Abstract

We present a methodology for rapidly acquiring broadband two-photon absorption (2PA) spectra by means of a compact two-channel femtosecond fluorescence excitation apparatus. This technique is insensitive to differences in excitation and collection geometries as well as detection efficiencies between the sample and reference, in addition to variations in average power, pulse duration and spatial beam profile, as it utilizes sequential measurement of the sample and reference in each of the two cell positions. Our approach eliminates the need to determine the fluorescence quantum yields of the sample and reference, as it allows measurement of emission from samples at a common specified wavelength. These attributes allow for acquisition of 2PA spectra with an estimated accuracy of ± 15% (limited almost exclusively by the uncertainty in the 2PA cross section for the reference standards) over an excitation range of 550-1600 nanometers with a typical time per spectrum of ~30-60 minutes. We have applied this technique to determine the 2PA spectra of six commercially available organic dyes over a wide range of excitation wavelengths (670-1600 nm), which can be used as secondary reference standards emitting in the red and near-infrared spectral region (600-1000 nm). We have also characterized some of these compounds using the femtosecond-pulsed Z-scan method and found very good agreement with the fluorescence-based measurements.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989).
    [CrossRef] [PubMed]
  2. N. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni, “Optimizing two-photon absorption for volumetric optical data storage,” J. Opt. Soc. Am. B 24(8), 1874–1885 (2007) (and references therein).
    [CrossRef]
  3. J. H. Strickler and W. W. Webb, “3-D optical data storage by two-photon excitation,” Adv. Mater. (Deerfield Beach Fla.) 5(6), 479–481 (1993).
    [CrossRef]
  4. R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, “Protein-based three-dimensional memories and associative processors,” in Molecular Electronics, M.A. Ratner and J. Jortner, eds. (Blackwell Science, 1997).
  5. S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
    [CrossRef] [PubMed]
  6. J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Laser Med. Surg. 15(5), 201–204 (1997).
    [PubMed]
  7. A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler, “Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 7(6), 971–975 (2001).
    [CrossRef]
  8. H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
    [CrossRef]
  9. J. R. Starkey, A. K. Rebane, M. A. Drobizhev, F. Meng, A. Gong, A. Elliott, K. McInnerney, and C. W. Spangler, “New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse,” Clin. Cancer Res. 14(20), 6564–6573 (2008).
    [CrossRef] [PubMed]
  10. T. Karu and V. Letokhov, “Possible benefits of two-quantum excitation in ALA-PDT?” J. Photochem. Photobiol. B 23(2-3), 261–262 (1994).
    [CrossRef] [PubMed]
  11. D. Leupold and I. E. Kochevar, “Multiphoton photochemistry in biological systems. Introduction,” Photochem. Photobiol. 66(5), 562–565 (1997).
    [CrossRef]
  12. D. Gao, R. R. Agayan, H. Xu, M. A. Philbert, and R. Kopelman, “Nanoparticles for two-photon photodynamic therapy in living cells,” Nano Lett. 6(11), 2383–2386 (2006).
    [CrossRef] [PubMed]
  13. C. W. Spangler, “Recent development in the design of organic materials for optical power limiting,” J. Mater. Chem. 9(9), 2013–2020 (1999).
    [CrossRef]
  14. J. M. Hales, M. Cozzuol, T. E. O. Screen, H. L. Anderson, and J. W. Perry, “Metalloporphyrin polymer with temporally agile, broadband nonlinear absorption for optical limiting in the near infrared,” Opt. Express 17(21), 18478–18488 (2009).
    [CrossRef] [PubMed]
  15. G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67(17), 2433–2435 (1995).
    [CrossRef]
  16. D. I. Kovsh, S. Yang, D. J. Hagan, and E. W. Van Stryland, “Nonlinear optical beam propagation for optical limiting,” Appl. Opt. 38(24), 5168–5180 (1999).
    [CrossRef] [PubMed]
  17. J. Oberlé, L. Bramerie, G. Jonusauskas, and C. Rullière, “Optical-limiting properties of a push-pull diphenyl-butadiene,” Opt. Commun. 169(1–6), 325–332 (1999).
    [CrossRef]
  18. Y. Morel, A. Ibanez, C. Nguefack, C. Andraud, A. Collet, J.-F. Nicoud, and P. L. Baldeck, “Nonlinear absorption spectra of transparent organic crystals for optical limiting applications at visible wavelengths,” Synth. Met. 115(1–3), 265–268 (2000).
    [CrossRef]
  19. J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22(24), 1843–1845 (1997).
    [CrossRef] [PubMed]
  20. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  21. M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
    [CrossRef] [PubMed]
  22. B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72(6), 2405–2412 (1997).
    [CrossRef] [PubMed]
  23. R. Gauderon and C. J. R. Sheppard, “Effect of a finite-size pinhole on noise performance in single-, two-, and three-photon confocal fluorescence microscopy,” Appl. Opt. 38(16), 3562–3565 (1999).
    [CrossRef] [PubMed]
  24. G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000).
    [CrossRef] [PubMed]
  25. Y. Imanishi, K. H. Lodowski, and Y. Koutalos, “Two-photon microscopy: shedding light on the chemistry of vision,” Biochemistry 46(34), 9674–9684 (2007).
    [CrossRef] [PubMed]
  26. J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [CrossRef]
  27. S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst. 7(4), 411–415 (1998).
    [CrossRef]
  28. K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. V. Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13(12), 837–849 (2000).
    [CrossRef]
  29. H.-B. Sun, T. Kawakami, Y. Xu, J.-Y. Ye, S. Matuso, H. Misawa, M. Miwa, and R. Kaneko, “Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption,” Opt. Lett. 25(15), 1110–1112 (2000).
    [CrossRef] [PubMed]
  30. M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process. 73(5), 561–566 (2001).
    [CrossRef]
  31. I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
    [CrossRef] [PubMed]
  32. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
    [CrossRef] [PubMed]
  33. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
    [CrossRef] [PubMed]
  34. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
    [CrossRef]
  35. M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37(31), 7352–7356 (1998).
    [CrossRef] [PubMed]
  36. D. Beljonne, W. Wenseleers, E. Zojer, Z. G. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, and J. L. Bredas, “Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds,” Adv. Funct. Mater. 12(9), 631–641 (2002).
    [CrossRef]
  37. M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
    [CrossRef] [PubMed]
  38. M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
    [CrossRef]
  39. M. Rumi, S. J. K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S. R. Marder, and J. W. Perry, “Tetrastyrylarene derivatives: comparison of one- and two-photon spectroscopic properties with distyrylarene analogues,” J. Phys. Chem. C 112(21), 8061–8071 (2008).
    [CrossRef]
  40. M. Rumi and J. W. Perry, “Two-photon absorption: an overview of measurements and principles,” Adv. Opt. Photon. 2(4), 451–518 (2010).
    [CrossRef]
  41. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
    [CrossRef] [PubMed]
  42. H.-C. Lin, H. Kim, S. Barlow, J. M. Hales, J. W. Perry, and S. R. Marder, “Synthesis and linear and nonlinear optical properties of metal-terminated bis(dioxaborine) polymethines,” Chem. Commun. (Camb.) 47(2), 782–784 (2010).
    [CrossRef] [PubMed]
  43. M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Color hues in red fluorescent proteins are due to internal quadratic Stark effect,” J. Phys. Chem. B 113(39), 12860–12864 (2009).
    [CrossRef] [PubMed]
  44. K. D. Belfield, S. Yao, and M. V. Bondar, “Organic multiphoton absorbing materials and devices,” in Introduction to Organic Electronic and Optoelectronic Materials and Devices, S.-S. Sun and L.R. Dalton, eds. (CRC Press, 2008), pp. 573–606.
  45. M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
    [CrossRef]
  46. S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One- and two-photon spectroscopy of donor-acceptor-donor di(styryl)benzene derivatives: Effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
    [CrossRef]
  47. S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
    [CrossRef] [PubMed]
  48. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
    [CrossRef] [PubMed]
  49. N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE 7049, 70490Y (2008).
    [CrossRef]
  50. M. Faraggi, P. Peretz, I. Rosenthal, and D. Weinraub, “Solution properties of dye lasers. Rhodamine B in alcohols,” Chem. Phys. Lett. 103(4), 310–314 (1984).
    [CrossRef]

