Abstract

26-year-old electron spin resonance (ESR) and optical data pertaining to isochronal annealing studies of x-ray induced defect centers in a GeO2-SiO2 glass are revisited here with the object of extracting new insights regarding the fundamental natures of these defects. It is concluded that (i) the paramagnetic Ge(1) and Ge(2) centers are two energetically inequivalent configurations of a single trapped-electron defect, in analogy to what is known to be the case for the Ge(II) and Ge(I) centers respectively in α quartz [Isoya et al., J. Chem. Phys. 69, 4876 (1978)], and (ii) the germanium lone pair center (GLPC) stably traps holes only in pairs and hence remains ESR silent.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Friebele and D. L. Griscom, “Color centers in glass optical fiber waveguides,” in Defects in Glasses - MRS Vol. 61, F.J. Galeener, D.L. Griscom, M.J. Weber, Eds. (Materials Research Society, Pittsburgh, Pa, 1986), pp. 319–331.
  2. D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: A review and synthesis,” J. Non-Cryst. Solids 357(8-9), 1945–1962 (2011).
    [CrossRef]
  3. J. Isoya, J. A. Weil, and R. F. C. Claridge, “The dynamic interchange and relationship between germanium centers in α quartz,” J. Chem. Phys. 69(11), 4876–4884 (1978).
    [CrossRef]
  4. D. L. Griscom and E. J. Friebele, “Fundamental radiation-induced defect centers in synthetic fused silicas: Atomic chlorine, delocalized E’ centers, and a triplet state,” Phys. Rev. B Condens. Matter 34(11), 7524–7533 (1986).
    [CrossRef] [PubMed]
  5. E. J. Friebele, “Radiation effects,” in Optical Properties of Glass, D.R. Uhlmann, N.J. Kreidl, Eds. (American Ceramic Society, Westerville, OH, 1991), pp. 205–262.
  6. J. S. Hyde, ESR Standard Sample Data (Varian Associates, Palo Alto, CA, 1961).
  7. A. Smakula, “Über Erregung und Entfärbung lichtelektrisch leitender Alkalihalogenide,” Z. Phys. 59(9-10), 603–614 (1930).
    [CrossRef]
  8. E. J. Friebele, D. L. Griscom, and G. H. Sigel., “Defect centers in a germanium-doped silica-core optical fiber,” J. Appl. Phys. 45(8), 3424–3428 (1974).
    [CrossRef]
  9. D. L. Griscom, E. J. Friebele, and S. P. Mukherjee, “Studies of radiation-induced point defects in silica aerogel monoliths,” Cryst. Latt. Def. Amorph. Mat. 17, 157–163 (1987).
  10. D. L. Griscom, “Self-trapped holes in amorphous silicon dioxide,” Phys. Rev. B Condens. Matter 40(6), 4224–4227 (1989).
    [CrossRef] [PubMed]
  11. D. L. Griscom, “Electron spin resonance characterization of self-trapped holes in amorphous silicon dioxide,” J. Non-Cryst. Solids 149(1-2), 137–160 (1992).
    [CrossRef]
  12. D. L. Griscom, “Self-trapped holes in pure-silica glass: A history of their discovery and characterization and an example of their critical significance to industry,” J. Non-Cryst. Solids 352(23-25), 2601–2617 (2006).
    [CrossRef]
  13. Y. Sasajima and K. Tanimura, “Optical transitions of self-trapped holes in amorphous SiO2,” Phys. Rev. B 68(1), 014204 (2003).
    [CrossRef]
  14. D. L. Griscom, “Visible/infra-red absorption study in fiber geometry of metastable defect states in high-purity fused silicas,” Defects in Insulating Materials, G.E. Matthews and R.W. Williams, Eds., Materials Sci. Forum Vols. 239–241, 19–24 (1997).
  15. D. L. Griscom, “γ-ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers: Are they due to self-trapped holes?” J. Non-Cryst. Solids 349, 139–147 (2004).
    [CrossRef]
  16. J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2-SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B Condens. Matter 52(3), 1661–1665 (1995).
    [CrossRef] [PubMed]
  17. H. Hosono, M. Mizuguchi, H. Kawazoe, and J. Nishi, “Correlation between Ge E′ centers and optical bands in SiO2:GeO2 glasses,” Jpn. J. Appl. Phys. 35, L234–L236 (1996).
    [CrossRef]
  18. K. Nagasawa, T. Fujii, Y. Ohki, and Y. Hama, “Relation between Ge(2) center and 11.9 mT hyperfine structure of ESR spectra in Ge-doped silica fibers,” Jpn. J. Appl. Phys. 27(Part 2, No. 2), L240–L243 (1988).
    [CrossRef]
  19. E. V. Anoikin, A. N. Guryanov, D. D. Gusovskii, V. M. Mashinskii, S. I. Miroshnichenko, V. B. Nuestruev, V. A. Tikhomirov, and Yu. B. Zverev, “Photonic defects in silica glass doped with germanium and cerium,” Sov. Lightwave Commun. 1, 123–131 (1991).
  20. M. Fujimaki, T. Watanabe, T. Katoh, T. Kasahara, N. Miyazaki, Y. Ohki, and H. Nishikawa, “Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical fiber gratings,” Phys. Rev. B 57(7), 3920–3926 (1998).
    [CrossRef]
  21. S. Agnello, R. Boscaino, M. Canas, F. M. Gelardi, F. La Mattina, S. Grandi, and A. Magistris, “Ge related centers induced by gamma irradiation in sol-gel Ge-doped silica,” J. Non-Cryst. Solids 322(1-3), 134–138 (2003).
    [CrossRef]
  22. A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of Photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express . in press.
    [PubMed]
  23. H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
    [CrossRef] [PubMed]
  24. J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
    [CrossRef]
  25. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
    [CrossRef]
  26. A. N. Trukhin, J. Troks, and D. L. Griscom, “Thermostimulated luminescence and electron spin resonance in X-ray- and photon-irradiated oxygen-deficient silica,” J. Non-Cryst. Solids 353(16-17), 1560–1566 (2007).
    [CrossRef]

