrossRef]

Butler, J. E.

R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008).
[CrossRef] [PubMed]

L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structures in nanocrystalline diamond,” Appl. Phys. Lett. 81(23), 4455–4457 (2002).
[CrossRef]

Castelletto, S.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

Chan, C. Y.

W. J. Zhang, Y. Wu, W. K. Wong, X. M. Meng, C. Y. Chan, I. Bello, Y. Lifshitz, and S. T. Lee, “Structuring nanodiamond cone arrays for improved field emission,” Appl. Phys. Lett. 83(16), 3365–3367 (2003).
[CrossRef]

Choi, H. W.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[CrossRef]

Cowie, B.

A. Stacey, B. Cowie, J. Orwa, S. Prawer, and A. Hoffman, “Diamond C 1s core-level excitons: surface sensitivity,” Phys. Rev. B 82(12), 125427 (2010).
[CrossRef]

Craighead, H. G.

L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structures in nanocrystalline diamond,” Appl. Phys. Lett. 81(23), 4455–4457 (2002).
[CrossRef]

Cui, J.

J. Cui, J. Ristein, and L. Ley, “Low threshold electron emission from diamond,” Phys. Rev. B 60(23), 16135–16142 (1999).
[CrossRef]

Dawson, M. D.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[CrossRef]

de Dood, M. J. A.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[CrossRef]

Domhan, M.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

Dutoit, B.

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68(18), 2491–2492 (1996).
[CrossRef]

Ehrlich, D. J.

M. Rothschild, C. Arnone, and D. J. Ehrlich, “Excimer-laser etching of diamond and hard carbon films by direct writing and optical projection,” J. Vac. Sci. Technol. 4(1), 310–314 (1986).
[CrossRef]

D. J. Ehrlich and J. Y. Tsao, “A review of laser–microchemical processing,” J. Vac. Sci. Technol. B 1(4), 969–984 (1983).
[CrossRef]

Fairchild, B. A.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

Faraon, A.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[CrossRef]

Feygelson, T.

L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structures in nanocrystalline diamond,” Appl. Phys. Lett. 81(23), 4455–4457 (2002).
[CrossRef]

Fischer, D. A.

J. Smedley, C. Jaye, J. Bohon, T. Rao, and D. A. Fischer, “Laser patterning of diamond. Part II. Surface nondiamond carbon formation and its removal,” J. Appl. Phys. 105(12), 123108 (2009).
[CrossRef]

Fischer, P.

V. V. Kononenko, T. V. Kononenko, S. M. Pimenov, V. I. Konov, P. Fischer, V. Romano, H. P. Weber, A. V. Khomich, R. A. Khmelnitskiy, and V. N. Strekalov, “Laser-induced structure transformations of diamonds,” Proc. SPIE 5121, 259–270 (2003).
[CrossRef]

Frenklach, M.

M. Frenklach, D. Huang, R. E. Thomas, R. A. Rudder, and R. J. Markunas, “Activation energy and mechanism of CO desorption from (100) diamond surface,” Appl. Phys. Lett. 63(22), 3090–3092 (1993).
[CrossRef]

Fu, K.-M. C.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[CrossRef]

Gaebel, T.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

Gamaly, E.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[CrossRef]

Ganesan, K.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

Garcia, M.

H. Jeschke and M. Garcia, “Theoretical description of the ultrafast ablation of diamond and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197–198, 107–113 (2002).
[CrossRef]

Gattass, R. R.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[CrossRef]

Gibson, B. C.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2427–2430 (2005).
[CrossRef]

Girkin, J. M.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[CrossRef]

Granados, E.

Greentree, A. D.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2427–2430 (2005).
[CrossRef]

Griffin, C.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[CrossRef]

Gu, E.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[CrossRef]

Gullikson, E. M.

