Abstract

A slanted S-shaped nano-columnar (SSNC) thin film sculptured by oblique angle deposition is applied as an enhanced polarization converter. A growth model of a SSNC film is developed using available empirical equations for columnar thin films. The optimum sculpture parameters for a SSNC film to have high efficient polarization conversion are theoretically estimated and applied in fabrication. The designated SSNC films are sculptured and demonstrated to have high polarization conversion reflectance over a broadband and wide-angle range.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [CrossRef] [PubMed]
  2. Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
    [CrossRef] [PubMed]
  3. H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-µm-wavelength band,” Opt. Lett. 22(6), 419–421 (1997).
    [CrossRef] [PubMed]
  4. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
    [CrossRef]
  5. K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
    [CrossRef]
  6. K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399(6738), 764–766 (1999).
    [CrossRef]
  7. Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: Experimental and simulation results,” Opt. Eng. 39(7), 1863–1868 (2000).
    [CrossRef]
  8. I. J. Hodgkinson and Q. H. Wu, “Inorganic chiral optical materials,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 889–897 (2001).
    [CrossRef]
  9. T. Motohiro and Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28(13), 2466–2482 (1989).
    [CrossRef] [PubMed]
  10. I. J. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74(13), 1794–1796 (1999).
    [CrossRef]
  11. Q. H. Wu, L. D. Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95(1), 402–404 (2004).
    [CrossRef]
  12. E. Hecht, Optics (Addison Wesley, San Francisco 2002).
  13. J. M. Bennett, “A critical evaluation of rhomb-type quarterwave retarders,” Appl. Opt. 9(9), 2123–2129 (1970).
    [CrossRef] [PubMed]
  14. N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3(11), 641–644 (2009).
    [CrossRef]
  15. Y.-J. Jen, C.-W. Yu, C.-F. Lin, Y.-H. Liao, and C.-Y. Peng, “Modulation of the polarization state of light using a weak anisotropic thin film,” Opt. Lett. 33(5), 467–469 (2008).
    [CrossRef] [PubMed]
  16. K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
    [CrossRef]
  17. I. J. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37(13), 2653–2659 (1998).
    [CrossRef] [PubMed]
  18. I. J. Hodgkinson and Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17(5), 2928–2932 (1999).
    [CrossRef]
  19. Y.-J. Jen and C.-L. Chiang, “Enhanced polarization conversion for an anisotropic thin film,” Opt. Commun. 265(2), 446–453 (2006).
    [CrossRef]
  20. Y.-J. Jen, C.-Y. Peng, and H.-H. Chang, “Optical constant determination of an anisotropic thin film via polarization conversion,” Opt. Express 15(8), 4445–4451 (2007).
    [CrossRef] [PubMed]
  21. J. A. Polo and A. Lakhtakia, “Sculptured nematic thin films with periodically modulated tilt angle as rugate filters,” Opt. Commun. 251(1-3), 10–22 (2005).
    [CrossRef]
  22. A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3(1), 033506 (2009).
    [CrossRef]
  23. I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, USA, 1997).
  24. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham,WA, 2005).
  25. Y.-J. Jen, M.-J. Lin, and W.-P. Tsai, “Three-layered thin film system for broadband polarization conversion reflectance,” J. Nanophoton. 5(1), 051508 (2011).
    [CrossRef]
  26. C.-C. Tsai and S.-T. Wu, “Broadband wide-angle polarization converter for LCD backlight,” Appl. Opt. 47(15), 2882–2887 (2008).
    [CrossRef] [PubMed]

2011 (1)

Y.-J. Jen, M.-J. Lin, and W.-P. Tsai, “Three-layered thin film system for broadband polarization conversion reflectance,” J. Nanophoton. 5(1), 051508 (2011).
[CrossRef]

2009 (2)

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3(1), 033506 (2009).
[CrossRef]

N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3(11), 641–644 (2009).
[CrossRef]

