Abstract

We report on the fabrication of radio frequency (RF) sputtered Bi-substituted lutetium iron garnet films doped with aluminum and the results of adjusting the properties of these films by means of co-sputtering deposition using an additional bismuth oxide target. Very attractive optical, magnetic and magneto-optical properties are achieved in these new magneto-optic materials. The high-performance magnetically-soft thin-film engineered materials synthesized have a wide range of potential applications in next-generation integrated optics, magneto-photonics and magnetic field sensors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Zvezdin and V. A. Kotov, in Modern Magnetooptics and Magnetooptical Materials (Bristol, Institute of Physics Publishing, and Philadelphia), ISBN 075030362X, 1997.
  2. C. F. Buhrer, “Faraday Rotation and Dichroism of Bismuth Calcium Vanadium Iron Garnet,” J. Appl. Phys. 40(11), 4500–4502 (1969).
    [CrossRef]
  3. G. B. Scott and D. E. Lacklison, “Magnetooptic Properties and Applications of Bismuth Substituted Iron Garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
    [CrossRef]
  4. T. Hibiya, Y. Morishige, and J. Nakashima, “Growth and Characterization of Liquid-Phase Epitaxial Bi-Substituted Iron Garnet Films for Magneto-Optic Application,” Jpn. J. Appl. Phys. 24, 1316–1319 (1985).
    [CrossRef]
  5. T. Okuda, N. Koshizuka, K. Hayashi, T. Takahashi, H. Kotani, and H. Yamamoto, “Epitaxial growth of Bi-substituted yttrium iron garnet films by ion beam sputtering,” Advances in Magneto-Optics, Proc. Int. Symp. Magneto-Optics, J. Magn. Soc. Jpn. 11, Supplement S1, 179–182 (1987).
  6. Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial Growth and Properties of Bi-Substituted Yttrium-Iron-Garnet Films Grown on (111) Gadolinium-Gallium-Garnet Substrates by Using rf Magnetron Sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).
  7. Y. Okamura, T. Kawakami, and S. Yamamoto, “Sputter epitaxy of cerium yttrium iron garnet films on neodymium gallium garnet substrates,” J. Appl. Phys. 81(8), 5653–5655 (1997).
    [CrossRef]
  8. M. Gomi, T. Tanida, and M. Abe, “RF Sputtering of Highly Bi-substituted Garnet Films on Glass Substrates for Magneto-Optic Memory,” J. Appl. Phys. 57(8), 3888–3890 (1985).
    [CrossRef]
  9. S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet Properties and Its Application to Ultrafast Switching in the Visible Spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
    [CrossRef]
  10. S. Kahl, A. M. Grishin, S. I. Khartsev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 Thin Film Visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
    [CrossRef]
  11. M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
    [CrossRef]
  12. A. K. Bandyopadhyay, S. E. Rios, S. Fritz, J. Garcia, J. Contreras, and C. J. Gutierrez, “Ion Beam Sputter-Fabrication of Bi-YIG Films for Magnetic Photonic Applications,” IEEE Trans. Magn. 40(4), 2805–2807 (2004).
    [CrossRef]
  13. M. Vasiliev, M. N. Alam, V. A. Kotov, K. Alameh, V. I. Belotelov, V. I. Burkov, and A. K. Zvezdin, “RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite garnet-oxide materials possessing record magneto-optic quality in the visible spectral region,” Opt. Express 17(22), 19519–19535 (2009).
    [CrossRef] [PubMed]
  14. I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, “Magnetic photonic crystals,” J. Phys. D Appl. Phys. 36(18), R277–R287 (2003).
    [CrossRef]
  15. M. Vasiliev, K. Alameh, V. Belotelov, V. A. Kotov, and A. K. Zvezdin, ““Magnetic Photonic Crystals: 1-D Optimization and Applications for the Integrated Optics Devices,” IEEE/OSA,” J. Lightwave Technol. 24(5), 2156–2162 (2006).
    [CrossRef]
  16. M. J. Steel, M. Levy, and R. M. Osgood, “High Transmission Enhanced Faraday Rotation in One-Dimensional Photonic Crystals with Defects,” IEEE Photon. Technol. Lett. 12(9), 1171–1173 (2000).
    [CrossRef]
  17. M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel Magnetic Photonic Crystal Structures for Magnetic Field Sensors and Visualizers,” IEEE Trans. Magn. 44(3), 323–328 (2008).
    [CrossRef]
  18. M. Nur-E-Alam, M. Vasiliev, and K. Alameh, Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths,” Opt. Quantum Electron. 41(9), 661–669 (2009).
    [CrossRef]
  19. P. Tierno, F. Sagués, T. H. Johansen, and T. M. Fischer, “Colloidal transport on magnetic garnet films,” Phys. Chem. Chem. Phys. 11(42), 9615–9625 (2009).
    [CrossRef] [PubMed]
  20. A. Abdelrahman, M. Vasiliev, K. Alameh, and P. Hannaford, “Asymmetrical two-dimensional magnetic lattices for ultracold atoms,” Phys. Rev. A 82(1), 012320 (2010).
    [CrossRef]
  21. A. H. Eschenfelder, Magnetic Bubble Technology (Springer-Verlag, New York, ISBN 3–540–09822–4), 1980.
  22. N. Adachi, K. Obata, T. Okuda, T. Machi, and N. Koshizuka, “Synthesis of Bi-Lu-substituted Iron Garnet Films for Visualization of Magnetic Flux in High-Tc Superconductors,” Jpn. J. Appl. Phys. 41 (Part1, 10), 5986–5990 (2002).
  23. M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).
    [CrossRef]
  24. J. P. Krumme, V. Doormann, B. Strocka, and P. Willich, “Selected-area sputter epitaxy of iron-garnet films,” J. Appl. Phys. 60(6), 2065–2068 (1986).
    [CrossRef]
  25. T. Mizumoto, S. Mashimo, T. Ida, and Y. Naito, “In-plane Magnetized Rare Earth Iron Garnet for a Waveguide Optical Isolator Employing Nonreciprocal Phase Shift,” IEEE Trans. Magn. 29(6), 3417–3419 (1993).
    [CrossRef]