2010 (4)

M. Rumi and J. W. Perry, “Two-photon absorption: an overview of measurements and principles,” Adv. Opt. Photon. 2(4), 451–518 (2010).
[CrossRef]

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

H.-C. Lin, H. Kim, S. Barlow, J. M. Hales, J. W. Perry, and S. R. Marder, “Synthesis and linear and nonlinear optical properties of metal-terminated bis(dioxaborine) polymethines,” Chem. Commun. (Camb.) 47(2), 782–784 (2010).
[CrossRef] [PubMed]

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

2009 (3)

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Color hues in red fluorescent proteins are due to internal quadratic Stark effect,” J. Phys. Chem. B 113(39), 12860–12864 (2009).
[CrossRef] [PubMed]

J. M. Hales, M. Cozzuol, T. E. O. Screen, H. L. Anderson, and J. W. Perry, “Metalloporphyrin polymer with temporally agile, broadband nonlinear absorption for optical limiting in the near infrared,” Opt. Express 17(21), 18478–18488 (2009).
[CrossRef] [PubMed]

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
[CrossRef] [PubMed]

2008 (5)

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[CrossRef] [PubMed]

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[CrossRef]

J. R. Starkey, A. K. Rebane, M. A. Drobizhev, F. Meng, A. Gong, A. Elliott, K. McInnerney, and C. W. Spangler, “New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse,” Clin. Cancer Res. 14(20), 6564–6573 (2008).
[CrossRef] [PubMed]

M. Rumi, S. J. K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S. R. Marder, and J. W. Perry, “Tetrastyrylarene derivatives: comparison of one- and two-photon spectroscopic properties with distyrylarene analogues,” J. Phys. Chem. C 112(21), 8061–8071 (2008).
[CrossRef]

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE 7049, 70490Y (2008).
[CrossRef]

2007 (3)

2006 (2)

D. Gao, R. R. Agayan, H. Xu, M. A. Philbert, and R. Kopelman, “Nanoparticles for two-photon photodynamic therapy in living cells,” Nano Lett. 6(11), 2383–2386 (2006).
[CrossRef] [PubMed]

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

2002 (3)

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
[CrossRef] [PubMed]

S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One- and two-photon spectroscopy of donor-acceptor-donor di(styryl)benzene derivatives: Effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[CrossRef]

D. Beljonne, W. Wenseleers, E. Zojer, Z. G. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, and J. L. Bredas, “Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds,” Adv. Funct. Mater. 12(9), 631–641 (2002).
[CrossRef]

2001 (2)

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process. 73(5), 561–566 (2001).
[CrossRef]

A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler, “Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 7(6), 971–975 (2001).
[CrossRef]

2000 (7)

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[CrossRef] [PubMed]

Y. Morel, A. Ibanez, C. Nguefack, C. Andraud, A. Collet, J.-F. Nicoud, and P. L. Baldeck, “Nonlinear absorption spectra of transparent organic crystals for optical limiting applications at visible wavelengths,” Synth. Met. 115(1–3), 265–268 (2000).
[CrossRef]

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. V. Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13(12), 837–849 (2000).
[CrossRef]

H.-B. Sun, T. Kawakami, Y. Xu, J.-Y. Ye, S. Matuso, H. Misawa, M. Miwa, and R. Kaneko, “Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption,” Opt. Lett. 25(15), 1110–1112 (2000).
[CrossRef] [PubMed]

G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000).
[CrossRef] [PubMed]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

1999 (5)

R. Gauderon and C. J. R. Sheppard, “Effect of a finite-size pinhole on noise performance in single-, two-, and three-photon confocal fluorescence microscopy,” Appl. Opt. 38(16), 3562–3565 (1999).
[CrossRef] [PubMed]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

D. I. Kovsh, S. Yang, D. J. Hagan, and E. W. Van Stryland, “Nonlinear optical beam propagation for optical limiting,” Appl. Opt. 38(24), 5168–5180 (1999).
[CrossRef] [PubMed]

J. Oberlé, L. Bramerie, G. Jonusauskas, and C. Rullière, “Optical-limiting properties of a push-pull diphenyl-butadiene,” Opt. Commun. 169(1–6), 325–332 (1999).
[CrossRef]

C. W. Spangler, “Recent development in the design of organic materials for optical power limiting,” J. Mater. Chem. 9(9), 2013–2020 (1999).
[CrossRef]

1998 (3)

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst. 7(4), 411–415 (1998).
[CrossRef]

M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37(31), 7352–7356 (1998).
[CrossRef] [PubMed]

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

1997 (4)

D. Leupold and I. E. Kochevar, “Multiphoton photochemistry in biological systems. Introduction,” Photochem. Photobiol. 66(5), 562–565 (1997).
[CrossRef]

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72(6), 2405–2412 (1997).
[CrossRef] [PubMed]

J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22(24), 1843–1845 (1997).
[CrossRef] [PubMed]

J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Laser Med. Surg. 15(5), 201–204 (1997).
[PubMed]

1996 (1)

1995 (1)

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67(17), 2433–2435 (1995).
[CrossRef]

1994 (1)

T. Karu and V. Letokhov, “Possible benefits of two-quantum excitation in ALA-PDT?” J. Photochem. Photobiol. B 23(2-3), 261–262 (1994).
[CrossRef] [PubMed]

1993 (1)

J. H. Strickler and W. W. Webb, “3-D optical data storage by two-photon excitation,” Adv. Mater. (Deerfield Beach Fla.) 5(6), 479–481 (1993).
[CrossRef]

1989 (1)

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989).
[CrossRef] [PubMed]

1984 (1)

M. Faraggi, P. Peretz, I. Rosenthal, and D. Weinraub, “Solution properties of dye lasers. Rhodamine B in alcohols,” Chem. Phys. Lett. 103(4), 310–314 (1984).
[CrossRef]

Agayan, R. R.

