Abstract

We review recent progress in pulsed lasers using cryogenically-cooled Yb3+-doped gain media, with an emphasis on high average power. Recent measurements of thermo-optic properties for various host materials at both room and cryogenic temperature are presented, including thermal conductivity, coefficient of thermal expansion and refractive index. Host materials reviewed include Y2O3, Lu2O3, Sc2O3, YLF, YSO, GSAG and YVO4. We report on the performance of several cryogenic Yb lasers operating at 5-kHz pulse repetition frequency (PRF). A Q-switched Yb:YAG laser is shown to operate at 114-W average power, with 16-ns pulse duration. A chirped pulse amplifier achieves 115-W output using a Yb:YAG power amplifier. Output power of 73 W is obtained from a composite Yb:YAG/Yb:GSAG amplifier, with pulses that compress to 1.6 ps. Finally, a high-average-power femtosecond laser based on Yb:YLF is discussed, with results for a 10-W regenerative amplifier at 10-kHZ PRF.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. P. Sorokin and M. J. Stevenson, “Stimulated infrared emission from trivalent uranium,” Phys. Rev. Lett. 5(12), 557–559 (1960).
    [CrossRef]
  2. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [CrossRef]
  3. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [CrossRef]
  4. W. Leemans and E. Esarey, “Laser-driven plasma-wave electron accelerators,” Phys. Today 62(3), 44–49 (2009).
    [CrossRef]
  5. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
    [CrossRef] [PubMed]
  6. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
    [CrossRef]
  7. D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D-65520D-9 (2007).
    [CrossRef]
  8. H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, “Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics,” Opt. Express 19(3), 2448–2455 (2011).
    [CrossRef] [PubMed]
  9. L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF(4) lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
    [CrossRef] [PubMed]
  10. S. Ricaud, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, P. Georges, and F. Druon, “Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF2.,” Opt. Lett. 35(22), 3757–3759 (2010).
    [CrossRef] [PubMed]
  11. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
    [CrossRef] [PubMed]
  12. S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, and M. M. Murnane, “High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system,” Opt. Lett. 26(7), 465–467 (2001).
    [CrossRef] [PubMed]
  13. I. Matsushima, H. Yashiro, and T. Tomie, “10 kHz 40 W Ti:sapphire regenerative ring amplifier,” Opt. Lett. 31(13), 2066–2068 (2006).
    [CrossRef] [PubMed]
  14. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12 (YAG), Lu3Al5O12 (LuAG), YAlO3 (YALO), LiYF4 (YLF), LiLuF4 (LuLF), BaY2F8 (BYF), KGd(WO4)2 (KGW), and KY(WO4)2 (KYW) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
    [CrossRef]
  15. D. A. Rand, S. E. J. Shaw, J. R. Ochoa, D. J. Ripin, A. Taylor, T. Y. Fan, H. Martin, S. Hawes, J. Zhang, S. Sarkisyan, E. Wilson, and P. Lundquist, “Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG,” Opt. Lett. 36(3), 340–342 (2011).
    [CrossRef] [PubMed]
  16. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
    [CrossRef]
  17. S. E. Smith and R. C. Campbell, “Flash diffusivity method: A survey of capabilities,” ElectronicsCoolings, May 2002. http://www.electronics-cooling.com/2002/05/flash-diffusivity-method-a-survey-of-capabilities/ .
  18. Annual Book of ASTM Standards, Vol. 14.02, “Thermal Measurements” (ASTM International, West Conshohocken, Penn.).
  19. E. G. Wolff and R. C. Savedra, “Precision interferometric dilatometer,” Rev. Sci. Instrum. 56(7), 1313 (1985).
    [CrossRef]
  20. V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
    [CrossRef]
  21. T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol. 12(12), 2089–2094 (2001).
    [CrossRef]
  22. B. Comaskey, G. F. Albrecht, R. J. Beach, B. D. Moran, and R. W. Solarz, “Flash-lamp-pumped laser operation of Nd3+:Y2SiO5 at 1.074 µm,” Opt. Lett. 18(23), 2029–2031 (1993).
    [CrossRef] [PubMed]
  23. M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80(2), 171–176 (2005).
    [CrossRef]
  24. P. A. Popov, N. N. Sirota, E. V. Zharikov, A. I. Zagumennyi, I. A. Ivonov, and G. B. Lutts, “Thermal conductivity of rare-earth scandium garnets and their solid solutions,” Laser Phys. 1, 437–440 (1991).
  25. J. D. James, J. A. Spittle, S. G. R. Brown, and R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12(3), R1–R15 (2001).
    [CrossRef]
  26. D. Taylor, “Thermal expansion data: III Sesquioxides, M2O3, with the corundum and the A-, B- and C-M2O3 structures,” Br. Ceram. Proc. , 83, 92–98 (1984).
  27. K. Scholle, P. Fuhrberg, T. Gün, Y. Kuzminykh, K. Petermann, and G. Huber, “Miniature lasers on the basis of Yb:Sc2O3,” ASSP’07, paper WB5 (2007
  28. Y. Sato and T. Taira, “Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4,” CLEO’07, paper JWA87 (2007).
  29. E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Sallese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73(5), 1246–1252 (1990).
    [CrossRef]
  30. H. M. O’Bryan, P. K. Gallagher, and G. W. Berkstresser, “Thermal expansion of Y2SiO5 single crystals,” J. Am. Ceram. Soc. 71, C42–C43 (1988).