Y. Muramatsu, K. Shimomura, T. Katayama, and E. M. Gullikson, “Total electron yield soft x-ray absorption spectroscopy in the CK region of the mixtures of graphitic carbons and diamond for quantitative analysis of the sp2/sp3-hybridized carbon ratio,” Jpn. J. Appl. Phys. 48(6), 066514 (2009).
[CrossRef]

Gurney, A. M.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[CrossRef]

Hadden, J. P.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

Harasaki, A.

Harrison, J. P.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

Hemmer, P. R.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

Hiscocks, M. P.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

Hjort, K.

Ho, Y.-L. D.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

Hoffman, A.

A. Stacey, B. Cowie, J. Orwa, S. Prawer, and A. Hoffman, “Diamond C 1s core-level excitons: surface sensitivity,” Phys. Rev. B 82(12), 125427 (2010).
[CrossRef]

Houston, B. H.

L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structures in nanocrystalline diamond,” Appl. Phys. Lett. 81(23), 4455–4457 (2002).
[CrossRef]

Huang, D.

M. Frenklach, D. Huang, R. E. Thomas, R. A. Rudder, and R. J. Markunas, “Activation energy and mechanism of CO desorption from (100) diamond surface,” Appl. Phys. Lett. 63(22), 3090–3092 (1993).
[CrossRef]

Huntington, S. T.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2427–2430 (2005).
[CrossRef]

Jamieson, D. N.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2427–2430 (2005).
[CrossRef]

Jaye, C.

J. Smedley, C. Jaye, J. Bohon, T. Rao, and D. A. Fischer, “Laser patterning of diamond. Part II. Surface nondiamond carbon formation and its removal,” J. Appl. Phys. 105(12), 123108 (2009).
[CrossRef]

Jelezko, F.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

Jeschke, H.

H. Jeschke and M. Garcia, “Theoretical description of the ultrafast ablation of diamond and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197–198, 107–113 (2002).
[CrossRef]

Kan, H.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93(24), 241106 (2008).
[CrossRef]

Karlsson, M.

Katayama, T.

Y. Muramatsu, K. Shimomura, T. Katayama, and E. M. Gullikson, “Total electron yield soft x-ray absorption spectroscopy in the CK region of the mixtures of graphitic carbons and diamond for quantitative analysis of the sp2/sp3-hybridized carbon ratio,” Jpn. J. Appl. Phys. 48(6), 066514 (2009).
[CrossRef]

Khmelnitskiy, R. A.

V. V. Kononenko, T. V. Kononenko, S. M. Pimenov, V. I. Konov, P. Fischer, V. Romano, H. P. Weber, A. V. Khomich, R. A. Khmelnitskiy, and V. N. Strekalov, “Laser-induced structure transformations of diamonds,” Proc. SPIE 5121, 259–270 (2003).
[CrossRef]

Khomich, A. V.

V. V. Kononenko, T. V. Kononenko, S. M. Pimenov, V. I. Konov, P. Fischer, V. Romano, H. P. Weber, A. V. Khomich, R. A. Khmelnitskiy, and V. N. Strekalov, “Laser-induced structure transformations of diamonds,” Proc. SPIE 5121, 259–270 (2003).
[CrossRef]

Komlenok, M. S.

V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007).
[CrossRef]

Kononenko, T. V.

V. V. Kononenko, T. V. Kononenko, S. M. Pimenov, V. I. Konov, P. Fischer, V. Romano, H. P. Weber, A. V. Khomich, R. A. Khmelnitskiy, and V. N. Strekalov, “Laser-induced structure transformations of diamonds,” Proc. SPIE 5121, 259–270 (2003).
[CrossRef]

Kononenko, V. V.

V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007).
[CrossRef]

V. V. Kononenko, T. V. Kononenko, S. M. Pimenov, V. I. Konov, P. Fischer, V. Romano, H. P. Weber, A. V. Khomich, R. A. Khmelnitskiy, and V. N. Strekalov, “Laser-induced structure transformations of diamonds,” Proc. SPIE 5121, 259–270 (2003).
[CrossRef]

Konov, V. I.