D. Gao, R. R. Agayan, H. Xu, M. A. Philbert, and R. Kopelman, “Nanoparticles for two-photon photodynamic therapy in living cells,” Nano Lett. 6(11), 2383–2386 (2006).
[CrossRef] [PubMed]

Albota, M.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Albota, M. A.

Ananthavel, S. P.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Anderson, H. L.

J. M. Hales, M. Cozzuol, T. E. O. Screen, H. L. Anderson, and J. W. Perry, “Metalloporphyrin polymer with temporally agile, broadband nonlinear absorption for optical limiting in the near infrared,” Opt. Express 17(21), 18478–18488 (2009).
[CrossRef] [PubMed]

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[CrossRef]

Andraud, C.

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
[CrossRef] [PubMed]

Y. Morel, A. Ibanez, C. Nguefack, C. Andraud, A. Collet, J.-F. Nicoud, and P. L. Baldeck, “Nonlinear absorption spectra of transparent organic crystals for optical limiting applications at visible wavelengths,” Synth. Met. 115(1–3), 265–268 (2000).
[CrossRef]

Balaz, M.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[CrossRef]

Baldeck, P. L.

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
[CrossRef] [PubMed]

Y. Morel, A. Ibanez, C. Nguefack, C. Andraud, A. Collet, J.-F. Nicoud, and P. L. Baldeck, “Nonlinear absorption spectra of transparent organic crystals for optical limiting applications at visible wavelengths,” Synth. Met. 115(1–3), 265–268 (2000).
[CrossRef]

Barlow, S.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

H.-C. Lin, H. Kim, S. Barlow, J. M. Hales, J. W. Perry, and S. R. Marder, “Synthesis and linear and nonlinear optical properties of metal-terminated bis(dioxaborine) polymethines,” Chem. Commun. (Camb.) 47(2), 782–784 (2010).
[CrossRef] [PubMed]

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

M. Rumi, S. J. K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S. R. Marder, and J. W. Perry, “Tetrastyrylarene derivatives: comparison of one- and two-photon spectroscopic properties with distyrylarene analogues,” J. Phys. Chem. C 112(21), 8061–8071 (2008).
[CrossRef]

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Belfield, K. D.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. V. Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13(12), 837–849 (2000).
[CrossRef]

Beljonne, D.

D. Beljonne, W. Wenseleers, E. Zojer, Z. G. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, and J. L. Bredas, “Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds,” Adv. Funct. Mater. 12(9), 631–641 (2002).
[CrossRef]

S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One- and two-photon spectroscopy of donor-acceptor-donor di(styryl)benzene derivatives: Effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Beuerman, E.

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE 7049, 70490Y (2008).
[CrossRef]

Beverina, L.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

Bhawalkar, J. D.

J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Laser Med. Surg. 15(5), 201–204 (1997).
[PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67(17), 2433–2435 (1995).
[CrossRef]

Biesso, A.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

Bishop, M.

M. Rumi, S. J. K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S. R. Marder, and J. W. Perry, “Tetrastyrylarene derivatives: comparison of one- and two-photon spectroscopic properties with distyrylarene analogues,” J. Phys. Chem. C 112(21), 8061–8071 (2008).
[CrossRef]

Bouriau, M.

Bramerie, L.

J. Oberlé, L. Bramerie, G. Jonusauskas, and C. Rullière, “Optical-limiting properties of a push-pull diphenyl-butadiene,” Opt. Commun. 169(1–6), 325–332 (1999).
[CrossRef]

Bredas, J. L.

D. Beljonne, W. Wenseleers, E. Zojer, Z. G. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, and J. L. Bredas, “Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds,” Adv. Funct. Mater. 12(9), 631–641 (2002).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

Brédas, J. L.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Brédas, J.-L.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One- and two-photon spectroscopy of donor-acceptor-donor di(styryl)benzene derivatives: Effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

Chen, V. W.

Chung, S.-J.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

Collet, A.

Y. Morel, A. Ibanez, C. Nguefack, C. Andraud, A. Collet, J.-F. Nicoud, and P. L. Baldeck, “Nonlinear absorption spectra of transparent organic crystals for optical limiting applications at visible wavelengths,” Synth. Met. 115(1–3), 265–268 (2000).
[CrossRef]

Collins, H. A.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[CrossRef]

Cozzuol, M.

Cumpston, B. H.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Dahlstedt, E.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[CrossRef]

Day, M. W.

S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One- and two-photon spectroscopy of donor-acceptor-donor di(styryl)benzene derivatives: Effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[CrossRef]

Dong, W.

Drobizhev, M.

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Color hues in red fluorescent proteins are due to internal quadratic Stark effect,” J. Phys. Chem. B 113(39), 12860–12864 (2009).
[CrossRef] [PubMed]

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
[CrossRef] [PubMed]

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[CrossRef]

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE 7049, 70490Y (2008).
[CrossRef]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[CrossRef] [PubMed]

N. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni, “Optimizing two-photon absorption for volumetric optical data storage,” J. Opt. Soc. Am. B 24(8), 1874–1885 (2007) (and references therein).
[CrossRef]

A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler, “Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 7(6), 971–975 (2001).
[CrossRef]

Drobizhev, M. A.

J. R. Starkey, A. K. Rebane, M. A. Drobizhev, F. Meng, A. Gong, A. Elliott, K. McInnerney, and C. W. Spangler, “New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse,” Clin. Cancer Res. 14(20), 6564–6573 (2008).
[CrossRef] [PubMed]

Dyer, D. L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Ehrlich, J. E.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22(24), 1843–1845 (1997).
[CrossRef] [PubMed]

Elliott, A.

J. R. Starkey, A. K. Rebane, M. A. Drobizhev, F. Meng, A. Gong, A. Elliott, K. McInnerney, and C. W. Spangler, “New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse,” Clin. Cancer Res. 14(20), 6564–6573 (2008).
[CrossRef] [PubMed]

Erskine, L. L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Faraggi, M.