  31. J. W. Nowok, J. P. Kay, and R. J. Kulas, “Thermal expansion and high-temperature phase transformation of the yttrium silicate Y2SiO5,” J. Mater. Res. 16(08), 2251–2255 (2001).
    [CrossRef]
  32. C. S. Hoefer, K. W. Kirby, and L. G. DeShazert, “Thermo-optic properties of gadolinium garnet laser crystals,” J. Opt. Soc. Am. B 5(11), 2327–2332 (1988).
    [CrossRef]
  33. D. S. Sumida and D. A. Rockwell, “Thermo-optic measurements of chromium- and neodymium-doped scandium garnet laser rods,” in Conference on Lasers and Electro-Optics, vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1992), pp. 274–275.
  34. D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt. 49(4), 644–647 (2010).
    [CrossRef] [PubMed]
  35. H. S. Shi, G. Zhang, and H. Y. Shen, “Measurement of principal refractive indices and the thermal refractive index coefficients of yttrium vanadate,” J. Synth. Cryst. 30, 85–88 (2001).
  36. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients of Nd-doped anisotropic KGd(WO4)2, YVO4 and GdVO4 laser crystals,” Appl. Phys. B 102(1), 117–122 (2011).
    [CrossRef]
  37. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
    [CrossRef]
  38. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Efficient high-average-power operation of Q-switched cryogenic Yb:YAG laser oscillator,” Jpn. J. Appl. Phys. 44(50), L1529–L1531 (2005).
    [CrossRef]
  39. J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, and J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express 19(2), 913–922 (2011).
    [CrossRef] [PubMed]
  40. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
    [CrossRef]
  41. J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
    [CrossRef]
  42. J. Kawanaka, K. Yamakawa, H. Nishioka, and K.-I. Ueda, “30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier,” Opt. Lett. 28(21), 2121–2123 (2003).
    [CrossRef] [PubMed]
  43. S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, and T. Kawashima, “23.7-W picosecond cryogenic-Yb:YAG multipass amplifier,” Opt. Express 15(7), 3955–3961 (2007).
    [CrossRef] [PubMed]
  44. Y. Akahane, M. Aoyama, K. Ogawa, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa, “High-energy, diode-pumped, picosecond Yb:YAG chirped-pulse regenerative amplifier for pumping optical parametric chirped-pulse amplification,” Opt. Lett. 32(13), 1899–1901 (2007).
    [CrossRef] [PubMed]
  45. K. Ogawa, Y. Akahane, M. Aoyama, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa, “Multi-millijoule, diode-pumped, cryogenically-cooled Yb:KY(WO(4))(2) chirped-pulse regenerative amplifier,” Opt. Express 15(14), 8598–8602 (2007).
    [CrossRef] [PubMed]
  46. K.-H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
    [CrossRef] [PubMed]
  47. D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18(24), 24770–24792 (2010).
    [CrossRef] [PubMed]
  48. A. Pugžlys, G. Andriukaitis, A. Baltuška, L. Su, J. Xu, H. Li, R. Li, W. J. Lai, P. B. Phua, A. Marcinkevičius, M. E. Fermann, L. Giniūnas, R. Danielius, and S. Ališauskas, “Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb,Na:CaF2 amplifier,” Opt. Lett. 34(13), 2075–2077 (2009).
    [CrossRef] [PubMed]
  49. F. J. Furch, B. A. Reagan, B. M. Luther, A. H. Curtis, S. P. Meehan, and J. J. Rocca, “Demonstration of an all-diode-pumped soft x-ray laser,” Opt. Lett. 34(21), 3352–3354 (2009).
    [CrossRef] [PubMed]
  50. K.-H. Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S.-W. Huang, E. Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, and F. X. Kärtner, “High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier,” Opt. Lett. 35(11), 1752–1754 (2010).
    [CrossRef] [PubMed]
  51. J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner, “High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy,” Opt. Lett. 34(9), 1378–1380 (2009).
    [CrossRef] [PubMed]
  52. T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
    [CrossRef] [PubMed]
  53. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
    [CrossRef] [PubMed]
  54. S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” Opt. Express 19(6), 5357–5363 (2011).
    [CrossRef] [PubMed]
  55. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007).
    [CrossRef] [PubMed]
  56. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
    [CrossRef] [PubMed]
  57. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [CrossRef]
  58. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
    [CrossRef]
  59. J. Sherman, “Thermal compensation of a cw-pumped Nd:YAG laser,” Appl. Opt. 37(33), 7789–7796 (1998).
    [CrossRef] [PubMed]
  60. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
    [CrossRef]
  61. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
    [CrossRef] [PubMed]
  62. K. Ogawa, Y. Akahane, and K. Yamakawa, “100-mJ diode-pumped, cryogenically-cooled Yb:YLF chirped-pulse regenerative amplifier,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMB4.
  63. T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
    [CrossRef]
  64. D. J. Ripin, T. Y. Fan, A. K. Goyal, and J. Hybl, “Grazing-incidence-disk laser element,” U.S. Patent 2010/0215067 A1 (issued Aug. 26, 2010).
  65. C. P. J. Barty, T. Guo, C. Le Blanc, F. Raksi, C. Rose-Petruck, J. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,” Opt. Lett. 21(9), 668–670 (1996).
    [CrossRef] [PubMed]
  66. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25(8), 575–577 (2000).
    [CrossRef] [PubMed]