V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007).
[CrossRef]

V. V. Kononenko, T. V. Kononenko, S. M. Pimenov, V. I. Konov, P. Fischer, V. Romano, H. P. Weber, A. V. Khomich, R. A. Khmelnitskiy, and V. N. Strekalov, “Laser-induced structure transformations of diamonds,” Proc. SPIE 5121, 259–270 (2003).
[CrossRef]

Kuwabara, M.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93(24), 241106 (2008).
[CrossRef]

Ladouceur, F.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

Lee, S. T.

W. J. Zhang, Y. Wu, W. K. Wong, X. M. Meng, C. Y. Chan, I. Bello, Y. Lifshitz, and S. T. Lee, “Structuring nanodiamond cone arrays for improved field emission,” Appl. Phys. Lett. 83(16), 3365–3367 (2003).
[CrossRef]

Ley, L.

J. Cui, J. Ristein, and L. Ley, “Low threshold electron emission from diamond,” Phys. Rev. B 60(23), 16135–16142 (1999).
[CrossRef]

J. Ristein, W. Stein, and L. Ley, “Defect spectroscopy and determination of the electron diffusion length in single crystal diamond by total photoelectron yield spectroscopy,” Phys. Rev. Lett. 78(9), 1803–1806 (1997).
[CrossRef]

Lifshitz, Y.

W. J. Zhang, Y. Wu, W. K. Wong, X. M. Meng, C. Y. Chan, I. Bello, Y. Lifshitz, and S. T. Lee, “Structuring nanodiamond cone arrays for improved field emission,” Appl. Phys. Lett. 83(16), 3365–3367 (2003).
[CrossRef]

Liu, C.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[CrossRef]

Loh, K. P.

J. C. Zheng, X. N. Xie, A. T. S. Wee, and K. P. Loh, “Oxygen-induced surface state on diamond (100),” Diamond Related Materials 10(3-7), 500–505 (2001).
[CrossRef]

Luther-Davies, B.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[CrossRef]

Madsen, N. R.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[CrossRef]

Markunas, R. J.

M. Frenklach, D. Huang, R. E. Thomas, R. A. Rudder, and R. J. Markunas, “Activation energy and mechanism of CO desorption from (100) diamond surface,” Appl. Phys. Lett. 63(22), 3090–3092 (1993).
[CrossRef]

Marseglia, L.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

Mazur, E.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[CrossRef]

McConnell, G.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[CrossRef]

Meijer, J.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

Meng, X. M.

W. J. Zhang, Y. Wu, W. K. Wong, X. M. Meng, C. Y. Chan, I. Bello, Y. Lifshitz, and S. T. Lee, “Structuring nanodiamond cone arrays for improved field emission,” Appl. Phys. Lett. 83(16), 3365–3367 (2003).
[CrossRef]

Mildren, R. P.

Molian, P. A.

D. Ramanathan and P. A. Molian, “Micro- and sub-micromachining of Type IIa single crystal diamond using a Ti:sapphire femtosecond laser,” J. Manuf. Sci. Eng. 124(2), 389–396 (2002).
[CrossRef]

Moore, D.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2427–2430 (2005).
[CrossRef]

Muramatsu, Y.

Y. Muramatsu, K. Shimomura, T. Katayama, and E. M. Gullikson, “Total electron yield soft x-ray absorption spectroscopy in the CK region of the mixtures of graphitic carbons and diamond for quantitative analysis of the sp2/sp3-hybridized carbon ratio,” Jpn. J. Appl. Phys. 48(6), 066514 (2009).
[CrossRef]

Nayar, V. U.

S. K. Sudheer, V. P. M. Pillai, and V. U. Nayar, “Characterization of laser processing of single-crystal natural diamonds using micro-Raman spectroscopic investigations,” J. Raman Spectrosc. 38(4), 427–435 (2007).
[CrossRef]

Nettesheim, S.

