Abstract

In this paper we report a detailed study of Er3+:Sc2O3 cryogenically cooled ceramic laser and related spectroscopic properties of Er3+:Sc2O3 in the 1500-1600 nm wavelength range. We show that two transitions between 4I13/2 and 4I15/2 manifolds, which are responsible for laser operation in low (at 1581 nm) and ultra-low (at 1558–1560 nm) quantum defect modes, can demonstrate equal laser efficiency. A detailed laser model that predicts the specifics of competition between these wavelengths is developed. The dependence of the laser wavelength on the gain medium temperature and cavity losses was confirmed by extensive laser experiments. An energy migration is observed between the Er3+ ions in two different symmetry sites in the Sc2O3 host. This effect along with the up-conversion process and scattering losses in laser ceramic, are the major factors limiting laser efficiency.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Peters, A. Boltz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
    [CrossRef]
  2. K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, “Efficient Er:YAG laser operating at 1645 and 1617 nm,” IEEE J. Quantum Electron. 42(2), 182–186 (2006).
    [CrossRef]
  3. N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, M. Dubinskii, and A. Ikesue, “Cryo-laser performance of resonantly-pumped Er3+:Sc2O3Ceramic,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper TuB4.
  4. M. Fechner, R. Peters, A. Kahn, K. Petermann, E. Heumann, and G. Huber, “Efficient in-band-pumped Er:Sc2O3-laser at 1.58 um,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuAA3.
  5. N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett. 33(13), 1524–1526 (2008).
    [CrossRef] [PubMed]
  6. N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys. 76(8), 3877–3889 (1982).
    [CrossRef]
  7. E. Antic-Fidancev, J. Holsa, and M. Lastusaari, “Crystal field strength in C-type cubic rare earth oxides,” J. Alloy. Comp. 341(1-2), 82–86 (2002).
    [CrossRef]
  8. A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramics,” J. Lumin. 128(5-6), 918–920 (2008).
    [CrossRef]
  9. C. Gheorghe, S. Georgescu, V. Lupei, A. Lupei, and A. Ikesue, “Absorption intensities and emission cross section of Er3+ in Sc2O3 transparent ceramics,” J. Appl. Phys. 103(8), 083116 (2008).
    [CrossRef]
  10. K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
    [CrossRef]
  11. H. Yamada, K. Nishikubo, and C. N. Xu, “Determination of Eu sites in highly europium-doped strontium aluminate phosphor using synchrotron x-ray powder diffraction analysis,” J. Electrochem. Soc. 155(7), F139–F144 (2008).
    [CrossRef]
  12. N. Ter-Gabrielyan, V. Fromzel, L. D. Merkle, and M. Dubinskii, “Resonant in-band pumping of cryo-cooled Er3+:YAG laser at 1532, 1534 and 1546 nm: a comparative study,” Opt. Mater. Express 1(2), 223–233 (2011).
    [CrossRef]
  13. Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
    [CrossRef]

2011 (1)

2008 (4)

N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett. 33(13), 1524–1526 (2008).
[CrossRef] [PubMed]

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramics,” J. Lumin. 128(5-6), 918–920 (2008).
[CrossRef]

C. Gheorghe, S. Georgescu, V. Lupei, A. Lupei, and A. Ikesue, “Absorption intensities and emission cross section of Er3+ in Sc2O3 transparent ceramics,” J. Appl. Phys. 103(8), 083116 (2008).
[CrossRef]

H. Yamada, K. Nishikubo, and C. N. Xu, “Determination of Eu sites in highly europium-doped strontium aluminate phosphor using synchrotron x-ray powder diffraction analysis,” J. Electrochem. Soc. 155(7), F139–F144 (2008).
[CrossRef]

2006 (1)

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, “Efficient Er:YAG laser operating at 1645 and 1617 nm,” IEEE J. Quantum Electron. 42(2), 182–186 (2006).
[CrossRef]

2004 (1)

Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
[CrossRef]

2002 (2)

V. Peters, A. Boltz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

E. Antic-Fidancev, J. Holsa, and M. Lastusaari, “Crystal field strength in C-type cubic rare earth oxides,” J. Alloy. Comp. 341(1-2), 82–86 (2002).
[CrossRef]

2000 (1)

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

1982 (1)

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys. 76(8), 3877–3889 (1982).
[CrossRef]

Antic-Fidancev, E.