2011 (1)

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).
[CrossRef]

2010 (1)

A. Abdelrahman, M. Vasiliev, K. Alameh, and P. Hannaford, “Asymmetrical two-dimensional magnetic lattices for ultracold atoms,” Phys. Rev. A 82(1), 012320 (2010).
[CrossRef]

2009 (4)

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

M. Vasiliev, M. N. Alam, V. A. Kotov, K. Alameh, V. I. Belotelov, V. I. Burkov, and A. K. Zvezdin, “RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite garnet-oxide materials possessing record magneto-optic quality in the visible spectral region,” Opt. Express 17(22), 19519–19535 (2009).
[CrossRef] [PubMed]

M. Nur-E-Alam, M. Vasiliev, and K. Alameh, Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths,” Opt. Quantum Electron. 41(9), 661–669 (2009).
[CrossRef]

P. Tierno, F. Sagués, T. H. Johansen, and T. M. Fischer, “Colloidal transport on magnetic garnet films,” Phys. Chem. Chem. Phys. 11(42), 9615–9625 (2009).
[CrossRef] [PubMed]

2008 (1)

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel Magnetic Photonic Crystal Structures for Magnetic Field Sensors and Visualizers,” IEEE Trans. Magn. 44(3), 323–328 (2008).
[CrossRef]

2007 (1)

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet Properties and Its Application to Ultrafast Switching in the Visible Spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[CrossRef]

2006 (1)

2004 (1)

A. K. Bandyopadhyay, S. E. Rios, S. Fritz, J. Garcia, J. Contreras, and C. J. Gutierrez, “Ion Beam Sputter-Fabrication of Bi-YIG Films for Magnetic Photonic Applications,” IEEE Trans. Magn. 40(4), 2805–2807 (2004).
[CrossRef]

2003 (2)

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial Growth and Properties of Bi-Substituted Yttrium-Iron-Garnet Films Grown on (111) Gadolinium-Gallium-Garnet Substrates by Using rf Magnetron Sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, “Magnetic photonic crystals,” J. Phys. D Appl. Phys. 36(18), R277–R287 (2003).
[CrossRef]

2001 (1)

S. Kahl, A. M. Grishin, S. I. Khartsev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 Thin Film Visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
[CrossRef]

2000 (1)

M. J. Steel, M. Levy, and R. M. Osgood, “High Transmission Enhanced Faraday Rotation in One-Dimensional Photonic Crystals with Defects,” IEEE Photon. Technol. Lett. 12(9), 1171–1173 (2000).
[CrossRef]

1997 (1)

Y. Okamura, T. Kawakami, and S. Yamamoto, “Sputter epitaxy of cerium yttrium iron garnet films on neodymium gallium garnet substrates,” J. Appl. Phys. 81(8), 5653–5655 (1997).
[CrossRef]

1993 (1)

T. Mizumoto, S. Mashimo, T. Ida, and Y. Naito, “In-plane Magnetized Rare Earth Iron Garnet for a Waveguide Optical Isolator Employing Nonreciprocal Phase Shift,” IEEE Trans. Magn. 29(6), 3417–3419 (1993).
[CrossRef]

1986 (1)

J. P. Krumme, V. Doormann, B. Strocka, and P. Willich, “Selected-area sputter epitaxy of iron-garnet films,” J. Appl. Phys. 60(6), 2065–2068 (1986).
[CrossRef]

1985 (2)

M. Gomi, T. Tanida, and M. Abe, “RF Sputtering of Highly Bi-substituted Garnet Films on Glass Substrates for Magneto-Optic Memory,” J. Appl. Phys. 57(8), 3888–3890 (1985).
[CrossRef]

T. Hibiya, Y. Morishige, and J. Nakashima, “Growth and Characterization of Liquid-Phase Epitaxial Bi-Substituted Iron Garnet Films for Magneto-Optic Application,” Jpn. J. Appl. Phys. 24, 1316–1319 (1985).
[CrossRef]

1976 (1)

G. B. Scott and D. E. Lacklison, “Magnetooptic Properties and Applications of Bismuth Substituted Iron Garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[CrossRef]

1969 (1)

C. F. Buhrer, “Faraday Rotation and Dichroism of Bismuth Calcium Vanadium Iron Garnet,” J. Appl. Phys. 40(11), 4500–4502 (1969).
[CrossRef]

Abdelrahman, A.