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68(18), 2491–2492 (1996).
[CrossRef]

Neumann, P.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

Nikolajeff, F.

O’Brien, J. L.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

Olivero, P.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2427–2430 (2005).
[CrossRef]

Orwa, J.

A. Stacey, B. Cowie, J. Orwa, S. Prawer, and A. Hoffman, “Diamond C 1s core-level excitons: surface sensitivity,” Phys. Rev. B 82(12), 125427 (2010).
[CrossRef]

Parpia, J. M.

L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structures in nanocrystalline diamond,” Appl. Phys. Lett. 81(23), 4455–4457 (2002).
[CrossRef]

Pate, B. B.

C. Bandis and B. B. Pate, “Electron emission due to exciton breakup from negative electron affinity diamond,” Phys. Rev. Lett. 74(5), 777–780 (1995).
[CrossRef] [PubMed]

Pillai, V. P. M.

S. K. Sudheer, V. P. M. Pillai, and V. U. Nayar, “Characterization of laser processing of single-crystal natural diamonds using micro-Raman spectroscopic investigations,” J. Raman Spectrosc. 38(4), 427–435 (2007).
[CrossRef]

Pimenov, S. M.

V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007).
[CrossRef]

V. V. Kononenko, T. V. Kononenko, S. M. Pimenov, V. I. Konov, P. Fischer, V. Romano, H. P. Weber, A. V. Khomich, R. A. Khmelnitskiy, and V. N. Strekalov, “Laser-induced structure transformations of diamonds,” Proc. SPIE 5121, 259–270 (2003).
[CrossRef]

Polman, A.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[CrossRef]

Popa, I.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

Prawer, S.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

A. Stacey, B. Cowie, J. Orwa, S. Prawer, and A. Hoffman, “Diamond C 1s core-level excitons: surface sensitivity,” Phys. Rev. B 82(12), 125427 (2010).
[CrossRef]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2427–2430 (2005).
[CrossRef]

Preuss, S.

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[CrossRef]

Rabeau, J. R.

R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008).
[CrossRef] [PubMed]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2427–2430 (2005).
[CrossRef]

Ramanathan, D.

D. Ramanathan and P. A. Molian, “Micro- and sub-micromachining of Type IIa single crystal diamond using a Ti:sapphire femtosecond laser,” J. Manuf. Sci. Eng. 124(2), 389–396 (2002).
[CrossRef]

Rao, T.

J. Smedley, J. Bohon, Q. Wu, and T. Rao, “Laser patterning of diamond. Part I. Characterization of surface morphology,” J. Appl. Phys. 105(12), 123107 (2009).
[CrossRef]

J. Smedley, C. Jaye, J. Bohon, T. Rao, and D. A. Fischer, “Laser patterning of diamond. Part II. Surface nondiamond carbon formation and its removal,” J. Appl. Phys. 105(12), 123108 (2009).
[CrossRef]

Rarity, J. G.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

Reichart, P.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2427–2430 (2005).
[CrossRef]

Ristein, J.

J. Cui, J. Ristein, and L. Ley, “Low threshold electron emission from diamond,” Phys. Rev. B 60(23), 16135–16142 (1999).
[CrossRef]

J. Ristein, W. Stein, and L. Ley, “Defect spectroscopy and determination of the electron diffusion length in single crystal diamond by total photoelectron yield spectroscopy,” Phys. Rev. Lett. 78(9), 1803–1806 (1997).
[CrossRef]

Rode, A. V.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[CrossRef]

Romano, V.

V. V. Kononenko, T. V. Kononenko, S. M. Pimenov, V. I. Konov, P. Fischer, V. Romano, H. P. Weber, A. V. Khomich, R. A. Khmelnitskiy, and V. N. Strekalov, “Laser-induced structure transformations of diamonds,” Proc. SPIE 5121, 259–270 (2003).
[CrossRef]

Rothschild, M.

