Abstract

We report the experimental determination of the ordinary and extraordinary refractive index of 8 mol% Mg-doped congruent lithium tantalate (MCLT). Refractive index measurements cover a spectral range from 450nm to 1550nm and temperatures varying from 22°C to 200°C. Experimental data are fitted to a temperature-dependent dispersion relation that has not been previously used with this material family. Based on this relation, various optical properties of MCLT are calculated, including thermo-optic coefficient, group velocity dispersion, phase matching curve and temporal walk-off. In an additional quasi-phase-matching second-harmonic-generation experiment it is shown that the proposed dispersion relation may be used to predict grating period with remarkable nanometer-scale accuracy.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, “Quasi phase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides,” Electron. Lett. 27(22), 2040–2042 (1991).
    [CrossRef]
  2. K. Mizuuchi and K. Yamamoto, “Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO(3),” Opt. Lett. 21(2), 107–109 (1996).
    [CrossRef] [PubMed]
  3. J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22(16), 1214–1216 (1997).
    [CrossRef] [PubMed]
  4. M. E. Klein, D. H. Lee, J. P. Meyn, B. Beier, K. J. Boller, and R. Wallenstein, “Diode-pumped continuous-wave widely tunable optical parametric oscillator based on periodically poled lithium tantalate,” Opt. Lett. 23(11), 831–833 (1998).
    [CrossRef] [PubMed]
  5. P. A. Champert, S. V. Popov, J. R. Taylor, and J. P. Meyn, “Efficient second-harmonic generation at 384 nm in periodically poled lithium tantalate by use of a visible Yb--Er-seeded fiber source,” Opt. Lett. 25(17), 1252–1254 (2000).
    [CrossRef] [PubMed]
  6. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO(3),” Opt. Lett. 25(9), 651–653 (2000).
    [CrossRef] [PubMed]
  7. A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445–7449 (2004).
    [CrossRef]
  8. T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, “High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3,” Opt. Lett. 29(10), 1111–1113 (2004).
    [CrossRef] [PubMed]
  9. S. Y. Tu, A. H. Kung, Z. D. Gao, and S. N. Zhu, “Efficient periodically poled stoichiometric lithium tantalate optical parametric oscillator for the visible to near-infrared region,” Opt. Lett. 30(18), 2451–2453 (2005).
    [CrossRef] [PubMed]
  10. W. B. Cho, K. Kim, H. Lim, J. Lee, S. Kurimura, and F. Rotermund, “Multikilohertz optical parametric chirped pulse amplification in periodically poled stoichiometric LiTaO3 at 1235 nm,” Opt. Lett. 32(19), 2828–2830 (2007).
    [CrossRef] [PubMed]
  11. G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 32(4), 400–402 (2007).
    [CrossRef] [PubMed]
  12. S. Y. Tu, A. H. Kung, S. Kurimura, and T. Ikegami, “Broadly tunable ultraviolet light generation in a compact MgO-doped periodically-poled stoichiometric lithium tantalate optical parametric oscillator with a high-Q cavity,” Appl. Opt. 47(31), 5762–5766 (2008).
    [CrossRef] [PubMed]
  13. X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33(4), 408–410 (2008).
    [CrossRef] [PubMed]
  14. S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17(16), 13711–13726 (2009).
    [CrossRef] [PubMed]
  15. H. Ishizuki and T. Taira, “High energy quasi-phase matched optical parametric oscillation using Mg-doped congruent LiTaO3 crystal,” Opt. Express 18(1), 253–258 (2010).
    [CrossRef]
  16. V. Bhupathiraju, J. D. Rowley, and F. Ganikhanov, “Efficient picosecond optical parametric oscillator based on periodically poled lithium tantalate,” Appl. Phys. Lett. 95(8), 081111 (2009).
    [CrossRef]
  17. M. Levenius, V. Pasiskevicius, F. Laurell, and K. Gallo, “Ultra-broadband optical parametric generation in periodically poled stoichiometric LiTaO3,” Opt. Express 19(5), 4121–4128 (2011).
    [CrossRef] [PubMed]
  18. W. L. Bond, “Measurement of the refractive index of several crystals,” J. Appl. Phys. 36(5), 1674–1677 (1965).
    [CrossRef]
  19. H. Iwasaki, T. Yamada, N. Niizeki, H. Toyoda, and H. Kubota, “Refractive indices of LiTaO3 at high temperatures,” Jpn. J. Appl. Phys. 7(2), 185–186 (1968).
    [CrossRef]
  20. K. S. Abedin and H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalate,” J. Appl. Phys. 80(11), 6561–6563 (1996).
    [CrossRef]
  21. A. Bruner, D. Eger, M. Oron, P. Blau, M. Katz, and S. Ruschin, “Refractive index dispersion measurements of congruent and stoichiometric LiTaO3,” Proc. SPIE 4628, 66–73 (2002).
    [CrossRef]
  22. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
    [CrossRef] [PubMed]
  23. F. Juvalta, M. Jazbinsek, P. Günter, and K. Kitamura, “Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths,” J. Opt. Soc. Am. B 23(2), 276–281 (2006).
    [CrossRef]
  24. V. Z. Kolev, M. W. Duering, and B. Luther-Davies, “Corrections to refractive index data of stoichiometric lithium tantalate in the 5-6 microm range,” Opt. Lett. 31(13), 2033–2035 (2006).
    [CrossRef] [PubMed]
  25. N. A. Barboza and R. S. Cudney, “Improved Sellmeier equation for congruently grown lithium tantalate,” Appl. Phys. B 95(3), 453–458 (2009), doi:.
    [CrossRef]
  26. W. L. Weng, Y. W. Liu, and X. Q. Zhang, “Temperature-dependent Sellmeier equation for 1.0mol% Mg-doped stoichiometric lithium tantalate,” Chin. Phys. Lett. 25(12), 4303–4306 (2008).
    [CrossRef]
  27. I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2-3), 423–432 (2009).
    [CrossRef]
  28. K. Moutzouris, I. Stavrakas, D. Triantis, and M. Enculescu, “Temperature-dependent refractive index of potassium acid phthalate (KAP) in the visible and near-infrared,” Opt. Mater. 33(6), 812–816 (2011).
    [CrossRef]
  29. R. L. Byer, “Quasi-phasematched nonlinear interaction and devices,” J. Nonlinear Opt. Phys. Mater. 6(4), 549–591 (1997).
    [CrossRef]
  30. Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate crystals,” J. Appl. Phys. 40(11), 4637–4641 (1969).
    [CrossRef]
  31. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [CrossRef]