E. Antic-Fidancev, J. Holsa, and M. Lastusaari, “Crystal field strength in C-type cubic rare earth oxides,” J. Alloy. Comp. 341(1-2), 82–86 (2002).
[CrossRef]

Basun, S. A.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Boltz, A.

V. Peters, A. Boltz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

Chang, N. C.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys. 76(8), 3877–3889 (1982).
[CrossRef]

Dubinskii, M.

Fornasiero, L.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Fromzel, V.

Georgescu, S.

C. Gheorghe, S. Georgescu, V. Lupei, A. Lupei, and A. Ikesue, “Absorption intensities and emission cross section of Er3+ in Sc2O3 transparent ceramics,” J. Appl. Phys. 103(8), 083116 (2008).
[CrossRef]

Gheorghe, C.

C. Gheorghe, S. Georgescu, V. Lupei, A. Lupei, and A. Ikesue, “Absorption intensities and emission cross section of Er3+ in Sc2O3 transparent ceramics,” J. Appl. Phys. 103(8), 083116 (2008).
[CrossRef]

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramics,” J. Lumin. 128(5-6), 918–920 (2008).
[CrossRef]

Gruber, J. B.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys. 76(8), 3877–3889 (1982).
[CrossRef]

Holsa, J.

E. Antic-Fidancev, J. Holsa, and M. Lastusaari, “Crystal field strength in C-type cubic rare earth oxides,” J. Alloy. Comp. 341(1-2), 82–86 (2002).
[CrossRef]

Huber, G.

V. Peters, A. Boltz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Ikesue, A.

C. Gheorghe, S. Georgescu, V. Lupei, A. Lupei, and A. Ikesue, “Absorption intensities and emission cross section of Er3+ in Sc2O3 transparent ceramics,” J. Appl. Phys. 103(8), 083116 (2008).
[CrossRef]

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramics,” J. Lumin. 128(5-6), 918–920 (2008).
[CrossRef]

N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett. 33(13), 1524–1526 (2008).
[CrossRef] [PubMed]

Klotz, M.

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, “Efficient Er:YAG laser operating at 1645 and 1617 nm,” IEEE J. Quantum Electron. 42(2), 182–186 (2006).
[CrossRef]

Kuch, S.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Lastusaari, M.

E. Antic-Fidancev, J. Holsa, and M. Lastusaari, “Crystal field strength in C-type cubic rare earth oxides,” J. Alloy. Comp. 341(1-2), 82–86 (2002).
[CrossRef]

Leavitt, R. P.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys. 76(8), 3877–3889 (1982).
[CrossRef]

Leyva, V.

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, “Efficient Er:YAG laser operating at 1645 and 1617 nm,” IEEE J. Quantum Electron. 42(2), 182–186 (2006).
[CrossRef]

Lupei, A.

C. Gheorghe, S. Georgescu, V. Lupei, A. Lupei, and A. Ikesue, “Absorption intensities and emission cross section of Er3+ in Sc2O3 transparent ceramics,” J. Appl. Phys. 103(8), 083116 (2008).
[CrossRef]

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramics,” J. Lumin. 128(5-6), 918–920 (2008).
[CrossRef]

Lupei, V.

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramics,” J. Lumin. 128(5-6), 918–920 (2008).
[CrossRef]

C. Gheorghe, S. Georgescu, V. Lupei, A. Lupei, and A. Ikesue, “Absorption intensities and emission cross section of Er3+ in Sc2O3 transparent ceramics,” J. Appl. Phys. 103(8), 083116 (2008).
[CrossRef]

Merkle, L. D.