M. Rothschild, C. Arnone, and D. J. Ehrlich, “Excimer-laser etching of diamond and hard carbon films by direct writing and optical projection,” J. Vac. Sci. Technol. 4(1), 310–314 (1986).
[CrossRef]

Rubanov, S.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2427–2430 (2005).
[CrossRef]

Rudder, R. A.

M. Frenklach, D. Huang, R. E. Thomas, R. A. Rudder, and R. J. Markunas, “Activation energy and mechanism of CO desorption from (100) diamond surface,” Appl. Phys. Lett. 63(22), 3090–3092 (1993).
[CrossRef]

Salzman, J.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2427–2430 (2005).
[CrossRef]

Santori, C.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[CrossRef]

Schmit, J.

Sekaric, L.

L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structures in nanocrystalline diamond,” Appl. Phys. Lett. 81(23), 4455–4457 (2002).
[CrossRef]

Shimizu, R.

M. Tarutani, Y. Takai, and R. Shimizu, “Application of the focused-ion-beam technique for preparing the cross-sectional sample of chemical vapor deposition diamond thin film for high-resolution transmission electron microscope observation,” Jpn. J. Appl. Phys. 31(Part 2, No. 9A), L1305–L1308 (1992).
[CrossRef]

Shimomura, K.

Y. Muramatsu, K. Shimomura, T. Katayama, and E. M. Gullikson, “Total electron yield soft x-ray absorption spectroscopy in the CK region of the mixtures of graphitic carbons and diamond for quantitative analysis of the sp2/sp3-hybridized carbon ratio,” Jpn. J. Appl. Phys. 48(6), 066514 (2009).
[CrossRef]

Shinoda, M.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[CrossRef]

Smedley, J.

J. Smedley, C. Jaye, J. Bohon, T. Rao, and D. A. Fischer, “Laser patterning of diamond. Part II. Surface nondiamond carbon formation and its removal,” J. Appl. Phys. 105(12), 123108 (2009).
[CrossRef]

J. Smedley, J. Bohon, Q. Wu, and T. Rao, “Laser patterning of diamond. Part I. Characterization of surface morphology,” J. Appl. Phys. 105(12), 123107 (2009).
[CrossRef]

Spence, D. J.

Stacey, A.

A. Stacey, B. Cowie, J. Orwa, S. Prawer, and A. Hoffman, “Diamond C 1s core-level excitons: surface sensitivity,” Phys. Rev. B 82(12), 125427 (2010).
[CrossRef]

Stanley-Clarke, A. C.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

Stavrias, N.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

Stein, W.

J. Ristein, W. Stein, and L. Ley, “Defect spectroscopy and determination of the electron diffusion length in single crystal diamond by total photoelectron yield spectroscopy,” Phys. Rev. Lett. 78(9), 1803–1806 (1997).
[CrossRef]

Strekalov, V. N.

V. V. Kononenko, T. V. Kononenko, S. M. Pimenov, V. I. Konov, P. Fischer, V. Romano, H. P. Weber, A. V. Khomich, R. A. Khmelnitskiy, and V. N. Strekalov, “Laser-induced structure transformations of diamonds,” Proc. SPIE 5121, 259–270 (2003).
[CrossRef]

Stuke, M.

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[CrossRef]

Sudheer, S. K.

S. K. Sudheer, V. P. M. Pillai, and V. U. Nayar, “Characterization of laser processing of single-crystal natural diamonds using micro-Raman spectroscopic investigations,” J. Raman Spectrosc. 38(4), 427–435 (2007).
[CrossRef]

Sytov, I. P.

I. P. Sytov, “Estimation of the capabilities of maskless micropatterning by laser-induced chemical etching,” Appl. Phys., A Mater. Sci. Process. 61(1), 75–80 (1995).
[CrossRef]

Takai, Y.

M. Tarutani, Y. Takai, and R. Shimizu, “Application of the focused-ion-beam technique for preparing the cross-sectional sample of chemical vapor deposition diamond thin film for high-resolution transmission electron microscope observation,” Jpn. J. Appl. Phys. 31(Part 2, No. 9A), L1305–L1308 (1992).
[CrossRef]

Tarutani, M.