A. Abdelrahman, M. Vasiliev, K. Alameh, and P. Hannaford, “Asymmetrical two-dimensional magnetic lattices for ultracold atoms,” Phys. Rev. A 82(1), 012320 (2010).
[CrossRef]

Abe, M.

M. Gomi, T. Tanida, and M. Abe, “RF Sputtering of Highly Bi-substituted Garnet Films on Glass Substrates for Magneto-Optic Memory,” J. Appl. Phys. 57(8), 3888–3890 (1985).
[CrossRef]

Abell, J. S.

S. Kahl, A. M. Grishin, S. I. Khartsev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 Thin Film Visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
[CrossRef]

Adyam, V.

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet Properties and Its Application to Ultrafast Switching in the Visible Spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[CrossRef]

Alam, M. N.

Alameh, K.

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).
[CrossRef]

A. Abdelrahman, M. Vasiliev, K. Alameh, and P. Hannaford, “Asymmetrical two-dimensional magnetic lattices for ultracold atoms,” Phys. Rev. A 82(1), 012320 (2010).
[CrossRef]

M. Vasiliev, M. N. Alam, V. A. Kotov, K. Alameh, V. I. Belotelov, V. I. Burkov, and A. K. Zvezdin, “RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite garnet-oxide materials possessing record magneto-optic quality in the visible spectral region,” Opt. Express 17(22), 19519–19535 (2009).
[CrossRef] [PubMed]

M. Nur-E-Alam, M. Vasiliev, and K. Alameh, Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths,” Opt. Quantum Electron. 41(9), 661–669 (2009).
[CrossRef]

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

M. Vasiliev, K. Alameh, V. Belotelov, V. A. Kotov, and A. K. Zvezdin, ““Magnetic Photonic Crystals: 1-D Optimization and Applications for the Integrated Optics Devices,” IEEE/OSA,” J. Lightwave Technol. 24(5), 2156–2162 (2006).
[CrossRef]

Alameh, K. E.

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel Magnetic Photonic Crystal Structures for Magnetic Field Sensors and Visualizers,” IEEE Trans. Magn. 44(3), 323–328 (2008).
[CrossRef]

Bandyopadhyay, A. K.

A. K. Bandyopadhyay, S. E. Rios, S. Fritz, J. Garcia, J. Contreras, and C. J. Gutierrez, “Ion Beam Sputter-Fabrication of Bi-YIG Films for Magnetic Photonic Applications,” IEEE Trans. Magn. 40(4), 2805–2807 (2004).
[CrossRef]

Belotelov, V.

Belotelov, V. I.

Buhrer, C. F.

C. F. Buhrer, “Faraday Rotation and Dichroism of Bismuth Calcium Vanadium Iron Garnet,” J. Appl. Phys. 40(11), 4500–4502 (1969).
[CrossRef]

Burkov, V. I.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

M. Vasiliev, M. N. Alam, V. A. Kotov, K. Alameh, V. I. Belotelov, V. I. Burkov, and A. K. Zvezdin, “RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite garnet-oxide materials possessing record magneto-optic quality in the visible spectral region,” Opt. Express 17(22), 19519–19535 (2009).
[CrossRef] [PubMed]

Contreras, J.

A. K. Bandyopadhyay, S. E. Rios, S. Fritz, J. Garcia, J. Contreras, and C. J. Gutierrez, “Ion Beam Sputter-Fabrication of Bi-YIG Films for Magnetic Photonic Applications,” IEEE Trans. Magn. 40(4), 2805–2807 (2004).
[CrossRef]

Dadoenkova, N. N.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, “Magnetic photonic crystals,” J. Phys. D Appl. Phys. 36(18), R277–R287 (2003).
[CrossRef]

Doormann, V.

J. P. Krumme, V. Doormann, B. Strocka, and P. Willich, “Selected-area sputter epitaxy of iron-garnet films,” J. Appl. Phys. 60(6), 2065–2068 (1986).
[CrossRef]

Fischer, T. M.

P. Tierno, F. Sagués, T. H. Johansen, and T. M. Fischer, “Colloidal transport on magnetic garnet films,” Phys. Chem. Chem. Phys. 11(42), 9615–9625 (2009).
[CrossRef] [PubMed]

Fritz, S.