2011 (5)

2010 (9)

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[CrossRef] [PubMed]

D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt. 49(4), 644–647 (2010).
[CrossRef] [PubMed]

K.-H. Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S.-W. Huang, E. Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, and F. X. Kärtner, “High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier,” Opt. Lett. 35(11), 1752–1754 (2010).
[CrossRef] [PubMed]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF(4) lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[CrossRef] [PubMed]

S. Ricaud, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, P. Georges, and F. Druon, “Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF2.,” Opt. Lett. 35(22), 3757–3759 (2010).
[CrossRef] [PubMed]

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18(24), 24770–24792 (2010).
[CrossRef] [PubMed]

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
[CrossRef] [PubMed]

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

2009 (6)

2008 (2)

2007 (6)

2006 (1)

2005 (5)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12 (YAG), Lu3Al5O12 (LuAG), YAlO3 (YALO), LiYF4 (YLF), LiLuF4 (LuLF), BaY2F8 (BYF), KGd(WO4)2 (KGW), and KY(WO4)2 (KYW) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[CrossRef]

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Efficient high-average-power operation of Q-switched cryogenic Yb:YAG laser oscillator,” Jpn. J. Appl. Phys. 44(50), L1529–L1531 (2005).
[CrossRef]

2004 (1)

2003 (2)

2002 (1)

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

2001 (5)

T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol. 12(12), 2089–2094 (2001).
[CrossRef]

J. D. James, J. A. Spittle, S. G. R. Brown, and R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12(3), R1–R15 (2001).
[CrossRef]

S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, and M. M. Murnane, “High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system,” Opt. Lett. 26(7), 465–467 (2001).
[CrossRef] [PubMed]

J. W. Nowok, J. P. Kay, and R. J. Kulas, “Thermal expansion and high-temperature phase transformation of the yttrium silicate Y2SiO5,” J. Mater. Res. 16(08), 2251–2255 (2001).
[CrossRef]

H. S. Shi, G. Zhang, and H. Y. Shen, “Measurement of principal refractive indices and the thermal refractive index coefficients of yttrium vanadate,” J. Synth. Cryst. 30, 85–88 (2001).

2000 (1)

1998 (2)

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

J. Sherman, “Thermal compensation of a cw-pumped Nd:YAG laser,” Appl. Opt. 37(33), 7789–7796 (1998).
[CrossRef] [PubMed]

1996 (2)

1993 (1)

1991 (2)

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
[CrossRef] [PubMed]

P. A. Popov, N. N. Sirota, E. V. Zharikov, A. I. Zagumennyi, I. A. Ivonov, and G. B. Lutts, “Thermal conductivity of rare-earth scandium garnets and their solid solutions,” Laser Phys. 1, 437–440 (1991).

1990 (1)

E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Sallese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73(5), 1246–1252 (1990).
[CrossRef]

1988 (2)

H. M. O’Bryan, P. K. Gallagher, and G. W. Berkstresser, “Thermal expansion of Y2SiO5 single crystals,” J. Am. Ceram. Soc. 71, C42–C43 (1988).

C. S. Hoefer, K. W. Kirby, and L. G. DeShazert, “Thermo-optic properties of gadolinium garnet laser crystals,” J. Opt. Soc. Am. B 5(11), 2327–2332 (1988).
[CrossRef]

1985 (2)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

E. G. Wolff and R. C. Savedra, “Precision interferometric dilatometer,” Rev. Sci. Instrum. 56(7), 1313 (1985).
[CrossRef]

1984 (1)

D. Taylor, “Thermal expansion data: III Sesquioxides, M2O3, with the corundum and the A-, B- and C-M2O3 structures,” Br. Ceram. Proc. , 83, 92–98 (1984).

1961 (1)

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

1960 (1)

P. P. Sorokin and M. J. Stevenson, “Stimulated infrared emission from trivalent uranium,” Phys. Rev. Lett. 5(12), 557–559 (1960).
[CrossRef]

Abbott, G. L.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12 (YAG), Lu3Al5O12 (LuAG), YAlO3 (YALO), LiYF4 (YLF), LiLuF4 (LuLF), BaY2F8 (BYF), KGd(WO4)2 (KGW), and KY(WO4)2 (KYW) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
[CrossRef] [PubMed]

Agrawal, D. K.

E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Sallese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73(5), 1246–1252 (1990).
[CrossRef]

Ahmad, I.

Akahane, Y.

Albrecht, G. F.

Ališauskas, S.

Andersen, T. V.

Andriukaitis, G.

Aoyama, M.

Arai, O.

T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol. 12(12), 2089–2094 (2001).
[CrossRef]

Backus, S.

Baer, C. R. E.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Balembois, F.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Baltuška, A.

Bartels, R.

Barty, C. P. J.

Bass, M.

Beach, R. J.

Berkstresser, G. W.

H. M. O’Bryan, P. K. Gallagher, and G. W. Berkstresser, “Thermal expansion of Y2SiO5 single crystals,” J. Am. Ceram. Soc. 71, C42–C43 (1988).

Bohn, M. J.

Bolz, A.

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

Bonelli, L.

Brasseur, J. K.

Brown, D. C.

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18(24), 24770–24792 (2010).
[CrossRef] [PubMed]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D-65520D-9 (2007).
[CrossRef]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[CrossRef]

Brown, S. G. R.

J. D. James, J. A. Spittle, S. G. R. Brown, and R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12(3), R1–R15 (2001).
[CrossRef]

Butler, C. P.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

Camy, P.

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Cheng, Z.

Choi, H. K.

Coluccelli, N.

Comaskey, B.

Courjaud, A.

Currin, K. M.

Curtis, A. H.

Danielius, R.

Deng, P.

DeShazert, L. G.

Di Lieto, A.

Dollinger, R.

Dong, J.

Dong, S.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Doualan, J. L.

Druon, F.

S. Ricaud, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, P. Georges, and F. Druon, “Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF2.,” Opt. Lett. 35(22), 3757–3759 (2010).
[CrossRef] [PubMed]

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Durfee, C. G.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Eggleton, B. J.