M. Tarutani, Y. Takai, and R. Shimizu, “Application of the focused-ion-beam technique for preparing the cross-sectional sample of chemical vapor deposition diamond thin film for high-resolution transmission electron microscope observation,” Jpn. J. Appl. Phys. 31(Part 2, No. 9A), L1305–L1308 (1992).
[CrossRef]

Thomas, R. E.

M. Frenklach, D. Huang, R. E. Thomas, R. A. Rudder, and R. J. Markunas, “Activation energy and mechanism of CO desorption from (100) diamond surface,” Appl. Phys. Lett. 63(22), 3090–3092 (1993).
[CrossRef]

Tsao, J. Y.

D. J. Ehrlich and J. Y. Tsao, “A review of laser–microchemical processing,” J. Vac. Sci. Technol. B 1(4), 969–984 (1983).
[CrossRef]

Twamley, J.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

van der Drift, E. W. J. M.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[CrossRef]

Watson, I. M.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[CrossRef]

Weber, H. P.

V. V. Kononenko, T. V. Kononenko, S. M. Pimenov, V. I. Konov, P. Fischer, V. Romano, H. P. Weber, A. V. Khomich, R. A. Khmelnitskiy, and V. N. Strekalov, “Laser-induced structure transformations of diamonds,” Proc. SPIE 5121, 259–270 (2003).
[CrossRef]

Wee, A. T. S.

J. C. Zheng, X. N. Xie, A. T. S. Wee, and K. P. Loh, “Oxygen-induced surface state on diamond (100),” Diamond Related Materials 10(3-7), 500–505 (2001).
[CrossRef]

Wittmann, C.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

Wong, W. K.

W. J. Zhang, Y. Wu, W. K. Wong, X. M. Meng, C. Y. Chan, I. Bello, Y. Lifshitz, and S. T. Lee, “Structuring nanodiamond cone arrays for improved field emission,” Appl. Phys. Lett. 83(16), 3365–3367 (2003).
[CrossRef]

Wrachtrup, J.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

Wu, Q.

J. Smedley, J. Bohon, Q. Wu, and T. Rao, “Laser patterning of diamond. Part I. Characterization of surface morphology,” J. Appl. Phys. 105(12), 123107 (2009).
[CrossRef]

Wu, Y.

W. J. Zhang, Y. Wu, W. K. Wong, X. M. Meng, C. Y. Chan, I. Bello, Y. Lifshitz, and S. T. Lee, “Structuring nanodiamond cone arrays for improved field emission,” Appl. Phys. Lett. 83(16), 3365–3367 (2003).
[CrossRef]

Wyant, J. C.

Xie, X. N.

J. C. Zheng, X. N. Xie, A. T. S. Wee, and K. P. Loh, “Oxygen-induced surface state on diamond (100),” Diamond Related Materials 10(3-7), 500–505 (2001).
[CrossRef]

Yamashita, Y.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93(24), 241106 (2008).
[CrossRef]

Yoshida, H.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93(24), 241106 (2008).
[CrossRef]

Zeisel, D.

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68(18), 2491–2492 (1996).
[CrossRef]

Zenobi, R.

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68(18), 2491–2492 (1996).
[CrossRef]

Zhang, W. J.

W. J. Zhang, Y. Wu, W. K. Wong, X. M. Meng, C. Y. Chan, I. Bello, Y. Lifshitz, and S. T. Lee, “Structuring nanodiamond cone arrays for improved field emission,” Appl. Phys. Lett. 83(16), 3365–3367 (2003).
[CrossRef]

Zheng, J. C.