2011 (2)

M. Levenius, V. Pasiskevicius, F. Laurell, and K. Gallo, “Ultra-broadband optical parametric generation in periodically poled stoichiometric LiTaO3,” Opt. Express 19(5), 4121–4128 (2011).
[CrossRef] [PubMed]

K. Moutzouris, I. Stavrakas, D. Triantis, and M. Enculescu, “Temperature-dependent refractive index of potassium acid phthalate (KAP) in the visible and near-infrared,” Opt. Mater. 33(6), 812–816 (2011).
[CrossRef]

2010 (1)

2009 (4)

V. Bhupathiraju, J. D. Rowley, and F. Ganikhanov, “Efficient picosecond optical parametric oscillator based on periodically poled lithium tantalate,” Appl. Phys. Lett. 95(8), 081111 (2009).
[CrossRef]

S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17(16), 13711–13726 (2009).
[CrossRef] [PubMed]

N. A. Barboza and R. S. Cudney, “Improved Sellmeier equation for congruently grown lithium tantalate,” Appl. Phys. B 95(3), 453–458 (2009), doi:.
[CrossRef]

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2-3), 423–432 (2009).
[CrossRef]

2008 (3)

2007 (2)

2006 (2)

2005 (1)

2004 (2)

2003 (1)

2002 (1)

A. Bruner, D. Eger, M. Oron, P. Blau, M. Katz, and S. Ruschin, “Refractive index dispersion measurements of congruent and stoichiometric LiTaO3,” Proc. SPIE 4628, 66–73 (2002).
[CrossRef]

2000 (2)

1998 (1)

1997 (2)

1996 (2)

K. S. Abedin and H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalate,” J. Appl. Phys. 80(11), 6561–6563 (1996).
[CrossRef]

K. Mizuuchi and K. Yamamoto, “Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO(3),” Opt. Lett. 21(2), 107–109 (1996).
[CrossRef] [PubMed]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

1991 (1)

S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, “Quasi phase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides,” Electron. Lett. 27(22), 2040–2042 (1991).
[CrossRef]

1969 (1)

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate crystals,” J. Appl. Phys. 40(11), 4637–4641 (1969).
[CrossRef]

1968 (1)

H. Iwasaki, T. Yamada, N. Niizeki, H. Toyoda, and H. Kubota, “Refractive indices of LiTaO3 at high temperatures,” Jpn. J. Appl. Phys. 7(2), 185–186 (1968).
[CrossRef]

1965 (1)

W. L. Bond, “Measurement of the refractive index of several crystals,” J. Appl. Phys. 36(5), 1674–1677 (1965).
[CrossRef]

Abedin, K. S.