M. Faraggi, P. Peretz, I. Rosenthal, and D. Weinraub, “Solution properties of dye lasers. Rhodamine B in alcohols,” Chem. Phys. Lett. 103(4), 310–314 (1984).
[CrossRef]

Fu, J.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

Fu, J. Y.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Gao, D.

D. Gao, R. R. Agayan, H. Xu, M. A. Philbert, and R. Kopelman, “Nanoparticles for two-photon photodynamic therapy in living cells,” Nano Lett. 6(11), 2383–2386 (2006).
[CrossRef] [PubMed]

Gauderon, R.

Gong, A.

J. R. Starkey, A. K. Rebane, M. A. Drobizhev, F. Meng, A. Gong, A. Elliott, K. McInnerney, and C. W. Spangler, “New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse,” Clin. Cancer Res. 14(20), 6564–6573 (2008).
[CrossRef] [PubMed]

Gratton, E.

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72(6), 2405–2412 (1997).
[CrossRef] [PubMed]

Hagan, D. J.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

D. I. Kovsh, S. Yang, D. J. Hagan, and E. W. Van Stryland, “Nonlinear optical beam propagation for optical limiting,” Appl. Opt. 38(24), 5168–5180 (1999).
[CrossRef] [PubMed]

Hales, J. M.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

H.-C. Lin, H. Kim, S. Barlow, J. M. Hales, J. W. Perry, and S. R. Marder, “Synthesis and linear and nonlinear optical properties of metal-terminated bis(dioxaborine) polymethines,” Chem. Commun. (Camb.) 47(2), 782–784 (2010).
[CrossRef] [PubMed]

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

J. M. Hales, M. Cozzuol, T. E. O. Screen, H. L. Anderson, and J. W. Perry, “Metalloporphyrin polymer with temporally agile, broadband nonlinear absorption for optical limiting in the near infrared,” Opt. Express 17(21), 18478–18488 (2009).
[CrossRef] [PubMed]

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

Haske, W.

He, G. S.

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67(17), 2433–2435 (1995).
[CrossRef]

Heikal, A. A.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Hess, S. E.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Hu, Z.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

Hu, Z. Y.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22(24), 1843–1845 (1997).
[CrossRef] [PubMed]

Hughes, T. E.

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
[CrossRef] [PubMed]

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Color hues in red fluorescent proteins are due to internal quadratic Stark effect,” J. Phys. Chem. B 113(39), 12860–12864 (2009).
[CrossRef] [PubMed]

Ibanez, A.

Y. Morel, A. Ibanez, C. Nguefack, C. Andraud, A. Collet, J.-F. Nicoud, and P. L. Baldeck, “Nonlinear absorption spectra of transparent organic crystals for optical limiting applications at visible wavelengths,” Synth. Met. 115(1–3), 265–268 (2000).
[CrossRef]

Imanishi, Y.

Y. Imanishi, K. H. Lodowski, and Y. Koutalos, “Two-photon microscopy: shedding light on the chemistry of vision,” Biochemistry 46(34), 9674–9684 (2007).
[CrossRef] [PubMed]

Jonusauskas, G.

J. Oberlé, L. Bramerie, G. Jonusauskas, and C. Rullière, “Optical-limiting properties of a push-pull diphenyl-butadiene,” Opt. Commun. 169(1–6), 325–332 (1999).
[CrossRef]

Juodkazis, S.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process. 73(5), 561–566 (2001).
[CrossRef]

Kaneko, R.

Karotki, A.

A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler, “Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 7(6), 971–975 (2001).
[CrossRef]

Karu, T.

T. Karu and V. Letokhov, “Possible benefits of two-quantum excitation in ALA-PDT?” J. Photochem. Photobiol. B 23(2-3), 261–262 (1994).
[CrossRef] [PubMed]

Kawakami, T.

Kawata, S.

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[CrossRef] [PubMed]

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst. 7(4), 411–415 (1998).
[CrossRef]

Kawata, Y.

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[CrossRef] [PubMed]

Khurana, M.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[CrossRef]

Kim, H.

H.-C. Lin, H. Kim, S. Barlow, J. M. Hales, J. W. Perry, and S. R. Marder, “Synthesis and linear and nonlinear optical properties of metal-terminated bis(dioxaborine) polymethines,” Chem. Commun. (Camb.) 47(2), 782–784 (2010).
[CrossRef] [PubMed]

Kochevar, I. E.

D. Leupold and I. E. Kochevar, “Multiphoton photochemistry in biological systems. Introduction,” Photochem. Photobiol. 66(5), 562–565 (1997).
[CrossRef]

Kogej, T.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Kopelman, R.

D. Gao, R. R. Agayan, H. Xu, M. A. Philbert, and R. Kopelman, “Nanoparticles for two-photon photodynamic therapy in living cells,” Nano Lett. 6(11), 2383–2386 (2006).
[CrossRef] [PubMed]

Koutalos, Y.

Y. Imanishi, K. H. Lodowski, and Y. Koutalos, “Two-photon microscopy: shedding light on the chemistry of vision,” Biochemistry 46(34), 9674–9684 (2007).
[CrossRef] [PubMed]

Kovsh, D. I.

Kruk, M.

A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler, “Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 7(6), 971–975 (2001).
[CrossRef]

Kuebler, S. M.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Kuimova, M. K.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[CrossRef]

Kumar, N. D.

J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Laser Med. Surg. 15(5), 201–204 (1997).
[PubMed]

Lee, I. Y. S.

Lee, I.-Y. S.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Letokhov, V.

T. Karu and V. Letokhov, “Possible benefits of two-quantum excitation in ALA-PDT?” J. Photochem. Photobiol. B 23(2-3), 261–262 (1994).
[CrossRef] [PubMed]

Leupold, D.

D. Leupold and I. E. Kochevar, “Multiphoton photochemistry in biological systems. Introduction,” Photochem. Photobiol. 66(5), 562–565 (1997).
[CrossRef]

Levin, M. D.

S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One- and two-photon spectroscopy of donor-acceptor-donor di(styryl)benzene derivatives: Effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[CrossRef]

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Lin, H.-C.

H.-C. Lin, H. Kim, S. Barlow, J. M. Hales, J. W. Perry, and S. R. Marder, “Synthesis and linear and nonlinear optical properties of metal-terminated bis(dioxaborine) polymethines,” Chem. Commun. (Camb.) 47(2), 782–784 (2010).
[CrossRef] [PubMed]

Liu, J.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. V. Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13(12), 837–849 (2000).
[CrossRef]

Liu, Y.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. V. Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13(12), 837–849 (2000).
[CrossRef]

Lodowski, K. H.