J. C. Zheng, X. N. Xie, A. T. S. Wee, and K. P. Loh, “Oxygen-induced surface state on diamond (100),” Diamond Related Materials 10(3-7), 500–505 (2001).
[CrossRef]

Zijlstra, T.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2427–2430 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68(18), 2491–2492 (1996).
[CrossRef]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93(24), 241106 (2008).
[CrossRef]

M. Frenklach, D. Huang, R. E. Thomas, R. A. Rudder, and R. J. Markunas, “Activation energy and mechanism of CO desorption from (100) diamond surface,” Appl. Phys. Lett. 63(22), 3090–3092 (1993).
[CrossRef]

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[CrossRef]

W. J. Zhang, Y. Wu, W. K. Wong, X. M. Meng, C. Y. Chan, I. Bello, Y. Lifshitz, and S. T. Lee, “Structuring nanodiamond cone arrays for improved field emission,” Appl. Phys. Lett. 83(16), 3365–3367 (2003).
[CrossRef]

L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structures in nanocrystalline diamond,” Appl. Phys. Lett. 81(23), 4455–4457 (2002).
[CrossRef]

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

I. P. Sytov, “Estimation of the capabilities of maskless micropatterning by laser-induced chemical etching,” Appl. Phys., A Mater. Sci. Process. 61(1), 75–80 (1995).
[CrossRef]

Appl. Surf. Sci.

H. Jeschke and M. Garcia, “Theoretical description of the ultrafast ablation of diamond and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197–198, 107–113 (2002).
[CrossRef]

Diamond Related Materials

J. C. Zheng, X. N. Xie, A. T. S. Wee, and K. P. Loh, “Oxygen-induced surface state on diamond (100),” Diamond Related Materials 10(3-7), 500–505 (2001).
[CrossRef]

J. Appl. Phys.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[CrossRef]

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[CrossRef]

J. Smedley, C. Jaye, J. Bohon, T. Rao, and D. A. Fischer, “Laser patterning of diamond. Part II. Surface nondiamond carbon formation and its removal,” J. Appl. Phys. 105(12), 123108 (2009).
[CrossRef]

J. Smedley, J. Bohon, Q. Wu, and T. Rao, “Laser patterning of diamond. Part I. Characterization of surface morphology,” J. Appl. Phys. 105(12), 123107 (2009).
[CrossRef]

J. Manuf. Sci. Eng.

D. Ramanathan and P. A. Molian, “Micro- and sub-micromachining of Type IIa single crystal diamond using a Ti:sapphire femtosecond laser,” J. Manuf. Sci. Eng. 124(2), 389–396 (2002).
[CrossRef]

J. Raman Spectrosc.

S. K. Sudheer, V. P. M. Pillai, and V. U. Nayar, “Characterization of laser processing of single-crystal natural diamonds using micro-Raman spectroscopic investigations,” J. Raman Spectrosc. 38(4), 427–435 (2007).
[CrossRef]

J. Vac. Sci. Technol.

M. Rothschild, C. Arnone, and D. J. Ehrlich, “Excimer-laser etching of diamond and hard carbon films by direct writing and optical projection,” J. Vac. Sci. Technol. 4(1), 310–314 (1986).
[CrossRef]

J. Vac. Sci. Technol. B

D. J. Ehrlich and J. Y. Tsao, “A review of laser–microchemical processing,” J. Vac. Sci. Technol. B 1(4), 969–984 (1983).
[CrossRef]

Jpn. J. Appl. Phys.

M. Tarutani, Y. Takai, and R. Shimizu, “Application of the focused-ion-beam technique for preparing the cross-sectional sample of chemical vapor deposition diamond thin film for high-resolution transmission electron microscope observation,” Jpn. J. Appl. Phys. 31(Part 2, No. 9A), L1305–L1308 (1992).
[CrossRef]

Y. Muramatsu, K. Shimomura, T. Katayama, and E. M. Gullikson, “Total electron yield soft x-ray absorption spectroscopy in the CK region of the mixtures of graphitic carbons and diamond for quantitative analysis of the sp2/sp3-hybridized carbon ratio,” Jpn. J. Appl. Phys. 48(6), 066514 (2009).
[CrossRef]