K. S. Abedin and H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalate,” J. Appl. Phys. 80(11), 6561–6563 (1996).
[CrossRef]

Arie, A.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2-3), 423–432 (2009).
[CrossRef]

Barboza, N. A.

N. A. Barboza and R. S. Cudney, “Improved Sellmeier equation for congruently grown lithium tantalate,” Appl. Phys. B 95(3), 453–458 (2009), doi:.
[CrossRef]

Beier, B.

Bhupathiraju, V.

V. Bhupathiraju, J. D. Rowley, and F. Ganikhanov, “Efficient picosecond optical parametric oscillator based on periodically poled lithium tantalate,” Appl. Phys. Lett. 95(8), 081111 (2009).
[CrossRef]

Blau, P.

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
[CrossRef] [PubMed]

A. Bruner, D. Eger, M. Oron, P. Blau, M. Katz, and S. Ruschin, “Refractive index dispersion measurements of congruent and stoichiometric LiTaO3,” Proc. SPIE 4628, 66–73 (2002).
[CrossRef]

Boller, K. J.

Bond, W. L.

W. L. Bond, “Measurement of the refractive index of several crystals,” J. Appl. Phys. 36(5), 1674–1677 (1965).
[CrossRef]

Bruner, A.

A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445–7449 (2004).
[CrossRef]

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
[CrossRef] [PubMed]

A. Bruner, D. Eger, M. Oron, P. Blau, M. Katz, and S. Ruschin, “Refractive index dispersion measurements of congruent and stoichiometric LiTaO3,” Proc. SPIE 4628, 66–73 (2002).
[CrossRef]

Brunner, F.

Byer, R. L.

R. L. Byer, “Quasi-phasematched nonlinear interaction and devices,” J. Nonlinear Opt. Phys. Mater. 6(4), 549–591 (1997).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Champert, P. A.

Cho, W. B.

Cudney, R. S.

N. A. Barboza and R. S. Cudney, “Improved Sellmeier equation for congruently grown lithium tantalate,” Appl. Phys. B 95(3), 453–458 (2009), doi:.
[CrossRef]

Dolev, I.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2-3), 423–432 (2009).
[CrossRef]

Duering, M. W.

Ebrahim-Zadeh, M.

Eger, D.

A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445–7449 (2004).
[CrossRef]

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
[CrossRef] [PubMed]

A. Bruner, D. Eger, M. Oron, P. Blau, M. Katz, and S. Ruschin, “Refractive index dispersion measurements of congruent and stoichiometric LiTaO3,” Proc. SPIE 4628, 66–73 (2002).
[CrossRef]

Enculescu, M.

K. Moutzouris, I. Stavrakas, D. Triantis, and M. Enculescu, “Temperature-dependent refractive index of potassium acid phthalate (KAP) in the visible and near-infrared,” Opt. Mater. 33(6), 812–816 (2011).
[CrossRef]

Fayaz, G. R.

Fejer, M. M.

J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22(16), 1214–1216 (1997).
[CrossRef] [PubMed]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, “Quasi phase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides,” Electron. Lett. 27(22), 2040–2042 (1991).
[CrossRef]

Furukawa, Y.

Gadret, G.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2-3), 423–432 (2009).
[CrossRef]

Gallo, K.

Ganany-Padowicz, A.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2-3), 423–432 (2009).
[CrossRef]

Ganikhanov, F.

V. Bhupathiraju, J. D. Rowley, and F. Ganikhanov, “Efficient picosecond optical parametric oscillator based on periodically poled lithium tantalate,” Appl. Phys. Lett. 95(8), 081111 (2009).
[CrossRef]

Gao, Z. D.

Gayer, O.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2-3), 423–432 (2009).
[CrossRef]

Günter, P.

Hanna, D. C.

Hatanaka, T.

He, J. L.

Hertz, H. M.

S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, “Quasi phase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides,” Electron. Lett. 27(22), 2040–2042 (1991).
[CrossRef]

Hu, X. P.

Ikegami, T.

Innerhofer, E.