Eidam, T.

Esarey, E.

W. Leemans and E. Esarey, “Laser-driven plasma-wave electron accelerators,” Phys. Today 62(3), 44–49 (2009).
[CrossRef]

Evans, R. W.

J. D. James, J. A. Spittle, S. G. R. Brown, and R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12(3), R1–R15 (2001).
[CrossRef]

Fan, T. Y.

D. A. Rand, S. E. J. Shaw, J. R. Ochoa, D. J. Ripin, A. Taylor, T. Y. Fan, H. Martin, S. Hawes, J. Zhang, S. Sarkisyan, E. Wilson, and P. Lundquist, “Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG,” Opt. Lett. 36(3), 340–342 (2011).
[CrossRef] [PubMed]

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

K.-H. Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S.-W. Huang, E. Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, and F. X. Kärtner, “High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier,” Opt. Lett. 35(11), 1752–1754 (2010).
[CrossRef] [PubMed]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF(4) lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[CrossRef] [PubMed]

K.-H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
[CrossRef] [PubMed]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12 (YAG), Lu3Al5O12 (LuAG), YAlO3 (YALO), LiYF4 (YLF), LiLuF4 (LuLF), BaY2F8 (BYF), KGd(WO4)2 (KGW), and KY(WO4)2 (KYW) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
[CrossRef] [PubMed]

Fermann, M. E.

Ferrand, B.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Feve, J.-P. M.

Fujita, M.

Furch, F. J.

Furuse, H.

Gabler, T.

Gallagher, P. K.

H. M. O’Bryan, P. K. Gallagher, and G. W. Berkstresser, “Thermal expansion of Y2SiO5 single crystals,” J. Am. Ceram. Soc. 71, C42–C43 (1988).

Galzerano, G.

Gan, F.

Georges, P.

S. Ricaud, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, P. Georges, and F. Druon, “Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF2.,” Opt. Lett. 35(22), 3757–3759 (2010).
[CrossRef] [PubMed]

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Giniunas, L.

Golling, M.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Gopinath, J.

Gopinath, J. T.

Guelzow, J.

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18(24), 24770–24792 (2010).
[CrossRef] [PubMed]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D-65520D-9 (2007).
[CrossRef]

Guo, T.

Hanf, S.

Hawes, S.

Heckl, O. H.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Hoefer, C. S.

Hoffmann, H. D.

Hong, K.-H.

Hu, Q.

T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol. 12(12), 2089–2094 (2001).
[CrossRef]

Huang, S.-W.

Huber, G.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

Hybl, J.

Hybl, J. D.

Ilday, F. Ö.

Imasaki, K.

Ishii, S.

Ivonov, I. A.

P. A. Popov, N. N. Sirota, E. V. Zharikov, A. I. Zagumennyi, I. A. Ivonov, and G. B. Lutts, “Thermal conductivity of rare-earth scandium garnets and their solid solutions,” Laser Phys. 1, 437–440 (1991).

Izawa, Y.

Jacquemet, C.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Jacquemet, M.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

James, J. D.

J. D. James, J. A. Spittle, S. G. R. Brown, and R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12(3), R1–R15 (2001).
[CrossRef]

Janel, N.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Jenkins, R. J.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

Jung, R.

Kan, H.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Kapteyn, H. C.

Karsch, S.

Kärtner, F. X.

Kawanaka, J.

H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, “Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics,” Opt. Express 19(3), 2448–2455 (2011).
[CrossRef] [PubMed]

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Y. Akahane, M. Aoyama, K. Ogawa, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa, “High-energy, diode-pumped, picosecond Yb:YAG chirped-pulse regenerative amplifier for pumping optical parametric chirped-pulse amplification,” Opt. Lett. 32(13), 1899–1901 (2007).
[CrossRef] [PubMed]

K. Ogawa, Y. Akahane, M. Aoyama, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa, “Multi-millijoule, diode-pumped, cryogenically-cooled Yb:KY(WO(4))(2) chirped-pulse regenerative amplifier,” Opt. Express 15(14), 8598–8602 (2007).
[CrossRef] [PubMed]

S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, and T. Kawashima, “23.7-W picosecond cryogenic-Yb:YAG multipass amplifier,” Opt. Express 15(7), 3955–3961 (2007).
[CrossRef] [PubMed]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Efficient high-average-power operation of Q-switched cryogenic Yb:YAG laser oscillator,” Jpn. J. Appl. Phys. 44(50), L1529–L1531 (2005).
[CrossRef]

J. Kawanaka, K. Yamakawa, H. Nishioka, and K.-I. Ueda, “30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier,” Opt. Lett. 28(21), 2121–2123 (2003).
[CrossRef] [PubMed]

Kawashima, T.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, and T. Kawashima, “23.7-W picosecond cryogenic-Yb:YAG multipass amplifier,” Opt. Express 15(7), 3955–3961 (2007).
[CrossRef] [PubMed]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Efficient high-average-power operation of Q-switched cryogenic Yb:YAG laser oscillator,” Jpn. J. Appl. Phys. 44(50), L1529–L1531 (2005).
[CrossRef]

Kay, J. P.

J. W. Nowok, J. P. Kay, and R. J. Kulas, “Thermal expansion and high-temperature phase transformation of the yttrium silicate Y2SiO5,” J. Mater. Res. 16(08), 2251–2255 (2001).
[CrossRef]

Keller, U.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Kienberger, R.

Killi, A.

Kirby, K. W.

Klingebiel, S.

Kowalewski, K.