2008 (3)

2007 (2)

Y.-J. Jen, C.-Y. Peng, and H.-H. Chang, “Optical constant determination of an anisotropic thin film via polarization conversion,” Opt. Express 15(8), 4445–4451 (2007).
[CrossRef] [PubMed]

Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

2006 (1)

Y.-J. Jen and C.-L. Chiang, “Enhanced polarization conversion for an anisotropic thin film,” Opt. Commun. 265(2), 446–453 (2006).
[CrossRef]

2005 (1)

J. A. Polo and A. Lakhtakia, “Sculptured nematic thin films with periodically modulated tilt angle as rugate filters,” Opt. Commun. 251(1-3), 10–22 (2005).
[CrossRef]

2004 (1)

Q. H. Wu, L. D. Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95(1), 402–404 (2004).
[CrossRef]

2001 (2)

I. J. Hodgkinson and Q. H. Wu, “Inorganic chiral optical materials,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 889–897 (2001).
[CrossRef]

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

2000 (1)

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: Experimental and simulation results,” Opt. Eng. 39(7), 1863–1868 (2000).
[CrossRef]

1999 (3)

I. J. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74(13), 1794–1796 (1999).
[CrossRef]

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399(6738), 764–766 (1999).
[CrossRef]

I. J. Hodgkinson and Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17(5), 2928–2932 (1999).
[CrossRef]

1998 (2)

1997 (1)

1996 (1)

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
[CrossRef]

1989 (1)

1970 (1)

Ajayan, P. M.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[CrossRef] [PubMed]

Arnold, M.

Q. H. Wu, L. D. Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95(1), 402–404 (2004).
[CrossRef]

Aussenegg, F. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

Bennett, J. M.

Brett, M. J.

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399(6738), 764–766 (1999).
[CrossRef]

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
[CrossRef]

Broer, D. J.

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399(6738), 764–766 (1999).
[CrossRef]

Bur, J. A.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[CrossRef] [PubMed]

Chang, H.-H.

Chang, Y. H.

Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chattopadhyay, S.

Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, K. H.

Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, L. C.

Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chiang, C.-L.

Y.-J. Jen and C.-L. Chiang, “Enhanced polarization conversion for an anisotropic thin film,” Opt. Commun. 265(2), 446–453 (2006).
[CrossRef]

Chiou, T. H.

N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3(11), 641–644 (2009).
[CrossRef]

Ci, L.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[CrossRef] [PubMed]

Cronin, T. W.

N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3(11), 641–644 (2009).
[CrossRef]

Ditlbacher, H.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

Doumuki, T.

Gotschy, W.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

Hazel, J.

Hodgkinson, I. J.

Q. H. Wu, L. D. Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95(1), 402–404 (2004).
[CrossRef]

I. J. Hodgkinson and Q. H. Wu, “Inorganic chiral optical materials,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 889–897 (2001).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: Experimental and simulation results,” Opt. Eng. 39(7), 1863–1868 (2000).
[CrossRef]

I. J. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74(13), 1794–1796 (1999).
[CrossRef]

I. J. Hodgkinson and Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17(5), 2928–2932 (1999).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37(13), 2653–2659 (1998).
[CrossRef] [PubMed]

Hsu, C. H.

Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Hsu, Y. K.

Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Huang, Y.-F.

Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Jen, Y. J.

Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Jen, Y.-J.

Y.-J. Jen, M.-J. Lin, and W.-P. Tsai, “Three-layered thin film system for broadband polarization conversion reflectance,” J. Nanophoton. 5(1), 051508 (2011).
[CrossRef]

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3(1), 033506 (2009).
[CrossRef]

Y.-J. Jen, C.-W. Yu, C.-F. Lin, Y.-H. Liao, and C.-Y. Peng, “Modulation of the polarization state of light using a weak anisotropic thin film,” Opt. Lett. 33(5), 467–469 (2008).
[CrossRef] [PubMed]

Y.-J. Jen, C.-Y. Peng, and H.-H. Chang, “Optical constant determination of an anisotropic thin film via polarization conversion,” Opt. Express 15(8), 4445–4451 (2007).
[CrossRef] [PubMed]

Y.-J. Jen and C.-L. Chiang, “Enhanced polarization conversion for an anisotropic thin film,” Opt. Commun. 265(2), 446–453 (2006).
[CrossRef]

Krenn, J. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

Lakhtakia, A.