Y. Imanishi, K. H. Lodowski, and Y. Koutalos, “Two-photon microscopy: shedding light on the chemistry of vision,” Biochemistry 46(34), 9674–9684 (2007).
[CrossRef] [PubMed]

Makarov, N.

Makarov, N. S.

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
[CrossRef] [PubMed]

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Color hues in red fluorescent proteins are due to internal quadratic Stark effect,” J. Phys. Chem. B 113(39), 12860–12864 (2009).
[CrossRef] [PubMed]

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE 7049, 70490Y (2008).
[CrossRef]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[CrossRef] [PubMed]

Marder, S. R.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

H.-C. Lin, H. Kim, S. Barlow, J. M. Hales, J. W. Perry, and S. R. Marder, “Synthesis and linear and nonlinear optical properties of metal-terminated bis(dioxaborine) polymethines,” Chem. Commun. (Camb.) 47(2), 782–784 (2010).
[CrossRef] [PubMed]

M. Rumi, S. J. K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S. R. Marder, and J. W. Perry, “Tetrastyrylarene derivatives: comparison of one- and two-photon spectroscopic properties with distyrylarene analogues,” J. Phys. Chem. C 112(21), 8061–8071 (2008).
[CrossRef]

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One- and two-photon spectroscopy of donor-acceptor-donor di(styryl)benzene derivatives: Effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[CrossRef]

D. Beljonne, W. Wenseleers, E. Zojer, Z. G. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, and J. L. Bredas, “Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds,” Adv. Funct. Mater. 12(9), 631–641 (2002).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22(24), 1843–1845 (1997).
[CrossRef] [PubMed]

Mariampillai, A.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[CrossRef]

Martineau, C.

Maruo, S.

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst. 7(4), 411–415 (1998).
[CrossRef]

Masters, B. R.

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72(6), 2405–2412 (1997).
[CrossRef] [PubMed]

Matichak, J.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Matsuo, S.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process. 73(5), 561–566 (2001).
[CrossRef]

Matuso, S.

McCord-Maughon, D.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

McInnerney, K.

J. R. Starkey, A. K. Rebane, M. A. Drobizhev, F. Meng, A. Gong, A. Elliott, K. McInnerney, and C. W. Spangler, “New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse,” Clin. Cancer Res. 14(20), 6564–6573 (2008).
[CrossRef] [PubMed]

Meng, F.

J. R. Starkey, A. K. Rebane, M. A. Drobizhev, F. Meng, A. Gong, A. Elliott, K. McInnerney, and C. W. Spangler, “New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse,” Clin. Cancer Res. 14(20), 6564–6573 (2008).
[CrossRef] [PubMed]

Meyer-Friedrichsen, T.

M. Rumi, S. J. K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S. R. Marder, and J. W. Perry, “Tetrastyrylarene derivatives: comparison of one- and two-photon spectroscopic properties with distyrylarene analogues,” J. Phys. Chem. C 112(21), 8061–8071 (2008).
[CrossRef]

Misawa, H.

Miwa, M.

Morel, Y.

Y. Morel, A. Ibanez, C. Nguefack, C. Andraud, A. Collet, J.-F. Nicoud, and P. L. Baldeck, “Nonlinear absorption spectra of transparent organic crystals for optical limiting applications at visible wavelengths,” Synth. Met. 115(1–3), 265–268 (2000).
[CrossRef]

Moriyama, E. H.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[CrossRef]

Nguefack, C.

Y. Morel, A. Ibanez, C. Nguefack, C. Andraud, A. Collet, J.-F. Nicoud, and P. L. Baldeck, “Nonlinear absorption spectra of transparent organic crystals for optical limiting applications at visible wavelengths,” Synth. Met. 115(1–3), 265–268 (2000).
[CrossRef]

Nickel, E.

A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler, “Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 7(6), 971–975 (2001).
[CrossRef]

Nicoud, J.-F.

Y. Morel, A. Ibanez, C. Nguefack, C. Andraud, A. Collet, J.-F. Nicoud, and P. L. Baldeck, “Nonlinear absorption spectra of transparent organic crystals for optical limiting applications at visible wavelengths,” Synth. Met. 115(1–3), 265–268 (2000).
[CrossRef]

Oberlé, J.

J. Oberlé, L. Bramerie, G. Jonusauskas, and C. Rullière, “Optical-limiting properties of a push-pull diphenyl-butadiene,” Opt. Commun. 169(1–6), 325–332 (1999).
[CrossRef]

Odani, T.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

Ohira, S.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Padilha, L. A.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

Pagani, G. A.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

Parker, T. C.

S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One- and two-photon spectroscopy of donor-acceptor-donor di(styryl)benzene derivatives: Effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989).
[CrossRef] [PubMed]

Patterson, G. H.

G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000).
[CrossRef] [PubMed]

Peretz, P.

M. Faraggi, P. Peretz, I. Rosenthal, and D. Weinraub, “Solution properties of dye lasers. Rhodamine B in alcohols,” Chem. Phys. Lett. 103(4), 310–314 (1984).
[CrossRef]

Perry, J. W.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

H.-C. Lin, H. Kim, S. Barlow, J. M. Hales, J. W. Perry, and S. R. Marder, “Synthesis and linear and nonlinear optical properties of metal-terminated bis(dioxaborine) polymethines,” Chem. Commun. (Camb.) 47(2), 782–784 (2010).
[CrossRef] [PubMed]

M. Rumi and J. W. Perry, “Two-photon absorption: an overview of measurements and principles,” Adv. Opt. Photon. 2(4), 451–518 (2010).
[CrossRef]

J. M. Hales, M. Cozzuol, T. E. O. Screen, H. L. Anderson, and J. W. Perry, “Metalloporphyrin polymer with temporally agile, broadband nonlinear absorption for optical limiting in the near infrared,” Opt. Express 17(21), 18478–18488 (2009).
[CrossRef] [PubMed]

M. Rumi, S. J. K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S. R. Marder, and J. W. Perry, “Tetrastyrylarene derivatives: comparison of one- and two-photon spectroscopic properties with distyrylarene analogues,” J. Phys. Chem. C 112(21), 8061–8071 (2008).
[CrossRef]

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One- and two-photon spectroscopy of donor-acceptor-donor di(styryl)benzene derivatives: Effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[CrossRef]

D. Beljonne, W. Wenseleers, E. Zojer, Z. G. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, and J. L. Bredas, “Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds,” Adv. Funct. Mater. 12(9), 631–641 (2002).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22(24), 1843–1845 (1997).
[CrossRef] [PubMed]

Philbert, M. A.