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18(24), 24770–24792 (2010).
[CrossRef] [PubMed]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D-65520D-9 (2007).
[CrossRef]

Kränkel, C.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Krausz, F.

Kugler, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Kulas, R. J.

J. W. Nowok, J. P. Kay, and R. J. Kulas, “Thermal expansion and high-temperature phase transformation of the yttrium silicate Y2SiO5,” J. Mater. Res. 16(08), 2251–2255 (2001).
[CrossRef]

Kuleshov, N. V.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients of Nd-doped anisotropic KGd(WO4)2, YVO4 and GdVO4 laser crystals,” Appl. Phys. B 102(1), 117–122 (2011).
[CrossRef]

Kuper, J. W.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D-65520D-9 (2007).
[CrossRef]

Lacovara, P.

Lai, W. J.

Laporta, P.

Laude, V.

Le Blanc, C.

Lee, J. J.

Leemans, W.

W. Leemans and E. Esarey, “Laser-driven plasma-wave electron accelerators,” Phys. Today 62(3), 44–49 (2009).
[CrossRef]

Li, E.

Li, H.

Li, R.

Limpert, J.

Loiko, P. A.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients of Nd-doped anisotropic KGd(WO4)2, YVO4 and GdVO4 laser crystals,” Appl. Phys. B 102(1), 117–122 (2011).
[CrossRef]

Lü, Q.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Lundquist, P.

Luther, B. M.

Lutts, G. B.

P. A. Popov, N. N. Sirota, E. V. Zharikov, A. I. Zagumennyi, I. A. Ivonov, and G. B. Lutts, “Thermal conductivity of rare-earth scandium garnets and their solid solutions,” Laser Phys. 1, 437–440 (1991).

Major, Z.

Manni, J. G.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

Mans, T.

Mao, Y.

Marcinkevicius, A.

Martin, H.

Matsushima, I.

McKinstry, H. A.

E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Sallese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73(5), 1246–1252 (1990).
[CrossRef]

Meehan, S. P.

Metzger, T.

Miyanaga, N.

Moncorgé, R.

Moran, B. D.

Moses, J.

Mottay, E.

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Müller, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Murnane, M. M.

Nickles, P. V.

Nishioka, H.

Noda, T.

T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol. 12(12), 2089–2094 (2001).
[CrossRef]

Northridge, J. M.

Nowok, J. W.

J. W. Nowok, J. P. Kay, and R. J. Kulas, “Thermal expansion and high-temperature phase transformation of the yttrium silicate Y2SiO5,” J. Mater. Res. 16(08), 2251–2255 (2001).
[CrossRef]

Numazawa, T.

T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol. 12(12), 2089–2094 (2001).
[CrossRef]

O’Bryan, H. M.

H. M. O’Bryan, P. K. Gallagher, and G. W. Berkstresser, “Thermal expansion of Y2SiO5 single crystals,” J. Am. Ceram. Soc. 71, C42–C43 (1988).

Ochoa, J. R.

D. A. Rand, S. E. J. Shaw, J. R. Ochoa, D. J. Ripin, A. Taylor, T. Y. Fan, H. Martin, S. Hawes, J. Zhang, S. Sarkisyan, E. Wilson, and P. Lundquist, “Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG,” Opt. Lett. 36(3), 340–342 (2011).
[CrossRef] [PubMed]

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12 (YAG), Lu3Al5O12 (LuAG), YAlO3 (YALO), LiYF4 (YLF), LiLuF4 (LuLF), BaY2F8 (BYF), KGd(WO4)2 (KGW), and KY(WO4)2 (KYW) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Ogawa, K.

Papadopoulos, D. N.

Parker, W. J.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

Pavlyuk, A. A.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients of Nd-doped anisotropic KGd(WO4)2, YVO4 and GdVO4 laser crystals,” Appl. Phys. B 102(1), 117–122 (2011).
[CrossRef]

Pearce, S. J.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Perlov, D.

Petermann, K.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

Peters, R.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Peters, V.

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

Petit, J.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Phua, P. B.

Popov, P. A.

P. A. Popov, N. N. Sirota, E. V. Zharikov, A. I. Zagumennyi, I. A. Ivonov, and G. B. Lutts, “Thermal conductivity of rare-earth scandium garnets and their solid solutions,” Laser Phys. 1, 437–440 (1991).

Poprawe, R.

Pugžlys, A.

Raksi, F.

Rand, D.

Rand, D. A.

Reagan, B. A.

Ricaud, S.

Ripin, D. J.

D. A. Rand, S. E. J. Shaw, J. R. Ochoa, D. J. Ripin, A. Taylor, T. Y. Fan, H. Martin, S. Hawes, J. Zhang, S. Sarkisyan, E. Wilson, and P. Lundquist, “Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG,” Opt. Lett. 36(3), 340–342 (2011).
[CrossRef] [PubMed]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF(4) lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[CrossRef] [PubMed]

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12 (YAG), Lu3Al5O12 (LuAG), YAlO3 (YALO), LiYF4 (YLF), LiLuF4 (LuLF), BaY2F8 (BYF), KGd(WO4)2 (KGW), and KY(WO4)2 (KYW) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Rocca, J. J.

Rose-Petruck, C.

Röser, F.

Rothhardt, J.

Roy, R.

E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Sallese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73(5), 1246–1252 (1990).
[CrossRef]

Russbueldt, P.

Saiki, T.

Sallese, C. W.

E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Sallese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73(5), 1246–1252 (1990).
[CrossRef]

Sandner, W.

Saraceno, C. J.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Sarkisyan, S.

Savedra, R. C.