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3(1), 033506 (2009).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Sculptured nematic thin films with periodically modulated tilt angle as rugate filters,” Opt. Commun. 251(1-3), 10–22 (2005).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: Experimental and simulation results,” Opt. Eng. 39(7), 1863–1868 (2000).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
[CrossRef]

Lamprecht, B.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

Lee, C. S.

Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Leitner, A.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

Liao, Y.-H.

Lin, C.-F.

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3(1), 033506 (2009).
[CrossRef]

Y.-J. Jen, C.-W. Yu, C.-F. Lin, Y.-H. Liao, and C.-Y. Peng, “Modulation of the polarization state of light using a weak anisotropic thin film,” Opt. Lett. 33(5), 467–469 (2008).
[CrossRef] [PubMed]

Lin, M.-J.

Y.-J. Jen, M.-J. Lin, and W.-P. Tsai, “Three-layered thin film system for broadband polarization conversion reflectance,” J. Nanophoton. 5(1), 051508 (2011).
[CrossRef]

Lin, S.-Y.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[CrossRef] [PubMed]

Liu, T. A.

Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lo, H. C.

Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Marshall, N. J.

N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3(11), 641–644 (2009).
[CrossRef]

Matsumoto, S.

Motohiro, T.

Pan, C. L.

Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Peng, C. Y.

Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Peng, C.-Y.

Polo, J. A.

J. A. Polo and A. Lakhtakia, “Sculptured nematic thin films with periodically modulated tilt angle as rugate filters,” Opt. Commun. 251(1-3), 10–22 (2005).
[CrossRef]

Robbie, K.

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399(6738), 764–766 (1999).
[CrossRef]

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
[CrossRef]

Roberts, N. W.

N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3(11), 641–644 (2009).
[CrossRef]

Schider, G.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

Silva, L. D.

Q. H. Wu, L. D. Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95(1), 402–404 (2004).
[CrossRef]

Sit, J. C.

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
[CrossRef]

Taga, Y.

Takeuchi, E.

Q. H. Wu, L. D. Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95(1), 402–404 (2004).
[CrossRef]

Tamada, H.

Tsai, C.-C.

Tsai, W.-P.

Y.-J. Jen, M.-J. Lin, and W.-P. Tsai, “Three-layered thin film system for broadband polarization conversion reflectance,” J. Nanophoton. 5(1), 051508 (2011).
[CrossRef]

Wu, Q. H.

Q. H. Wu, L. D. Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95(1), 402–404 (2004).
[CrossRef]

I. J. Hodgkinson and Q. H. Wu, “Inorganic chiral optical materials,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 889–897 (2001).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: Experimental and simulation results,” Opt. Eng. 39(7), 1863–1868 (2000).
[CrossRef]

I. J. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74(13), 1794–1796 (1999).
[CrossRef]

I. J. Hodgkinson and Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17(5), 2928–2932 (1999).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37(13), 2653–2659 (1998).
[CrossRef] [PubMed]

Wu, S.-T.

Yamaguchi, T.

Yang, Z.-P.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[CrossRef] [PubMed]

Yu, C.-W.