A. K. Bandyopadhyay, S. E. Rios, S. Fritz, J. Garcia, J. Contreras, and C. J. Gutierrez, “Ion Beam Sputter-Fabrication of Bi-YIG Films for Magnetic Photonic Applications,” IEEE Trans. Magn. 40(4), 2805–2807 (2004).
[CrossRef]

Garcia, J.

A. K. Bandyopadhyay, S. E. Rios, S. Fritz, J. Garcia, J. Contreras, and C. J. Gutierrez, “Ion Beam Sputter-Fabrication of Bi-YIG Films for Magnetic Photonic Applications,” IEEE Trans. Magn. 40(4), 2805–2807 (2004).
[CrossRef]

Gomi, M.

M. Gomi, T. Tanida, and M. Abe, “RF Sputtering of Highly Bi-substituted Garnet Films on Glass Substrates for Magneto-Optic Memory,” J. Appl. Phys. 57(8), 3888–3890 (1985).
[CrossRef]

Grishin, A. M.

S. Kahl, A. M. Grishin, S. I. Khartsev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 Thin Film Visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
[CrossRef]

Gutierrez, C. J.

A. K. Bandyopadhyay, S. E. Rios, S. Fritz, J. Garcia, J. Contreras, and C. J. Gutierrez, “Ion Beam Sputter-Fabrication of Bi-YIG Films for Magnetic Photonic Applications,” IEEE Trans. Magn. 40(4), 2805–2807 (2004).
[CrossRef]

Hannaford, P.

A. Abdelrahman, M. Vasiliev, K. Alameh, and P. Hannaford, “Asymmetrical two-dimensional magnetic lattices for ultracold atoms,” Phys. Rev. A 82(1), 012320 (2010).
[CrossRef]

Hibiya, T.

T. Hibiya, Y. Morishige, and J. Nakashima, “Growth and Characterization of Liquid-Phase Epitaxial Bi-Substituted Iron Garnet Films for Magneto-Optic Application,” Jpn. J. Appl. Phys. 24, 1316–1319 (1985).
[CrossRef]

Ida, T.

T. Mizumoto, S. Mashimo, T. Ida, and Y. Naito, “In-plane Magnetized Rare Earth Iron Garnet for a Waveguide Optical Isolator Employing Nonreciprocal Phase Shift,” IEEE Trans. Magn. 29(6), 3417–3419 (1993).
[CrossRef]

Johansen, T. H.

P. Tierno, F. Sagués, T. H. Johansen, and T. M. Fischer, “Colloidal transport on magnetic garnet films,” Phys. Chem. Chem. Phys. 11(42), 9615–9625 (2009).
[CrossRef] [PubMed]

Kahl, S.

S. Kahl, A. M. Grishin, S. I. Khartsev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 Thin Film Visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
[CrossRef]

Kang, S.

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet Properties and Its Application to Ultrafast Switching in the Visible Spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[CrossRef]

Kawakami, T.

Y. Okamura, T. Kawakami, and S. Yamamoto, “Sputter epitaxy of cerium yttrium iron garnet films on neodymium gallium garnet substrates,” J. Appl. Phys. 81(8), 5653–5655 (1997).
[CrossRef]

Kawano, K.

S. Kahl, A. M. Grishin, S. I. Khartsev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 Thin Film Visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
[CrossRef]

Khartsev, S. I.

S. Kahl, A. M. Grishin, S. I. Khartsev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 Thin Film Visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
[CrossRef]

Kim, J. S.

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial Growth and Properties of Bi-Substituted Yttrium-Iron-Garnet Films Grown on (111) Gadolinium-Gallium-Garnet Substrates by Using rf Magnetron Sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

Kim, S. I.

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial Growth and Properties of Bi-Substituted Yttrium-Iron-Garnet Films Grown on (111) Gadolinium-Gallium-Garnet Substrates by Using rf Magnetron Sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

Kim, Y. H.

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial Growth and Properties of Bi-Substituted Yttrium-Iron-Garnet Films Grown on (111) Gadolinium-Gallium-Garnet Substrates by Using rf Magnetron Sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

Kotov, V. A.

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).
[CrossRef]

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

M. Vasiliev, M. N. Alam, V. A. Kotov, K. Alameh, V. I. Belotelov, V. I. Burkov, and A. K. Zvezdin, “RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite garnet-oxide materials possessing record magneto-optic quality in the visible spectral region,” Opt. Express 17(22), 19519–19535 (2009).
[CrossRef] [PubMed]

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel Magnetic Photonic Crystal Structures for Magnetic Field Sensors and Visualizers,” IEEE Trans. Magn. 44(3), 323–328 (2008).
[CrossRef]

M. Vasiliev, K. Alameh, V. Belotelov, V. A. Kotov, and A. K. Zvezdin, ““Magnetic Photonic Crystals: 1-D Optimization and Applications for the Integrated Optics Devices,” IEEE/OSA,” J. Lightwave Technol. 24(5), 2156–2162 (2006).
[CrossRef]

Krumme, J. P.