D. Gao, R. R. Agayan, H. Xu, M. A. Philbert, and R. Kopelman, “Nanoparticles for two-photon photodynamic therapy in living cells,” Nano Lett. 6(11), 2383–2386 (2006).
[CrossRef] [PubMed]

Phillips, D.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[CrossRef]

Piston, D. W.

G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000).
[CrossRef] [PubMed]

Pond, S. J. K.

M. Rumi, S. J. K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S. R. Marder, and J. W. Perry, “Tetrastyrylarene derivatives: comparison of one- and two-photon spectroscopic properties with distyrylarene analogues,” J. Phys. Chem. C 112(21), 8061–8071 (2008).
[CrossRef]

D. Beljonne, W. Wenseleers, E. Zojer, Z. G. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, and J. L. Bredas, “Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds,” Adv. Funct. Mater. 12(9), 631–641 (2002).
[CrossRef]

S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One- and two-photon spectroscopy of donor-acceptor-donor di(styryl)benzene derivatives: Effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[CrossRef]

Prasad, P. N.

J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Laser Med. Surg. 15(5), 201–204 (1997).
[PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67(17), 2433–2435 (1995).
[CrossRef]

Qin, J.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Rebane, A.

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
[CrossRef] [PubMed]

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Color hues in red fluorescent proteins are due to internal quadratic Stark effect,” J. Phys. Chem. B 113(39), 12860–12864 (2009).
[CrossRef] [PubMed]

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE 7049, 70490Y (2008).
[CrossRef]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[CrossRef] [PubMed]

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[CrossRef]

N. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni, “Optimizing two-photon absorption for volumetric optical data storage,” J. Opt. Soc. Am. B 24(8), 1874–1885 (2007) (and references therein).
[CrossRef]

A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler, “Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 7(6), 971–975 (2001).
[CrossRef]

Rebane, A. K.

J. R. Starkey, A. K. Rebane, M. A. Drobizhev, F. Meng, A. Gong, A. Elliott, K. McInnerney, and C. W. Spangler, “New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse,” Clin. Cancer Res. 14(20), 6564–6573 (2008).
[CrossRef] [PubMed]

Ren, X.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. V. Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13(12), 837–849 (2000).
[CrossRef]

Rentzepis, P. M.

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989).
[CrossRef] [PubMed]

Rockel, H.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

Röckel, H.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22(24), 1843–1845 (1997).
[CrossRef] [PubMed]

Rosenthal, I.

M. Faraggi, P. Peretz, I. Rosenthal, and D. Weinraub, “Solution properties of dye lasers. Rhodamine B in alcohols,” Chem. Phys. Lett. 103(4), 310–314 (1984).
[CrossRef]

Rullière, C.

J. Oberlé, L. Bramerie, G. Jonusauskas, and C. Rullière, “Optical-limiting properties of a push-pull diphenyl-butadiene,” Opt. Commun. 169(1–6), 325–332 (1999).
[CrossRef]

Rumi, M.

M. Rumi and J. W. Perry, “Two-photon absorption: an overview of measurements and principles,” Adv. Opt. Photon. 2(4), 451–518 (2010).
[CrossRef]

M. Rumi, S. J. K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S. R. Marder, and J. W. Perry, “Tetrastyrylarene derivatives: comparison of one- and two-photon spectroscopic properties with distyrylarene analogues,” J. Phys. Chem. C 112(21), 8061–8071 (2008).
[CrossRef]

S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One- and two-photon spectroscopy of donor-acceptor-donor di(styryl)benzene derivatives: Effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Schafer, K. J.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. V. Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13(12), 837–849 (2000).
[CrossRef]

Schmidt, K.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

Screen, T. E. O.

Sheppard, C. J. R.

Shuai, Z.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

Shuai, Z. G.

D. Beljonne, W. Wenseleers, E. Zojer, Z. G. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, and J. L. Bredas, “Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds,” Adv. Funct. Mater. 12(9), 631–641 (2002).
[CrossRef]

So, P. T. C.

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72(6), 2405–2412 (1997).
[CrossRef] [PubMed]

Spahni, H.

Spangler, C. W.

J. R. Starkey, A. K. Rebane, M. A. Drobizhev, F. Meng, A. Gong, A. Elliott, K. McInnerney, and C. W. Spangler, “New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse,” Clin. Cancer Res. 14(20), 6564–6573 (2008).
[CrossRef] [PubMed]

A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler, “Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 7(6), 971–975 (2001).
[CrossRef]

C. W. Spangler, “Recent development in the design of organic materials for optical power limiting,” J. Mater. Chem. 9(9), 2013–2020 (1999).
[CrossRef]

Starkey, J.

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE 7049, 70490Y (2008).
[CrossRef]

Starkey, J. R.

J. R. Starkey, A. K. Rebane, M. A. Drobizhev, F. Meng, A. Gong, A. Elliott, K. McInnerney, and C. W. Spangler, “New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse,” Clin. Cancer Res. 14(20), 6564–6573 (2008).
[CrossRef] [PubMed]

Strickler, J. H.

J. H. Strickler and W. W. Webb, “3-D optical data storage by two-photon excitation,” Adv. Mater. (Deerfield Beach Fla.) 5(6), 479–481 (1993).
[CrossRef]

Stryland, E. W. V.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. V. Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13(12), 837–849 (2000).
[CrossRef]

Subramaniam, G.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Sun, H.-B.

Thayumanavan, S.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

Tillo, S.

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Color hues in red fluorescent proteins are due to internal quadratic Stark effect,” J. Phys. Chem. B 113(39), 12860–12864 (2009).
[CrossRef] [PubMed]

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
[CrossRef] [PubMed]

Van Stryland, E. W.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

D. I. Kovsh, S. Yang, D. J. Hagan, and E. W. Van Stryland, “Nonlinear optical beam propagation for optical limiting,” Appl. Opt. 38(24), 5168–5180 (1999).
[CrossRef] [PubMed]

Vogel, H.

D. Beljonne, W. Wenseleers, E. Zojer, Z. G. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, and J. L. Bredas, “Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds,” Adv. Funct. Mater. 12(9), 631–641 (2002).
[CrossRef]

Wang, I.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37(31), 7352–7356 (1998).
[CrossRef] [PubMed]

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
[CrossRef]

J. H. Strickler and W. W. Webb, “3-D optical data storage by two-photon excitation,” Adv. Mater. (Deerfield Beach Fla.) 5(6), 479–481 (1993).
[CrossRef]

Weinraub, D.

M. Faraggi, P. Peretz, I. Rosenthal, and D. Weinraub, “Solution properties of dye lasers. Rhodamine B in alcohols,” Chem. Phys. Lett. 103(4), 310–314 (1984).
[CrossRef]

Wenseleers, W.