E. G. Wolff and R. C. Savedra, “Precision interferometric dilatometer,” Rev. Sci. Instrum. 56(7), 1313 (1985).
[CrossRef]

Schimpf, D. N.

Schmidt, O.

Schreiber, T.

Schwarz, A.

Seise, E.

Shaw, S. E. J.

Shen, H. Y.

H. S. Shi, G. Zhang, and H. Y. Shen, “Measurement of principal refractive indices and the thermal refractive index coefficients of yttrium vanadate,” J. Synth. Cryst. 30, 85–88 (2001).

Sherman, J.

Shi, H. S.

H. S. Shi, G. Zhang, and H. Y. Shen, “Measurement of principal refractive indices and the thermal refractive index coefficients of yttrium vanadate,” J. Synth. Cryst. 30, 85–88 (2001).

Shortoff, K. E.

Siddiqui, A.

Siddiqui, A. M.

Singley, J. M.

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18(24), 24770–24792 (2010).
[CrossRef] [PubMed]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D-65520D-9 (2007).
[CrossRef]

Sirota, N. N.

P. A. Popov, N. N. Sirota, E. V. Zharikov, A. I. Zagumennyi, I. A. Ivonov, and G. B. Lutts, “Thermal conductivity of rare-earth scandium garnets and their solid solutions,” Laser Phys. 1, 437–440 (1991).

Skrobol, C.

Solarz, R. W.

Sorokin, P. P.

P. P. Sorokin and M. J. Stevenson, “Stimulated infrared emission from trivalent uranium,” Phys. Rev. Lett. 5(12), 557–559 (1960).
[CrossRef]

Spielmann, Ch.

Spittle, J. A.

J. D. James, J. A. Spittle, S. G. R. Brown, and R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12(3), R1–R15 (2001).
[CrossRef]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Squier, J.

Stevenson, M. J.

P. P. Sorokin and M. J. Stevenson, “Stimulated infrared emission from trivalent uranium,” Phys. Rev. Lett. 5(12), 557–559 (1960).
[CrossRef]

Stiel, H.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Su, L.

Subbarao, E. C.

E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Sallese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73(5), 1246–1252 (1990).
[CrossRef]

Südmeyer, T.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Sutter, D.

Takeshita, K.

Takeuchi, Y.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Taylor, A.

Taylor, D.

D. Taylor, “Thermal expansion data: III Sesquioxides, M2O3, with the corundum and the A-, B- and C-M2O3 structures,” Br. Ceram. Proc. , 83, 92–98 (1984).

Teisset, C. Y.

Thompson, S.

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Tokita, S.

Tomie, T.

Tonelli, M.

Tournois, P.

Trushin, S. A.

Tsuji, K.

Tümmler, J.

Tünnermann, A.

Ueda, K.-I.

Verluise, F.

Viana, B.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Vitali, V.

Vivien, D.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Wandt, C.

Wang, C. A.

Weber, H.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Weitenberg, J.

Wilson, E.

Wilson, K. R.

Wirth, C.

Wittrock, U.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Wolff, E. G.

E. G. Wolff and R. C. Savedra, “Precision interferometric dilatometer,” Rev. Sci. Instrum. 56(7), 1313 (1985).
[CrossRef]

Xu, J.

Yager, E.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D-65520D-9 (2007).
[CrossRef]

Yakovlev, V. V.

Yamakawa, K.

Yashiro, H.

Yasuhara, R.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Yoshida, A.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Yumashev, K. V.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients of Nd-doped anisotropic KGd(WO4)2, YVO4 and GdVO4 laser crystals,” Appl. Phys. B 102(1), 117–122 (2011).
[CrossRef]

Zagumennyi, A. I.

P. A. Popov, N. N. Sirota, E. V. Zharikov, A. I. Zagumennyi, I. A. Ivonov, and G. B. Lutts, “Thermal conductivity of rare-earth scandium garnets and their solid solutions,” Laser Phys. 1, 437–440 (1991).

Zapata, L. E.

Zelmon, D. E.

Zhang, G.

H. S. Shi, G. Zhang, and H. Y. Shen, “Measurement of principal refractive indices and the thermal refractive index coefficients of yttrium vanadate,” J. Synth. Cryst. 30, 85–88 (2001).

Zhang, J.

Zharikov, E. V.

P. A. Popov, N. N. Sirota, E. V. Zharikov, A. I. Zagumennyi, I. A. Ivonov, and G. B. Lutts, “Thermal conductivity of rare-earth scandium garnets and their solid solutions,” Laser Phys. 1, 437–440 (1991).

Appl. Opt. (2)

Appl. Phys. B (3)

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients of Nd-doped anisotropic KGd(WO4)2, YVO4 and GdVO4 laser crystals,” Appl. Phys. B 102(1), 117–122 (2011).
[CrossRef]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Br. Ceram. Proc. (1)

D. Taylor, “Thermal expansion data: III Sesquioxides, M2O3, with the corundum and the A-, B- and C-M2O3 structures,” Br. Ceram. Proc. , 83, 92–98 (1984).

IEEE J. Quantum Electron. (2)

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

J. Am. Ceram. Soc. (2)

E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Sallese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73(5), 1246–1252 (1990).
[CrossRef]

H. M. O’Bryan, P. K. Gallagher, and G. W. Berkstresser, “Thermal expansion of Y2SiO5 single crystals,” J. Am. Ceram. Soc. 71, C42–C43 (1988).