J. P. Krumme, V. Doormann, B. Strocka, and P. Willich, “Selected-area sputter epitaxy of iron-garnet films,” J. Appl. Phys. 60(6), 2065–2068 (1986).
[CrossRef]

Lacklison, D. E.

G. B. Scott and D. E. Lacklison, “Magnetooptic Properties and Applications of Bismuth Substituted Iron Garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[CrossRef]

Lee, Y. P.

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).
[CrossRef]

Lee, Y. T.

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).
[CrossRef]

Levy, M.

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial Growth and Properties of Bi-Substituted Yttrium-Iron-Garnet Films Grown on (111) Gadolinium-Gallium-Garnet Substrates by Using rf Magnetron Sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

M. J. Steel, M. Levy, and R. M. Osgood, “High Transmission Enhanced Faraday Rotation in One-Dimensional Photonic Crystals with Defects,” IEEE Photon. Technol. Lett. 12(9), 1171–1173 (2000).
[CrossRef]

Li, Q.

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet Properties and Its Application to Ultrafast Switching in the Visible Spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[CrossRef]

Lyubchanskii, I. L.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, “Magnetic photonic crystals,” J. Phys. D Appl. Phys. 36(18), R277–R287 (2003).
[CrossRef]

Lyubchanskii, M. I.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, “Magnetic photonic crystals,” J. Phys. D Appl. Phys. 36(18), R277–R287 (2003).
[CrossRef]

Mashimo, S.

T. Mizumoto, S. Mashimo, T. Ida, and Y. Naito, “In-plane Magnetized Rare Earth Iron Garnet for a Waveguide Optical Isolator Employing Nonreciprocal Phase Shift,” IEEE Trans. Magn. 29(6), 3417–3419 (1993).
[CrossRef]

Mizumoto, T.

T. Mizumoto, S. Mashimo, T. Ida, and Y. Naito, “In-plane Magnetized Rare Earth Iron Garnet for a Waveguide Optical Isolator Employing Nonreciprocal Phase Shift,” IEEE Trans. Magn. 29(6), 3417–3419 (1993).
[CrossRef]

Morishige, Y.

T. Hibiya, Y. Morishige, and J. Nakashima, “Growth and Characterization of Liquid-Phase Epitaxial Bi-Substituted Iron Garnet Films for Magneto-Optic Application,” Jpn. J. Appl. Phys. 24, 1316–1319 (1985).
[CrossRef]

Munroe, P.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

Naito, Y.

T. Mizumoto, S. Mashimo, T. Ida, and Y. Naito, “In-plane Magnetized Rare Earth Iron Garnet for a Waveguide Optical Isolator Employing Nonreciprocal Phase Shift,” IEEE Trans. Magn. 29(6), 3417–3419 (1993).
[CrossRef]

Nakashima, J.

T. Hibiya, Y. Morishige, and J. Nakashima, “Growth and Characterization of Liquid-Phase Epitaxial Bi-Substituted Iron Garnet Films for Magneto-Optic Application,” Jpn. J. Appl. Phys. 24, 1316–1319 (1985).
[CrossRef]

Nur-E-Alam, M.

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).
[CrossRef]

M. Nur-E-Alam, M. Vasiliev, and K. Alameh, Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths,” Opt. Quantum Electron. 41(9), 661–669 (2009).
[CrossRef]

Okamura, Y.

Y. Okamura, T. Kawakami, and S. Yamamoto, “Sputter epitaxy of cerium yttrium iron garnet films on neodymium gallium garnet substrates,” J. Appl. Phys. 81(8), 5653–5655 (1997).
[CrossRef]

Osgood, R. M.

M. J. Steel, M. Levy, and R. M. Osgood, “High Transmission Enhanced Faraday Rotation in One-Dimensional Photonic Crystals with Defects,” IEEE Photon. Technol. Lett. 12(9), 1171–1173 (2000).
[CrossRef]

Premchander, P.

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).
[CrossRef]

Rasing, Th.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, “Magnetic photonic crystals,” J. Phys. D Appl. Phys. 36(18), R277–R287 (2003).
[CrossRef]

Rios, S. E.

A. K. Bandyopadhyay, S. E. Rios, S. Fritz, J. Garcia, J. Contreras, and C. J. Gutierrez, “Ion Beam Sputter-Fabrication of Bi-YIG Films for Magnetic Photonic Applications,” IEEE Trans. Magn. 40(4), 2805–2807 (2004).
[CrossRef]

Sagués, F.

P. Tierno, F. Sagués, T. H. Johansen, and T. M. Fischer, “Colloidal transport on magnetic garnet films,” Phys. Chem. Chem. Phys. 11(42), 9615–9625 (2009).
[CrossRef] [PubMed]

Scott, G. B.

G. B. Scott and D. E. Lacklison, “Magnetooptic Properties and Applications of Bismuth Substituted Iron Garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[CrossRef]

Shapovalov, E. A.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, “Magnetic photonic crystals,” J. Phys. D Appl. Phys. 36(18), R277–R287 (2003).
[CrossRef]

Steel, M. J.