Ishizuki, H.

Ito, H.

Iwasaki, H.

H. Iwasaki, T. Yamada, N. Niizeki, H. Toyoda, and H. Kubota, “Refractive indices of LiTaO3 at high temperatures,” Jpn. J. Appl. Phys. 7(2), 185–186 (1968).
[CrossRef]

Jazbinsek, M.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Juvalta, F.

Katz, M.

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
[CrossRef] [PubMed]

A. Bruner, D. Eger, M. Oron, P. Blau, M. Katz, and S. Ruschin, “Refractive index dispersion measurements of congruent and stoichiometric LiTaO3,” Proc. SPIE 4628, 66–73 (2002).
[CrossRef]

Keller, U.

Kim, K.

Kim, Y. S.

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate crystals,” J. Appl. Phys. 40(11), 4637–4641 (1969).
[CrossRef]

Kitamura, K.

Klein, M. E.

Kolev, V. Z.

Kubota, H.

H. Iwasaki, T. Yamada, N. Niizeki, H. Toyoda, and H. Kubota, “Refractive indices of LiTaO3 at high temperatures,” Jpn. J. Appl. Phys. 7(2), 185–186 (1968).
[CrossRef]

Kumar, S. C.

Kung, A. H.

Kurimura, S.

Laurell, F.

Lee, D. H.

Lee, J.

Levenius, M.

Lim, E. J.

S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, “Quasi phase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides,” Electron. Lett. 27(22), 2040–2042 (1991).
[CrossRef]

Lim, H.

Liu, H.

Liu, Y. W.

W. L. Weng, Y. W. Liu, and X. Q. Zhang, “Temperature-dependent Sellmeier equation for 1.0mol% Mg-doped stoichiometric lithium tantalate,” Chin. Phys. Lett. 25(12), 4303–4306 (2008).
[CrossRef]

Luther-Davies, B.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Mangin, J.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2-3), 423–432 (2009).
[CrossRef]

Matsumoto, S.

S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, “Quasi phase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides,” Electron. Lett. 27(22), 2040–2042 (1991).
[CrossRef]

Meyn, J. P.

Mizuuchi, K.

Moutzouris, K.

K. Moutzouris, I. Stavrakas, D. Triantis, and M. Enculescu, “Temperature-dependent refractive index of potassium acid phthalate (KAP) in the visible and near-infrared,” Opt. Mater. 33(6), 812–816 (2011).
[CrossRef]

Nakamura, K.

Niizeki, N.

H. Iwasaki, T. Yamada, N. Niizeki, H. Toyoda, and H. Kubota, “Refractive indices of LiTaO3 at high temperatures,” Jpn. J. Appl. Phys. 7(2), 185–186 (1968).
[CrossRef]

Oron, M.

A. Bruner, D. Eger, M. Oron, P. Blau, M. Katz, and S. Ruschin, “Refractive index dispersion measurements of congruent and stoichiometric LiTaO3,” Proc. SPIE 4628, 66–73 (2002).
[CrossRef]

Oron, M. B.

Paschotta, R.

Pasiskevicius, V.

Popov, S. V.

Rotermund, F.

Rowley, J. D.

V. Bhupathiraju, J. D. Rowley, and F. Ganikhanov, “Efficient picosecond optical parametric oscillator based on periodically poled lithium tantalate,” Appl. Phys. Lett. 95(8), 081111 (2009).
[CrossRef]

Ruschin, S.

A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445–7449 (2004).
[CrossRef]

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
[CrossRef] [PubMed]

A. Bruner, D. Eger, M. Oron, P. Blau, M. Katz, and S. Ruschin, “Refractive index dispersion measurements of congruent and stoichiometric LiTaO3,” Proc. SPIE 4628, 66–73 (2002).
[CrossRef]

Samanta, G. K.

Smith, R. T.

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate crystals,” J. Appl. Phys. 40(11), 4637–4641 (1969).
[CrossRef]

Stavrakas, I.

K. Moutzouris, I. Stavrakas, D. Triantis, and M. Enculescu, “Temperature-dependent refractive index of potassium acid phthalate (KAP) in the visible and near-infrared,” Opt. Mater. 33(6), 812–816 (2011).
[CrossRef]

Südmeyer, T.

Sun, Z.

Taira, T.

Taniuchi, T.

Taylor, J. R.

Toyoda, H.