Mix, E.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Morrison, C. A.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys. 76(8), 3877–3889 (1982).
[CrossRef]

Nishikubo, K.

H. Yamada, K. Nishikubo, and C. N. Xu, “Determination of Eu sites in highly europium-doped strontium aluminate phosphor using synchrotron x-ray powder diffraction analysis,” J. Electrochem. Soc. 155(7), F139–F144 (2008).
[CrossRef]

Petermann, K.

V. Peters, A. Boltz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Peters, V.

V. Peters, A. Boltz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Reeder, R.

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, “Efficient Er:YAG laser operating at 1645 and 1617 nm,” IEEE J. Quantum Electron. 42(2), 182–186 (2006).
[CrossRef]

Sato, Y.

Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
[CrossRef]

Spariosu, K.

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, “Efficient Er:YAG laser operating at 1645 and 1617 nm,” IEEE J. Quantum Electron. 42(2), 182–186 (2006).
[CrossRef]

Taira, T.

Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
[CrossRef]

Ter-Gabrielyan, N.

Xu, C. N.

H. Yamada, K. Nishikubo, and C. N. Xu, “Determination of Eu sites in highly europium-doped strontium aluminate phosphor using synchrotron x-ray powder diffraction analysis,” J. Electrochem. Soc. 155(7), F139–F144 (2008).
[CrossRef]

Yamada, H.

H. Yamada, K. Nishikubo, and C. N. Xu, “Determination of Eu sites in highly europium-doped strontium aluminate phosphor using synchrotron x-ray powder diffraction analysis,” J. Electrochem. Soc. 155(7), F139–F144 (2008).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, “Efficient Er:YAG laser operating at 1645 and 1617 nm,” IEEE J. Quantum Electron. 42(2), 182–186 (2006).
[CrossRef]

Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
[CrossRef]

J. Alloy. Comp. (1)

E. Antic-Fidancev, J. Holsa, and M. Lastusaari, “Crystal field strength in C-type cubic rare earth oxides,” J. Alloy. Comp. 341(1-2), 82–86 (2002).
[CrossRef]

J. Appl. Phys. (1)

C. Gheorghe, S. Georgescu, V. Lupei, A. Lupei, and A. Ikesue, “Absorption intensities and emission cross section of Er3+ in Sc2O3 transparent ceramics,” J. Appl. Phys. 103(8), 083116 (2008).
[CrossRef]

J. Chem. Phys. (1)

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys. 76(8), 3877–3889 (1982).
[CrossRef]

J. Cryst. Growth (1)

V. Peters, A. Boltz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

J. Electrochem. Soc. (1)

H. Yamada, K. Nishikubo, and C. N. Xu, “Determination of Eu sites in highly europium-doped strontium aluminate phosphor using synchrotron x-ray powder diffraction analysis,” J. Electrochem. Soc. 155(7), F139–F144 (2008).
[CrossRef]

J. Lumin. (2)

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramics,” J. Lumin. 128(5-6), 918–920 (2008).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. Express (1)

Other (2)

N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, M. Dubinskii, and A. Ikesue, “Cryo-laser performance of resonantly-pumped Er3+:Sc2O3Ceramic,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper TuB4.

M. Fechner, R. Peters, A. Kahn, K. Petermann, E. Heumann, and G. Huber, “Efficient in-band-pumped Er:Sc2O3-laser at 1.58 um,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuAA3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Emission and absorption spectra of Er3+:Sc2O3 along with the Er3+ C2 center energy levels diagram (all at 77K). Short arrows show the location of major transitions where lasing was achieved.

Fig. 2
Fig. 2

Er3+:Sc2O3 emission spectra at 77K when C2 and C3i -symmetry centers were excited selectively. C2 center was excited into Z1 →Y2 , 1527.6 nm absorption line. C3i center was excited into 1529.3 nm. a. Ceramic sample with 0.25% Er-doping concentration; b. Single crystalline sample with 1.2% Er concentration. On the inset: I13/24I15/2 luminescence decay at T = 80 K in Er(0.25%):Sc2O3 (powder).