M. J. Steel, M. Levy, and R. M. Osgood, “High Transmission Enhanced Faraday Rotation in One-Dimensional Photonic Crystals with Defects,” IEEE Photon. Technol. Lett. 12(9), 1171–1173 (2000).
[CrossRef]

Strocka, B.

J. P. Krumme, V. Doormann, B. Strocka, and P. Willich, “Selected-area sputter epitaxy of iron-garnet films,” J. Appl. Phys. 60(6), 2065–2068 (1986).
[CrossRef]

Tanida, T.

M. Gomi, T. Tanida, and M. Abe, “RF Sputtering of Highly Bi-substituted Garnet Films on Glass Substrates for Magneto-Optic Memory,” J. Appl. Phys. 57(8), 3888–3890 (1985).
[CrossRef]

Tierno, P.

P. Tierno, F. Sagués, T. H. Johansen, and T. M. Fischer, “Colloidal transport on magnetic garnet films,” Phys. Chem. Chem. Phys. 11(42), 9615–9625 (2009).
[CrossRef] [PubMed]

Vasiliev, M.

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).
[CrossRef]

A. Abdelrahman, M. Vasiliev, K. Alameh, and P. Hannaford, “Asymmetrical two-dimensional magnetic lattices for ultracold atoms,” Phys. Rev. A 82(1), 012320 (2010).
[CrossRef]

M. Nur-E-Alam, M. Vasiliev, and K. Alameh, Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths,” Opt. Quantum Electron. 41(9), 661–669 (2009).
[CrossRef]

M. Vasiliev, M. N. Alam, V. A. Kotov, K. Alameh, V. I. Belotelov, V. I. Burkov, and A. K. Zvezdin, “RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite garnet-oxide materials possessing record magneto-optic quality in the visible spectral region,” Opt. Express 17(22), 19519–19535 (2009).
[CrossRef] [PubMed]

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel Magnetic Photonic Crystal Structures for Magnetic Field Sensors and Visualizers,” IEEE Trans. Magn. 44(3), 323–328 (2008).
[CrossRef]

M. Vasiliev, K. Alameh, V. Belotelov, V. A. Kotov, and A. K. Zvezdin, ““Magnetic Photonic Crystals: 1-D Optimization and Applications for the Integrated Optics Devices,” IEEE/OSA,” J. Lightwave Technol. 24(5), 2156–2162 (2006).
[CrossRef]

Willich, P.

J. P. Krumme, V. Doormann, B. Strocka, and P. Willich, “Selected-area sputter epitaxy of iron-garnet films,” J. Appl. Phys. 60(6), 2065–2068 (1986).
[CrossRef]

Wo, P. C.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

Xie, Z.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

Yamamoto, S.

Y. Okamura, T. Kawakami, and S. Yamamoto, “Sputter epitaxy of cerium yttrium iron garnet films on neodymium gallium garnet substrates,” J. Appl. Phys. 81(8), 5653–5655 (1997).
[CrossRef]

Yin, S.

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet Properties and Its Application to Ultrafast Switching in the Visible Spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[CrossRef]

Zhu, Y.

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet Properties and Its Application to Ultrafast Switching in the Visible Spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[CrossRef]

Zvezdin, A. K.

IEEE Photon. Technol. Lett. (1)

M. J. Steel, M. Levy, and R. M. Osgood, “High Transmission Enhanced Faraday Rotation in One-Dimensional Photonic Crystals with Defects,” IEEE Photon. Technol. Lett. 12(9), 1171–1173 (2000).
[CrossRef]

IEEE Trans. Magn. (6)

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel Magnetic Photonic Crystal Structures for Magnetic Field Sensors and Visualizers,” IEEE Trans. Magn. 44(3), 323–328 (2008).
[CrossRef]

A. K. Bandyopadhyay, S. E. Rios, S. Fritz, J. Garcia, J. Contreras, and C. J. Gutierrez, “Ion Beam Sputter-Fabrication of Bi-YIG Films for Magnetic Photonic Applications,” IEEE Trans. Magn. 40(4), 2805–2807 (2004).
[CrossRef]

G. B. Scott and D. E. Lacklison, “Magnetooptic Properties and Applications of Bismuth Substituted Iron Garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[CrossRef]

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet Properties and Its Application to Ultrafast Switching in the Visible Spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[CrossRef]

S. Kahl, A. M. Grishin, S. I. Khartsev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 Thin Film Visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001).
[CrossRef]

T. Mizumoto, S. Mashimo, T. Ida, and Y. Naito, “In-plane Magnetized Rare Earth Iron Garnet for a Waveguide Optical Isolator Employing Nonreciprocal Phase Shift,” IEEE Trans. Magn. 29(6), 3417–3419 (1993).
[CrossRef]

J. Appl. Phys. (4)

J. P. Krumme, V. Doormann, B. Strocka, and P. Willich, “Selected-area sputter epitaxy of iron-garnet films,” J. Appl. Phys. 60(6), 2065–2068 (1986).
[CrossRef]