Adv. Mater. (Deerfield Beach Fla.) (1)

I. J. Hodgkinson and Q. H. Wu, “Inorganic chiral optical materials,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 889–897 (2001).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

I. J. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74(13), 1794–1796 (1999).
[CrossRef]

J. Appl. Phys. (2)

Q. H. Wu, L. D. Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95(1), 402–404 (2004).
[CrossRef]

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

J. Nanophoton. (2)

Y.-J. Jen, M.-J. Lin, and W.-P. Tsai, “Three-layered thin film system for broadband polarization conversion reflectance,” J. Nanophoton. 5(1), 051508 (2011).
[CrossRef]

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3(1), 033506 (2009).
[CrossRef]

J. Vac. Sci. Technol. A (1)

I. J. Hodgkinson and Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17(5), 2928–2932 (1999).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
[CrossRef]

Nano Lett. (1)

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

Y.-F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3(11), 641–644 (2009).
[CrossRef]

Nature (2)

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
[CrossRef]

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399(6738), 764–766 (1999).
[CrossRef]

Opt. Commun. (2)

Y.-J. Jen and C.-L. Chiang, “Enhanced polarization conversion for an anisotropic thin film,” Opt. Commun. 265(2), 446–453 (2006).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Sculptured nematic thin films with periodically modulated tilt angle as rugate filters,” Opt. Commun. 251(1-3), 10–22 (2005).
[CrossRef]

Opt. Eng. (1)

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: Experimental and simulation results,” Opt. Eng. 39(7), 1863–1868 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (3)

E. Hecht, Optics (Addison Wesley, San Francisco 2002).

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, USA, 1997).

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham,WA, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of the SSNC film grown by varying deposition angle periodically to form a two-dimensional slanted S-shaped columnar structure in the y-z deposition plane. The principal indices (n1, n2, n3) are associated with orthogonal principal axes (1, 2, 3).

Fig. 2
Fig. 2

The SSNC film is arranged in the BK7 glass prism/SSNC film/air configuration in which the SSNC film with two-period S-shaped structures and the deposition plane perpendicular to the plane of incidence Φ = 90°.

Fig. 3
Fig. 3

The reflectance Rps(λ, θ) for the first type of the designed SSNC films with the thickness d ranged from 600 nm to 900 nm. The sinusoidal variations with the fixed initial deposition angle α 0 = 80° but different amplitudes: (a)-(d) A = 20°, (e)-(h) A = 25°, and (i)-(l) A = 30°. The marked square region represents the possible wavelengths and incident angles area that the reflectance Rps(λ, θ) is over 80% and continuously distributed.

Fig. 4
Fig. 4

The reflectance Rps(λ, θ) for the second type of the designed SSNC films with the thickness d ranged from 600 nm to 900 nm. The sinusoidal variations with the fixed amplitude A = 20° but different initial deposition angles: (a)-(d) α 0 = 70°, (e)-(h) α 0 = 75°, and (i)-(l) α 0 = 80°. The marked square region represents the possible wavelengths and incident angles area that the reflectance Rps(λ, θ) is over 80% and continuously distributed.

Fig. 5
Fig. 5

Cross-sectional SEM images of SSNC films fabricated by OAD. (a) Sample A with the thickness of d = 725 nm. (b) Sample B with the thickness of d = 975 nm.

Fig. 6
Fig. 6

The measured reflectance Rps(λ, θ) for sample A. There are two marked EPCRs: (1) λ = 400 nm to 684 nm and θ = 43° to 52°. (2) λ = 540 nm to 594 nm and θ = 43° to 64°.

Fig. 7
Fig. 7

The measured reflectance Rps(λ, θ) for sample B. The marked EPCR has λ = 500 nm to 700 nm and θ = 51° to 58°.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β = 0.60 tan 1 [ 0.74 tan α ] .
n 1 = 2.571 2.272 10 2 α + 3.500 10 4 α 2 2.833 10 6 α 3 ,
n 2 = 2.215 6.217 10 3 α + 9.000 10 5 α 2 1.833 10 6 α 3 ,
n 3 = 5.331 1.654 10 1 α + 2.750 10 3 α 2 1.167 10 5 α 3 ,
α ( z ) = α 0 A | sin ( π z / p ) | ,

Metrics