D. Beljonne, W. Wenseleers, E. Zojer, Z. G. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, and J. L. Bredas, “Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds,” Adv. Funct. Mater. 12(9), 631–641 (2002).
[CrossRef]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Wilson, B. C.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[CrossRef]

Wolleb, H.

Wu, X. L.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22(24), 1843–1845 (1997).
[CrossRef] [PubMed]

Wu, X.-L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Xu, C.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37(31), 7352–7356 (1998).
[CrossRef] [PubMed]

C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
[CrossRef]

Xu, H.

D. Gao, R. R. Agayan, H. Xu, M. A. Philbert, and R. Kopelman, “Nanoparticles for two-photon photodynamic therapy in living cells,” Nano Lett. 6(11), 2383–2386 (2006).
[CrossRef] [PubMed]

Xu, Y.

Yang, S.

Yang, V. X. D.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[CrossRef]

Ye, A.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

Ye, J.-Y.

Yesudas, K.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Yi, Y.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

Zhan, X.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

Zhang, Q.

M. Rumi, S. J. K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S. R. Marder, and J. W. Perry, “Tetrastyrylarene derivatives: comparison of one- and two-photon spectroscopic properties with distyrylarene analogues,” J. Phys. Chem. C 112(21), 8061–8071 (2008).
[CrossRef]

Zhang, Y.

M. Rumi, S. J. K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S. R. Marder, and J. W. Perry, “Tetrastyrylarene derivatives: comparison of one- and two-photon spectroscopic properties with distyrylarene analogues,” J. Phys. Chem. C 112(21), 8061–8071 (2008).
[CrossRef]

Zhao, C. F.

J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Laser Med. Surg. 15(5), 201–204 (1997).
[PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67(17), 2433–2435 (1995).
[CrossRef]

Zheng, S.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Zojer, E.

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

D. Beljonne, W. Wenseleers, E. Zojer, Z. G. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, and J. L. Bredas, “Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds,” Adv. Funct. Mater. 12(9), 631–641 (2002).
[CrossRef]

Adv. Funct. Mater. (1)

D. Beljonne, W. Wenseleers, E. Zojer, Z. G. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, and J. L. Bredas, “Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds,” Adv. Funct. Mater. 12(9), 631–641 (2002).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

J. H. Strickler and W. W. Webb, “3-D optical data storage by two-photon excitation,” Adv. Mater. (Deerfield Beach Fla.) 5(6), 479–481 (1993).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Opt. (3)

Appl. Phys. Lett. (1)

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67(17), 2433–2435 (1995).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process. 73(5), 561–566 (2001).
[CrossRef]

Biochemistry (1)

Y. Imanishi, K. H. Lodowski, and Y. Koutalos, “Two-photon microscopy: shedding light on the chemistry of vision,” Biochemistry 46(34), 9674–9684 (2007).
[CrossRef] [PubMed]

Biophys. J. (2)

G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000).
[CrossRef] [PubMed]

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72(6), 2405–2412 (1997).
[CrossRef] [PubMed]

Chem. Commun. (Camb.) (1)

H.-C. Lin, H. Kim, S. Barlow, J. M. Hales, J. W. Perry, and S. R. Marder, “Synthesis and linear and nonlinear optical properties of metal-terminated bis(dioxaborine) polymethines,” Chem. Commun. (Camb.) 47(2), 782–784 (2010).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

M. Faraggi, P. Peretz, I. Rosenthal, and D. Weinraub, “Solution properties of dye lasers. Rhodamine B in alcohols,” Chem. Phys. Lett. 103(4), 310–314 (1984).
[CrossRef]

Chem. Rev. (1)

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[CrossRef] [PubMed]

Clin. Cancer Res. (1)

J. R. Starkey, A. K. Rebane, M. A. Drobizhev, F. Meng, A. Gong, A. Elliott, K. McInnerney, and C. W. Spangler, “New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse,” Clin. Cancer Res. 14(20), 6564–6573 (2008).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler, “Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 7(6), 971–975 (2001).
[CrossRef]

J. Am. Chem. Soc. (3)

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006).
[CrossRef] [PubMed]

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[CrossRef]

J. Clin. Laser Med. Surg. (1)

J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Laser Med. Surg. 15(5), 201–204 (1997).
[PubMed]

J. Mater. Chem. (1)

C. W. Spangler, “Recent development in the design of organic materials for optical power limiting,” J. Mater. Chem. 9(9), 2013–2020 (1999).
[CrossRef]

J. Microelectromech. Syst. (1)

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst. 7(4), 411–415 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Photochem. Photobiol. B (1)

T. Karu and V. Letokhov, “Possible benefits of two-quantum excitation in ALA-PDT?” J. Photochem. Photobiol. B 23(2-3), 261–262 (1994).
[CrossRef] [PubMed]

J. Phys. Chem. A (1)

S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One- and two-photon spectroscopy of donor-acceptor-donor di(styryl)benzene derivatives: Effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[CrossRef]

J. Phys. Chem. B (2)

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Color hues in red fluorescent proteins are due to internal quadratic Stark effect,” J. Phys. Chem. B 113(39), 12860–12864 (2009).
[CrossRef] [PubMed]

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

M. Rumi, S. J. K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S. R. Marder, and J. W. Perry, “Tetrastyrylarene derivatives: comparison of one- and two-photon spectroscopic properties with distyrylarene analogues,” J. Phys. Chem. C 112(21), 8061–8071 (2008).
[CrossRef]

J. Phys. Org. Chem. (1)

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. V. Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13(12), 837–849 (2000).
[CrossRef]

Nano Lett. (1)

D. Gao, R. R. Agayan, H. Xu, M. A. Philbert, and R. Kopelman, “Nanoparticles for two-photon photodynamic therapy in living cells,” Nano Lett. 6(11), 2383–2386 (2006).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Nat. Photonics (1)

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[CrossRef]

Nature (1)

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Opt. Commun. (1)

J. Oberlé, L. Bramerie, G. Jonusauskas, and C. Rullière, “Optical-limiting properties of a push-pull diphenyl-butadiene,” Opt. Commun. 169(1–6), 325–332 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Photochem. Photobiol. (1)

D. Leupold and I. E. Kochevar, “Multiphoton photochemistry in biological systems. Introduction,” Photochem. Photobiol. 66(5), 562–565 (1997).
[CrossRef]

Proc. SPIE (1)

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE 7049, 70490Y (2008).
[CrossRef]

Science (4)

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989).
[CrossRef] [PubMed]

Synth. Met. (1)

Y. Morel, A. Ibanez, C. Nguefack, C. Andraud, A. Collet, J.-F. Nicoud, and P. L. Baldeck, “Nonlinear absorption spectra of transparent organic crystals for optical limiting applications at visible wavelengths,” Synth. Met. 115(1–3), 265–268 (2000).
[CrossRef]

Other (2)

R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, “Protein-based three-dimensional memories and associative processors,” in Molecular Electronics, M.A. Ratner and J. Jortner, eds. (Blackwell Science, 1997).