N. J. Phys.

S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011).
[CrossRef]

Nat. Photonics

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[CrossRef]

Nat. Phys.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006).
[CrossRef]

Opt. Eng.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

J. Cui, J. Ristein, and L. Ley, “Low threshold electron emission from diamond,” Phys. Rev. B 60(23), 16135–16142 (1999).
[CrossRef]

A. Stacey, B. Cowie, J. Orwa, S. Prawer, and A. Hoffman, “Diamond C 1s core-level excitons: surface sensitivity,” Phys. Rev. B 82(12), 125427 (2010).
[CrossRef]

Phys. Rev. Lett.

J. Ristein, W. Stein, and L. Ley, “Defect spectroscopy and determination of the electron diffusion length in single crystal diamond by total photoelectron yield spectroscopy,” Phys. Rev. Lett. 78(9), 1803–1806 (1997).
[CrossRef]

C. Bandis and B. B. Pate, “Electron emission due to exciton breakup from negative electron affinity diamond,” Phys. Rev. Lett. 74(5), 777–780 (1995).
[CrossRef] [PubMed]

Proc. SPIE

V. V. Kononenko, T. V. Kononenko, S. M. Pimenov, V. I. Konov, P. Fischer, V. Romano, H. P. Weber, A. V. Khomich, R. A. Khmelnitskiy, and V. N. Strekalov, “Laser-induced structure transformations of diamonds,” Proc. SPIE 5121, 259–270 (2003).
[CrossRef]

Quantum Electron.

V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007).
[CrossRef]

Other

A. Piqué and D. B. Chrisey, Direct-Write Technologies for Rapid Prototyping Applications: Sensor, Electronics, and Integrated Power Devices (Academic Press, 2002), p. 440.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Microscope images of the diamond surface subsequent to exposure at a) 1.1, b) 0.6 and c) 0.07 times the ablation threshold. The exposure times and depths were 0.05 s, 30 s, 14083 s and 30 µm, 0.60 µm, 0.67 µm respectively, and the pulse rate 7.5 kHz. In a), the beam size is indicated by the dashed circle. For b) and c), the contrast was enhanced using differential interferometric contrast mode. d) 3-D rendered optical interferometric profile image of the pit in b). e) An example of an arbitrary pattern created by the direct write process using a scan speed of 9 µm/s and 120 repetitive scans. Note that in d) and e), the colour bar spans a range of 600 nm and 350 nm respectively, and the raised section on one side of ablated regions where there is discontinuity in the gradient is a known artifact of the measurement system [20].

Fig. 2
Fig. 2

Etch depth as a function of exposure time. The open circles are for [100] single crystal and the closed circles for polycrystalline material. The dashed line indicates an average etch rate of 6.4x10−4 nm/pulse. Conditions: 170 mW at 14 kHz.

Fig. 3
Fig. 3

Comparison of the etch profile with an inverted Gaussian profile of width equal to the measured beam waist. Conditions: 14 kHz pulse rate in air.

Fig. 4
Fig. 4

Etch rate as a function of laser fluence. The data point shown for the fluence above the ablation threshold corresponds to the average ablation rate per pulse for 60 pulses of fluence 110 J/cm2. Pulse rate 7.5 kHz.

Fig. 5
Fig. 5

NEXAFS spectrum for the laser etched surface compared with spectra for high oriented pyrolitic graphite (HOPG) and the un-etched surface. Feature A indicates sp 2 hybridized carbon which appears in the etched and un-etched spectra due to presence of graphite containing locator grids.

Fig. 6
Fig. 6

Comparison of the intrapulse etch rate as a function of pulse irradiance (filled circles) with etching for 20 ps pulses at 266 nm and 78 MHz repetition rate reported in ref [16] (hollow circles) and for 15 ns pulses at 248 nm and pulse rate <100 Hz [15] (hollow squares).

Metrics