J. Appl. Phys. (2)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12 (YAG), Lu3Al5O12 (LuAG), YAlO3 (YALO), LiYF4 (YLF), LiLuF4 (LuLF), BaY2F8 (BYF), KGd(WO4)2 (KGW), and KY(WO4)2 (KYW) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

J. Cryst. Growth (1)

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

J. Mater. Res. (1)

J. W. Nowok, J. P. Kay, and R. J. Kulas, “Thermal expansion and high-temperature phase transformation of the yttrium silicate Y2SiO5,” J. Mater. Res. 16(08), 2251–2255 (2001).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Synth. Cryst. (1)

H. S. Shi, G. Zhang, and H. Y. Shen, “Measurement of principal refractive indices and the thermal refractive index coefficients of yttrium vanadate,” J. Synth. Cryst. 30, 85–88 (2001).

Jpn. J. Appl. Phys. (1)

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Efficient high-average-power operation of Q-switched cryogenic Yb:YAG laser oscillator,” Jpn. J. Appl. Phys. 44(50), L1529–L1531 (2005).
[CrossRef]

Laser Phys. (2)

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

P. A. Popov, N. N. Sirota, E. V. Zharikov, A. I. Zagumennyi, I. A. Ivonov, and G. B. Lutts, “Thermal conductivity of rare-earth scandium garnets and their solid solutions,” Laser Phys. 1, 437–440 (1991).

Meas. Sci. Technol. (2)

J. D. James, J. A. Spittle, S. G. R. Brown, and R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12(3), R1–R15 (2001).
[CrossRef]

T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol. 12(12), 2089–2094 (2001).
[CrossRef]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Opt. Express (7)

S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, and T. Kawashima, “23.7-W picosecond cryogenic-Yb:YAG multipass amplifier,” Opt. Express 15(7), 3955–3961 (2007).
[CrossRef] [PubMed]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[CrossRef] [PubMed]

K. Ogawa, Y. Akahane, M. Aoyama, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa, “Multi-millijoule, diode-pumped, cryogenically-cooled Yb:KY(WO(4))(2) chirped-pulse regenerative amplifier,” Opt. Express 15(14), 8598–8602 (2007).
[CrossRef] [PubMed]

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18(24), 24770–24792 (2010).
[CrossRef] [PubMed]

J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, and J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express 19(2), 913–922 (2011).
[CrossRef] [PubMed]

H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, “Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics,” Opt. Express 19(3), 2448–2455 (2011).
[CrossRef] [PubMed]

S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” Opt. Express 19(6), 5357–5363 (2011).
[CrossRef] [PubMed]

Opt. Lett. (21)

D. A. Rand, S. E. J. Shaw, J. R. Ochoa, D. J. Ripin, A. Taylor, T. Y. Fan, H. Martin, S. Hawes, J. Zhang, S. Sarkisyan, E. Wilson, and P. Lundquist, “Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG,” Opt. Lett. 36(3), 340–342 (2011).
[CrossRef] [PubMed]

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
[CrossRef] [PubMed]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007).
[CrossRef] [PubMed]

F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25(8), 575–577 (2000).
[CrossRef] [PubMed]

K.-H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
[CrossRef] [PubMed]

J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner, “High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy,” Opt. Lett. 34(9), 1378–1380 (2009).
[CrossRef] [PubMed]

A. Pugžlys, G. Andriukaitis, A. Baltuška, L. Su, J. Xu, H. Li, R. Li, W. J. Lai, P. B. Phua, A. Marcinkevičius, M. E. Fermann, L. Giniūnas, R. Danielius, and S. Ališauskas, “Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb,Na:CaF2 amplifier,” Opt. Lett. 34(13), 2075–2077 (2009).
[CrossRef] [PubMed]

T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
[CrossRef] [PubMed]

F. J. Furch, B. A. Reagan, B. M. Luther, A. H. Curtis, S. P. Meehan, and J. J. Rocca, “Demonstration of an all-diode-pumped soft x-ray laser,” Opt. Lett. 34(21), 3352–3354 (2009).
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[CrossRef] [PubMed]

K.-H. Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S.-W. Huang, E. Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, and F. X. Kärtner, “High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier,” Opt. Lett. 35(11), 1752–1754 (2010).
[CrossRef] [PubMed]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF(4) lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[CrossRef] [PubMed]

S. Ricaud, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, P. Georges, and F. Druon, “Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF2.,” Opt. Lett. 35(22), 3757–3759 (2010).
[CrossRef] [PubMed]

Y. Akahane, M. Aoyama, K. Ogawa, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa, “High-energy, diode-pumped, picosecond Yb:YAG chirped-pulse regenerative amplifier for pumping optical parametric chirped-pulse amplification,” Opt. Lett. 32(13), 1899–1901 (2007).
[CrossRef] [PubMed]

C. P. J. Barty, T. Guo, C. Le Blanc, F. Raksi, C. Rose-Petruck, J. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,” Opt. Lett. 21(9), 668–670 (1996).
[CrossRef] [PubMed]

S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, and M. M. Murnane, “High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system,” Opt. Lett. 26(7), 465–467 (2001).
[CrossRef] [PubMed]

J. Kawanaka, K. Yamakawa, H. Nishioka, and K.-I. Ueda, “30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier,” Opt. Lett. 28(21), 2121–2123 (2003).
[CrossRef] [PubMed]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

I. Matsushima, H. Yashiro, and T. Tomie, “10 kHz 40 W Ti:sapphire regenerative ring amplifier,” Opt. Lett. 31(13), 2066–2068 (2006).
[CrossRef] [PubMed]

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
[CrossRef] [PubMed]

B. Comaskey, G. F. Albrecht, R. J. Beach, B. D. Moran, and R. W. Solarz, “Flash-lamp-pumped laser operation of Nd3+:Y2SiO5 at 1.074 µm,” Opt. Lett. 18(23), 2029–2031 (1993).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