Y. Okamura, T. Kawakami, and S. Yamamoto, “Sputter epitaxy of cerium yttrium iron garnet films on neodymium gallium garnet substrates,” J. Appl. Phys. 81(8), 5653–5655 (1997).
[CrossRef]

M. Gomi, T. Tanida, and M. Abe, “RF Sputtering of Highly Bi-substituted Garnet Films on Glass Substrates for Magneto-Optic Memory,” J. Appl. Phys. 57(8), 3888–3890 (1985).
[CrossRef]

C. F. Buhrer, “Faraday Rotation and Dichroism of Bismuth Calcium Vanadium Iron Garnet,” J. Appl. Phys. 40(11), 4500–4502 (1969).
[CrossRef]

J. Korean Phys. Soc. (1)

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial Growth and Properties of Bi-Substituted Yttrium-Iron-Garnet Films Grown on (111) Gadolinium-Gallium-Garnet Substrates by Using rf Magnetron Sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

J. Lightwave Technol. (1)

J. Phys. D Appl. Phys. (3)

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).
[CrossRef]

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, “Magnetic photonic crystals,” J. Phys. D Appl. Phys. 36(18), R277–R287 (2003).
[CrossRef]

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Hibiya, Y. Morishige, and J. Nakashima, “Growth and Characterization of Liquid-Phase Epitaxial Bi-Substituted Iron Garnet Films for Magneto-Optic Application,” Jpn. J. Appl. Phys. 24, 1316–1319 (1985).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (1)

M. Nur-E-Alam, M. Vasiliev, and K. Alameh, Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths,” Opt. Quantum Electron. 41(9), 661–669 (2009).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

P. Tierno, F. Sagués, T. H. Johansen, and T. M. Fischer, “Colloidal transport on magnetic garnet films,” Phys. Chem. Chem. Phys. 11(42), 9615–9625 (2009).
[CrossRef] [PubMed]

Phys. Rev. A (1)

A. Abdelrahman, M. Vasiliev, K. Alameh, and P. Hannaford, “Asymmetrical two-dimensional magnetic lattices for ultracold atoms,” Phys. Rev. A 82(1), 012320 (2010).
[CrossRef]

Other (4)

A. H. Eschenfelder, Magnetic Bubble Technology (Springer-Verlag, New York, ISBN 3–540–09822–4), 1980.

N. Adachi, K. Obata, T. Okuda, T. Machi, and N. Koshizuka, “Synthesis of Bi-Lu-substituted Iron Garnet Films for Visualization of Magnetic Flux in High-Tc Superconductors,” Jpn. J. Appl. Phys. 41 (Part1, 10), 5986–5990 (2002).

T. Okuda, N. Koshizuka, K. Hayashi, T. Takahashi, H. Kotani, and H. Yamamoto, “Epitaxial growth of Bi-substituted yttrium iron garnet films by ion beam sputtering,” Advances in Magneto-Optics, Proc. Int. Symp. Magneto-Optics, J. Magn. Soc. Jpn. 11, Supplement S1, 179–182 (1987).

A. K. Zvezdin and V. A. Kotov, in Modern Magnetooptics and Magnetooptical Materials (Bristol, Institute of Physics Publishing, and Philadelphia), ISBN 075030362X, 1997.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Derived absorption coefficient spectrum showing the upper (red color) and lower limits (brown color) of Bi1.8Lu1.2Fe3.6Al1.4O12 garnet films deposited onto GGG (111) substrates and annealed at 650 °C for 1 h according to the methodology described in Section II. The data points for the MO figure of merit measured using 532 nm, 635 nm and 660 nm light with associated error bars are shown in the inset.

Fig. 2
Fig. 2

Hysteresis loops of specific Faraday rotation measured at 532 nm in sputtered Bi1.8Lu1.2Fe3.6Al1.4O12 garnet films deposited at 250 °C onto (a) GGG substrate (annealed for 1 h at 650 °C), (b) glass substrate (annealed for 3 h at 630 °C). Insets show the measured coercive force, saturation field and the magnetic field sensitivity values at 532 and 635 nm within the linear ranges of magnetization, and (c) hysteresis loop of specific Faraday rotation measured at 532 nm in sputtered Bi1.8Lu1.2Fe3.6Al1.4O12 garnet films of 650 nm deposited onto GGG at 680 °C substrate temperature annealed for 3 h at 630 °C.

Fig. 3
Fig. 3

Regular maze-type domains were observed in sputtered typical Bi1.8Lu1.2Fe3.6Al1.4O12 garnet films onto GGG deposited onto GGG substrate at (a) 250 °C T(sub) (annealed for 1 h @ 650 °C, (b) 680 °C T(sub) (annealed for 3 h @ 630 °C) and (c) Bi1.8Lu1.2Fe3.6Al1.4O12: Bi2O3 (4.5 vol. %) composite garnet-oxide films (annealed for 10 hrs @ 610 °C) using the transmission-mode polarization microscope (Leitz Orthoplan) at high magnification (630 X).