Fig. 3
Fig. 3

Er3+:Sc2O3 emission spectra in the 1558-1560 nm band: a. Simulation with Lorentzian curves. Transitions of the C2 -center - bold solid lines; those of C3i center - dotted lines. Experimental data - dashed line. b. Temperature dependence of the 1558-1560 nm emission band.

Fig. 4
Fig. 4

(a, b). Calculated threshold pump power of the resonantly pumped, CW Er3+:Sc2O3 laser vs transmission of the output coupler for two temperatures of the laser crystal: 77 K (a) and 120 K (b)

Fig. 5
Fig. 5

Performance of the Er:ScO cryo-laser with non-selective cavity: a. Laser output vs. absorbed pump power with output coupler reflectivities in the range of 77-95%. b. Laser output vs. temperature for the laser operating at 1581 nm (red) and 1558.4 nm (blue).

Fig. 6
Fig. 6

Output versus absorbed pump power for the Er:ScO cryo-laser with VBG in a function of the dichroic pump mirror.

Fig. 7
Fig. 7

Er:ScO laser spectra at 80K in the 1558-1560 nm band: a. Laser cavity formed with non-selective mirrors; b. Cavity formed with VBG mirror. Depicted in b (dot-lines) is the VBG transmission at 10C and 45C obtained with the white light source. The emission spectrum in the 1558-1560 nm band at 80K is shown in solid grey lines. The laser wavelengths corresponding to different VBG temperatures are depicted in solid colored lines.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I p ( λ , z ) σ p ( λ , T ) λ p h c { N 0 f Z 1 ( T ) N 2 ( λ , z , T ) [ f Z 1 ( T ) + f Y 1 ( T ) ] } = N 2 ( λ , z , T ) τ ( T ) ,
f Z i ( T ) = exp ( Δ E Z i k T ) Z i = 1 8 exp ( Δ E Z i k T ) ,
f Y i ( T ) = exp ( Δ E Y i k T ) Y i = 1 7 exp ( Δ E Y i k T ) .
I p ( λ , z ) = 8 P p ( z ) G p ( λ ) π d p 2 ,
α ( λ , z , T ) = 1 1 + ( 1 + f Y 1 ( T ) f Z 1 ( T ) ) I p ( λ , z ) I S P ( λ , T ) α 0 ( λ , T ) ,
α 0 ( λ , T ) = σ p ( λ , T ) N 0 f Z 1 ( T ) ,
[ 1 + I p ( λ , z + d z ) ( 1 + f Y 1 ( T ) f Z 1 ( T ) ) I S P ( λ , T ) ] ln [ I p ( λ , z + d z ) I p ( λ , z ) ] = α 0 ( λ , T ) d z .
N 2 ( P p , T ) = λ , z N 2 ( λ , z , T ) d λ d z = τ ( T ) 2 l a h ν p Δ λ a b s , z [ I p 0 ( λ ) I p ( λ , z ) ] d λ d z ,
P a b s ( P p , T ) = π d p 2 8 z , Δ λ a b s ( T ) [ I p 0 ( λ ) I p ( λ , z ) ] d λ d z .
α g ( P p , T ) = σ g ( T ) [ N 2 ( P p , T ) f Y i ( T ) ( N 0 N 2 ( P p , T ) ) f Z j ( T ) ] ,
α g ( P p , T ) = α l o s s = ln ( R O C 1 R H R 1 ) + L 2 l a ,
α g 1558 ( P p , T ) = σ g Y 1 ( T ) ( N 2 ( P p , T ) f Y 1 ( T ) ( N 0 N 2 ( P p , T ) ) f Z 5 ( T ) ) + + σ g Y 4 ( T ) ( N 2 ( P p , T ) f Y 4 ( T ) ( N 0 N 2 ( P p , T ) ) f Z 4 ( T ) ) ,

Metrics