H. Iwasaki, T. Yamada, N. Niizeki, H. Toyoda, and H. Kubota, “Refractive indices of LiTaO3 at high temperatures,” Jpn. J. Appl. Phys. 7(2), 185–186 (1968).
[CrossRef]

Triantis, D.

K. Moutzouris, I. Stavrakas, D. Triantis, and M. Enculescu, “Temperature-dependent refractive index of potassium acid phthalate (KAP) in the visible and near-infrared,” Opt. Mater. 33(6), 812–816 (2011).
[CrossRef]

Tu, S. Y.

Usami, T.

Wallenstein, R.

Wang, X.

Weng, W. L.

W. L. Weng, Y. W. Liu, and X. Q. Zhang, “Temperature-dependent Sellmeier equation for 1.0mol% Mg-doped stoichiometric lithium tantalate,” Chin. Phys. Lett. 25(12), 4303–4306 (2008).
[CrossRef]

Yamada, T.

H. Iwasaki, T. Yamada, N. Niizeki, H. Toyoda, and H. Kubota, “Refractive indices of LiTaO3 at high temperatures,” Jpn. J. Appl. Phys. 7(2), 185–186 (1968).
[CrossRef]

Yamamoto, K.

Yan, Z.

Zhang, X. Q.

W. L. Weng, Y. W. Liu, and X. Q. Zhang, “Temperature-dependent Sellmeier equation for 1.0mol% Mg-doped stoichiometric lithium tantalate,” Chin. Phys. Lett. 25(12), 4303–4306 (2008).
[CrossRef]

Zhao, G.

Zhu, S. N.

Appl. Opt. (1)

Appl. Phys. B (2)

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2-3), 423–432 (2009).
[CrossRef]

N. A. Barboza and R. S. Cudney, “Improved Sellmeier equation for congruently grown lithium tantalate,” Appl. Phys. B 95(3), 453–458 (2009), doi:.
[CrossRef]

Appl. Phys. Lett. (1)

V. Bhupathiraju, J. D. Rowley, and F. Ganikhanov, “Efficient picosecond optical parametric oscillator based on periodically poled lithium tantalate,” Appl. Phys. Lett. 95(8), 081111 (2009).
[CrossRef]

Chin. Phys. Lett. (1)

W. L. Weng, Y. W. Liu, and X. Q. Zhang, “Temperature-dependent Sellmeier equation for 1.0mol% Mg-doped stoichiometric lithium tantalate,” Chin. Phys. Lett. 25(12), 4303–4306 (2008).
[CrossRef]

Electron. Lett. (1)

S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, “Quasi phase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides,” Electron. Lett. 27(22), 2040–2042 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

J. Appl. Phys. (4)

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate crystals,” J. Appl. Phys. 40(11), 4637–4641 (1969).
[CrossRef]

A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445–7449 (2004).
[CrossRef]

W. L. Bond, “Measurement of the refractive index of several crystals,” J. Appl. Phys. 36(5), 1674–1677 (1965).
[CrossRef]

K. S. Abedin and H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalate,” J. Appl. Phys. 80(11), 6561–6563 (1996).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

R. L. Byer, “Quasi-phasematched nonlinear interaction and devices,” J. Nonlinear Opt. Phys. Mater. 6(4), 549–591 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

H. Iwasaki, T. Yamada, N. Niizeki, H. Toyoda, and H. Kubota, “Refractive indices of LiTaO3 at high temperatures,” Jpn. J. Appl. Phys. 7(2), 185–186 (1968).
[CrossRef]

Opt. Express (3)

Opt. Lett. (12)

V. Z. Kolev, M. W. Duering, and B. Luther-Davies, “Corrections to refractive index data of stoichiometric lithium tantalate in the 5-6 microm range,” Opt. Lett. 31(13), 2033–2035 (2006).
[CrossRef] [PubMed]

G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 32(4), 400–402 (2007).
[CrossRef] [PubMed]

W. B. Cho, K. Kim, H. Lim, J. Lee, S. Kurimura, and F. Rotermund, “Multikilohertz optical parametric chirped pulse amplification in periodically poled stoichiometric LiTaO3 at 1235 nm,” Opt. Lett. 32(19), 2828–2830 (2007).
[CrossRef] [PubMed]

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33(4), 408–410 (2008).
[CrossRef] [PubMed]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO(3),” Opt. Lett. 25(9), 651–653 (2000).
[CrossRef] [PubMed]

J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22(16), 1214–1216 (1997).
[CrossRef] [PubMed]