P. P. Sorokin and M. J. Stevenson, “Stimulated infrared emission from trivalent uranium,” Phys. Rev. Lett. 5(12), 557–559 (1960).
[CrossRef]

Phys. Today (1)

W. Leemans and E. Esarey, “Laser-driven plasma-wave electron accelerators,” Phys. Today 62(3), 44–49 (2009).
[CrossRef]

Proc. SPIE (1)

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D-65520D-9 (2007).
[CrossRef]

Rev. Sci. Instrum. (2)

E. G. Wolff and R. C. Savedra, “Precision interferometric dilatometer,” Rev. Sci. Instrum. 56(7), 1313 (1985).
[CrossRef]

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Other (7)

K. Ogawa, Y. Akahane, and K. Yamakawa, “100-mJ diode-pumped, cryogenically-cooled Yb:YLF chirped-pulse regenerative amplifier,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMB4.

D. S. Sumida and D. A. Rockwell, “Thermo-optic measurements of chromium- and neodymium-doped scandium garnet laser rods,” in Conference on Lasers and Electro-Optics, vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1992), pp. 274–275.

D. J. Ripin, T. Y. Fan, A. K. Goyal, and J. Hybl, “Grazing-incidence-disk laser element,” U.S. Patent 2010/0215067 A1 (issued Aug. 26, 2010).

K. Scholle, P. Fuhrberg, T. Gün, Y. Kuzminykh, K. Petermann, and G. Huber, “Miniature lasers on the basis of Yb:Sc2O3,” ASSP’07, paper WB5 (2007

Y. Sato and T. Taira, “Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4,” CLEO’07, paper JWA87 (2007).

S. E. Smith and R. C. Campbell, “Flash diffusivity method: A survey of capabilities,” ElectronicsCoolings, May 2002. http://www.electronics-cooling.com/2002/05/flash-diffusivity-method-a-survey-of-capabilities/ .

Annual Book of ASTM Standards, Vol. 14.02, “Thermal Measurements” (ASTM International, West Conshohocken, Penn.).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Layout of electro-optic Q-switched oscillator. HR / HT: highly reflecting (1030 nm) / highly transmitting (940 nm) with 6-m radius of curvature (ROC); TFP: thin-film dielectric polarizer.

Fig. 2
Fig. 2

Continuous-wave (CW) and Q-switched (QSW) input-output data. Slope efficiencies are 68% CW and 63% QSW.

Fig. 3
Fig. 3

(a) Q-switched pulse shape (at 114 W, 5-kHz PRF). The FWHM of the pulse determined by a polynomial fit is 16 ns. The structure in the pulse is due to longitudinal mode beating that is only partially resolved by the oscilloscope (500-MHz bandwidth). (b) 1:1 image of the beam at the output coupler (Q-switched, 114 W). Beam diameter is 1.2 mm (1/e2). (c) Far-field beam profile at focus of 25-cm FL lens. Beam diameter (1/e2) at focus is 260 μm at 114-W output power.

Fig. 4
Fig. 4

A compilation of recent cryogenically-cooled Yb-doped ultrashort pulse lasers, plotted as a function of average and peak power. Also included are representative demonstrations of different gain media, including Yb:YAG at room temperature, Yb-doped fiber, and cryogenically-cooled Ti:sapphire. For consistency, peak power is defined with respect to the FWHM pulse duration, and average power is defined prior to pulse compression.

Fig. 5
Fig. 5

Schematic layout of four-pass power amplifier; TFP: thin-film polarizer.

Fig. 6
Fig. 6

Average output power as a function of total incident pump power for the Yb:YAG power amplifier at 5-kHz PRF. The inset shows the near-field intensity profile at 110 W.

Fig. 7
Fig. 7

Spectral performance of Yb:YAG power amplifier at full power (115 W). The black dashed curve and red solid curve show the input and output spectrum of the power amplifier, respectively.

Fig. 9
Fig. 9

Spectral performance of Yb:YAG/Yb:GSAG power amplifier at full power (73 W). The black dotted curve shows the input spectrum to the power amplifier, and the red solid curve shows the output spectrum (at 73 W). The emission cross sections for both Yb:YAG and Yb:GSAG at 77 K are shown for reference (dash-dot blue and dash blue curves, respectively).

Fig. 8
Fig. 8

Average output power as a function of total incident pump power for the Yb:YAG/Yb:GSAG power amplifier at 5-kHz PRF. The inset shows the near-field intensity profile at 73 W.

Fig. 10
Fig. 10

Schematic layout of cryo-Yb:YLF regenerative amplifier; TFP: thin-film polarizer. FR: Faraday rotator. DM: dichroic mirror.

Fig. 11
Fig. 11

(a) Optical spectrum of 1 nJ seed pulses (black-dotted line) and 1 mJ amplified pulses (red-solid line). The a-axis emission cross section of Yb:YLF (77 K) is also shown (blue-dashed line). The FWHM of the amplified spectrum is 2.22 nm. The (b) near-field and (c) far-field intensity profile of the regenerative amplifier output at 10 W operation (1 mJ).

Tables (5)

Tables Icon

Table 1 Thermal Diffusivity (cm2/s)

Tables Icon

Table 2 Specific Heat (J/gK) and Density (g/cm3)

Tables Icon

Table 3 Thermal Conductivity (W/mK)

Tables Icon

Table 4 Coefficient of Thermal Expansion (ppm/K)

Tables Icon

Table 5 Change in Refractive Index with Temperature dn/dT at 1.06-µm Wavelength (in ppm/K)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = M 0 + M 1 T + M 2 T 2 ,

Metrics