Fig. 4
Fig. 4

Transmission spectra of several 1050nm-thick Bi1.8Lu1.2Fe3.6Al1.4O12: Bi2O3 (4.5 vol. %) composite garnet-oxide layers (samples from the same deposition batch) sputtered onto monocrystalline GGG (111) and also onto glass (Corning Eagle XG) substrates and post-deposition annealed for 5 h at 610°C and at 615°C; the inset shows a schematic diagram of the power transmission spectrum measurement using a UV/VIS spectrophotometer. The measured percentage of the incident optical power transmitted through the substrate/film system is plotted (no additional normalization with respect to the blank substrate transmission was applied).

Fig. 5
Fig. 5

Derived absorption spectra of Bi1.8Lu1.2Fe3.6Al1.4O12 and several Bi1.8Lu1.2Fe3.6Al1.4O12: Bi2O3 composite films sputtered onto GGG (111) substrates; the excess content of Bi2O3 and the annealing regimes for the typical garnet and the co-sputtered composite films are mentioned.

Fig. 6
Fig. 6

Derived absorption spectra of Bi1.8Lu1.2Fe3.6Al1.4O12: Bi2O3 (4.5 vol. % of excess Bi2O3) garnet-oxide composite films sputtered onto GGG (111) substrates and annealed at 610-620 °C for different annealing time durations as specified.

Fig. 7
Fig. 7

The data points showing the summary of optimization of annealing temperature and annealing processes duration used to crystallize the typical Bi1.8Lu1.2Fe3.6Al1.4O12 garnet layer deposited at 250 °C and 680 °C substrates’ temperature and several composite Bi1.8Lu1.2Fe3.6Al1.4O12: Bi2O3 films of having excess Bi2O3 onto GGG (111) substrate.

Fig. 8
Fig. 8

Measured quality factor in terms of figure of merit of typical Bi1.8Lu1.2Fe3.6Al1.4O12 garnet layer deposited at 250 °C and 680 °C substrates’ temperature and several best annealed composite Bi1.8Lu1.2Fe3.6Al1.4O12: Bi2O3 films of having 4.5 vol. % excess Bi2O3 onto GGG (111) substrate.

Fig. 9
Fig. 9

Hysteresis loops of specific Faraday rotation measured at 532 nm in sputtered typical Bi1.8Lu1.2Fe3.6Al1.4O12 layer on GGG (annealed for 1 h at 650 °C) and Bi1.8Lu1.2Fe3.6Al1.4O12: Bi2O3 (4.5 vol. %) composite garnet films deposited onto GGG substrate (annealed at 620 °C for 3 h). Insets show the measured coercive force, and saturation field values within the linear ranges of magnetization.

Fig. 10
Fig. 10

Hysteresis loops of specific Faraday rotation measured at 532 nm in sputtered Bi1.8Lu1.2Fe3.6Al1.4O12 garnet films on glass substrate (annealed for 3 h at 630 °C) and Bi1.8Lu1.2Fe3.6Al1.4O12: Bi2O3 (12.5 vol. %) composite garnet films deposited onto glass substrate (annealed at 560 °C for 5 h). Insets show the measured coercive force and saturation field within the linear ranges of magnetization.

Fig. 11
Fig. 11

Scanning-probe (AFM/MFM) images of garnet-oxide composite thin films having 4.5 vol. % and 12.5 vol. % extra bismuth oxide sputtered onto GGG (111) substrates. (a-b) 3D images showing the topography (5 × 5 µm sample area) of a 1050 nm thick Bi1.8Lu1.2Fe3.6Al1.4O12:Bi2O3 (4.5 vol. %) composite film annealed for 5 h at 615 °C and its surface magnetism features measured across a 25 × 25 µm sample area; (c-d) 2D AFM topography (c) and (d) an AC magnetic force magnitude map (processed feedback phase image) obtained from a 1.2 × 1.2 µm sample area of a Bi1.8Lu1.2Fe3.6Al1.4O12:Bi2O3 (12.5 vol. %) nanocomposite film annealed for 5 h at 580 °C. The black-white color palette of image (d) represents the measured RMS strength of the AC magnetic interaction force between the tip and surface, and the color map shown was obtained using a halved algebraic sum of the phase image data map obtained and its inverted phase image data map, so that only the magnitude of the magnetic interaction force is represented. The white-colored pixels correspond to the minima locations of the magnetic interaction force.

Tables (1)

Tables Icon

Table 1 Sputtering Parameters and Process Conditions Used for the Deposition of Magneto-Optic Bi1.8Lu1.2Fe3.6Al1.4O12 Garnet Layers and Garnet-Bismuth Oxide Nanocomposite Derivatives

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

a ( A ) = 12.376 + 0.0828 B i [ f . u . ] 0.031 L u [ f . u . ] 0.0741 A l [ f . u . ]

Metrics