K. D. Belfield, S. Yao, and M. V. Bondar, “Organic multiphoton absorbing materials and devices,” in Introduction to Organic Electronic and Optoelectronic Materials and Devices, S.-S. Sun and L.R. Dalton, eds. (CRC Press, 2008), pp. 573–606.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Chemical structures of six commercially available laser dyes measured.

Fig. 2
Fig. 2

Schematic of the dual-channel two-photon-induced fluorescence experimental setup. BS1 is the beam splitter; L1 is the focusing lens (f = 125 mm); S1 and S2 are the sample holders, L2 and L3 are the collection lenses (f = 8 mm); SPFW-1 and SPFW-2 are the filter wheels with the short pass filters to cut-off the laser scattering; FC1 and FC2 are the fiber collimation lenses; SB is the aperture used to block laser scattering and potential fluorescence cross talk between the two channels; BB is the beam block.

Fig. 3
Fig. 3

1PA (black solid line, right vertical and top horizontal scales), normalized fluorescence (red dash-dot line, top horizontal scale), and 2PA (green symbols, left and bottom scales) spectra of the compounds. Black squares show the 2PA cross sections obtained with the Z-scan experiments. 2PA cross sections are given in GM where 1 GM = 1 × 10−50 cm4·sec·phot−1.

Tables (1)

Tables Icon

Table 1 2PA Cross Sections (given in GM where 1 GM = 1 × 10−50 cm4·sec·phot−1) of the Compounds at Selected Wavelengths, Determined by Fluorescence-Based 2PA Measurements Relative to Compounds from [33] a,b

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

F ( λ e x ) = σ 2 ( λ e x ) C I 0 2 ( λ e x ) 2 ( h ν ) 2 I ¯ 2 ( x , y , z , λ e x ) d x d y d z 0 T I ¯ 2 ( t , λ e x ) d t λ min λ max η ( λ ' ) ϕ ( λ ' ) d λ ' ,
σ 2 S , 1 ( λ e x ) = σ 2 R ( λ e x ) C R C S I 0 ( 2 ) 2 ( R ) ( λ e x ) I 0 ( 1 ) 2 ( S ) ( λ e x ) F 1 S ( λ e x ) F 2 R ( λ e x ) I ¯ 2 2 ( R ) ( x , y , z , λ e x ) d x d y d z I ¯ 1 2 ( S ) ( x , y , z , λ e x ) d x d y d z × 0 T I ¯ 2 2 ( R ) ( t , λ e x ) d t 0 T I ¯ 1 2 ( S ) ( t , λ e x ) d t λ min R λ max R η 2 ( λ ' ) ϕ R ( λ ' ) d λ ' λ min S λ max S η 1 ( λ ' ) ϕ S ( λ ' ) d λ ' σ 2 S , 2 ( λ e x ) = σ 2 R ( λ e x ) C R C S I 0 ( 1 ) 2 ( R ) ( λ e x ) I 0 ( 2 ) 2 ( S ) ( λ e x ) F 2 S ( λ e x ) F 1 R ( λ e x ) I ¯ 1 2 ( R ) ( x , y , z , λ e x ) d x d y d z I ¯ 2 2 ( S ) ( x , y , z , λ e x ) d x d y d z × 0 T I ¯ 1 2 ( R ) ( t , λ e x ) d t 0 T I ¯ 2 2 ( S ) ( t , λ e x ) d t λ min R λ max R η 1 ( λ ' ) ϕ R ( λ ' ) d λ ' λ min S λ max S η 2 ( λ ' ) ϕ S ( λ ' ) d λ ' ,
I 0 ( 2 ) 2 ( R ) ( λ e x ) I 0 ( 1 ) 2 ( S ) ( λ e x ) I 0 ( 1 ) 2 ( R ) ( λ e x ) I 0 ( 2 ) 2 ( S ) ( λ e x ) = 1 ; 0 T I ¯ 2 2 ( R ) ( t , λ e x ) d t 0 T I ¯ 1 2 ( S ) ( t , λ e x ) d t 0 T I ¯ 1 2 ( R ) ( t , λ e x ) d t 0 T I ¯ 2 2 ( S ) ( t , λ e x ) d t = 1 I ¯ 2 2 ( R ) ( x , y , z , λ e x ) d x d y d z I ¯ 1 2 ( S ) ( x , y , z , λ e x ) d x d y d z I ¯ 1 2 ( R ) ( x , y , z , λ e x ) d x d y d z I ¯ 2 2 ( S ) ( x , y , z , λ e x ) d x d y d z = 1.
σ 2 S ( λ e x ) = σ 2 S , 1 ( λ e x ) σ 2 S , 2 ( λ e x ) = σ 2 R ( λ e x ) C R C S F 1 S ( λ e x ) F 2 S ( λ e x ) F 1 R ( λ e x ) F 2 R ( λ e x ) λ min R λ max R η 2 ( λ ' ) ϕ R ( λ ' ) d λ ' λ min R λ max R η 1 ( λ ' ) ϕ R ( λ ' ) d λ ' λ min S λ max S η 1 ( λ ' ) ϕ S ( λ ' ) d λ ' λ min S λ max S η 2 ( λ ' ) ϕ S ( λ ' ) d λ ' ,
X = C R C S λ min R λ max R η 2 ( λ ' ) ϕ R ( λ ' ) d λ ' λ min R λ max R η 1 ( λ ' ) ϕ R ( λ ' ) d λ ' λ min S λ max S η 1 ( λ ' ) ϕ S ( λ ' ) d λ ' λ min S λ max S η 2 ( λ ' ) ϕ S ( λ ' ) d λ '
S ( λ e x ) = σ 2 R ( λ e x ) F 1 S ( λ e x ) F 2 S ( λ e x ) F 1 R ( λ e x ) F 2 R ( λ e x )
σ 2 S ( λ e x ) = S ( λ e x ) σ 2 S ( λ 0 ) S ( λ 0 ) .
σ 2 S ( λ 0 ) = σ 2 R ( λ 0 ) C R C S F 1 S ( λ 0 ) F 2 S ( λ 0 ) F 1 R ( λ 0 ) F 2 R ( λ 0 ) ϕ R ( λ ' ) ϕ S ( λ ' ) .
ϕ R ( λ ' ) ϕ S ( λ ' ) = f R ( λ ' ) 1 10 O D 1 P A R 1 10 O D 1 P A S f S ( λ ' ) ,

Metrics