M. E. Klein, D. H. Lee, J. P. Meyn, B. Beier, K. J. Boller, and R. Wallenstein, “Diode-pumped continuous-wave widely tunable optical parametric oscillator based on periodically poled lithium tantalate,” Opt. Lett. 23(11), 831–833 (1998).
[CrossRef] [PubMed]

K. Mizuuchi and K. Yamamoto, “Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO(3),” Opt. Lett. 21(2), 107–109 (1996).
[CrossRef] [PubMed]

P. A. Champert, S. V. Popov, J. R. Taylor, and J. P. Meyn, “Efficient second-harmonic generation at 384 nm in periodically poled lithium tantalate by use of a visible Yb--Er-seeded fiber source,” Opt. Lett. 25(17), 1252–1254 (2000).
[CrossRef] [PubMed]

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
[CrossRef] [PubMed]

T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, “High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3,” Opt. Lett. 29(10), 1111–1113 (2004).
[CrossRef] [PubMed]

S. Y. Tu, A. H. Kung, Z. D. Gao, and S. N. Zhu, “Efficient periodically poled stoichiometric lithium tantalate optical parametric oscillator for the visible to near-infrared region,” Opt. Lett. 30(18), 2451–2453 (2005).
[CrossRef] [PubMed]

Opt. Mater. (1)

K. Moutzouris, I. Stavrakas, D. Triantis, and M. Enculescu, “Temperature-dependent refractive index of potassium acid phthalate (KAP) in the visible and near-infrared,” Opt. Mater. 33(6), 812–816 (2011).
[CrossRef]

Proc. SPIE (1)

A. Bruner, D. Eger, M. Oron, P. Blau, M. Katz, and S. Ruschin, “Refractive index dispersion measurements of congruent and stoichiometric LiTaO3,” Proc. SPIE 4628, 66–73 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Fitted (solid lines) and experimental (open circles) refractive index dispersion as a function of temperature and five different wavelengths for the ordinary (a) and extraordinary (b) optic axis. For comparison, refractive index dispersion for undoped CLT based on the fit of Ref [21]. is also shown (dashed lines) in plot (b).

Fig. 2
Fig. 2

(a) Caclulated thermo-optic coefficient as a function of temperature for MCLT (solid lines) and undoped CLT (dashed lines). Calculations are carried out for five indicative wavelengths (450nm, 550nm, 650nm, 1050nm and 1550nm). (b) Calculated group-velocity dispersion as a function of wavelength for MCLT (solid lines) and undoped CLT (dashed lines). Calculations are repeated for two indicative temperatures of 22°C and 200°C. Calculated values for undoped CLT are based on dispersion relation of ref [21].

Fig. 3
Fig. 3

(a) Calculated SHG grating period versus fundamental wavelength for two temperatures of 22°C and 200°C. (b) Calculated temporal walk-off between fundamental and second-harmonic radiation versus fundamental wavelength for two temperatures of 22°C and 200°C.

Tables (3)

Tables Icon

Table 1 Experimental Ordinary and Extraordinary Refractive Index Data for MCLT

Tables Icon

Table 2 Dispersion Relation Coefficients for the Ordinary and Extraordinary Refractive Index of MCLT

Tables Icon

Table 3 Experimental SHG Phase-matching Wavelength and Grating Period at Three Different Temperatures, along with Calculated Period Values. Last Column Presents Absolute Value of Difference Between Experimental and Theoretical Grating Period.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

θ c = arcsin ( n x / n p ) .
n 2 ( λ , T ) = A 1 + B 1 F ( T ) + A 2 λ 2 + A 3 + B 2 F ( T ) λ 2 [ B 3 F ( T ) ] 2 + A 4 λ 4 + A 5 λ 6 .
F ( T ) = ( T 22 O C ) ( T + 22 O C + 2 273 O C ) = ( T 22 O C ) ( T + 568 O C ) ,
n 2 ( λ , T ) = A 1 + A 2 λ 2 + A 3 λ 2 + A 4 λ 4 + A 5 λ 6 .
Λ t h ( λ F , T ) = λ F 2 [ n e ( λ F / 2 , T ) n e ( λ F , T ) ] α ( Τ ) .
α ( Τ ) = 1 + 1.6 10 5 ( T 25 o C ) + 7 10 9 ( T 25 o C ) 2 .
Δ Λ = 5.57 L [ Δ k Λ ] 1 = 0.887 L Λ 2 ,

Metrics