2011

D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: A review and synthesis,” J. Non-Cryst. Solids 357(8-9), 1945–1962 (2011).
[CrossRef]

2007

A. N. Trukhin, J. Troks, and D. L. Griscom, “Thermostimulated luminescence and electron spin resonance in X-ray- and photon-irradiated oxygen-deficient silica,” J. Non-Cryst. Solids 353(16-17), 1560–1566 (2007).
[CrossRef]

2006

D. L. Griscom, “Self-trapped holes in pure-silica glass: A history of their discovery and characterization and an example of their critical significance to industry,” J. Non-Cryst. Solids 352(23-25), 2601–2617 (2006).
[CrossRef]

2004

D. L. Griscom, “γ-ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers: Are they due to self-trapped holes?” J. Non-Cryst. Solids 349, 139–147 (2004).
[CrossRef]

2003

Y. Sasajima and K. Tanimura, “Optical transitions of self-trapped holes in amorphous SiO2,” Phys. Rev. B 68(1), 014204 (2003).
[CrossRef]

S. Agnello, R. Boscaino, M. Canas, F. M. Gelardi, F. La Mattina, S. Grandi, and A. Magistris, “Ge related centers induced by gamma irradiation in sol-gel Ge-doped silica,” J. Non-Cryst. Solids 322(1-3), 134–138 (2003).
[CrossRef]

1999

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

1998

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

M. Fujimaki, T. Watanabe, T. Katoh, T. Kasahara, N. Miyazaki, Y. Ohki, and H. Nishikawa, “Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical fiber gratings,” Phys. Rev. B 57(7), 3920–3926 (1998).
[CrossRef]

1996

H. Hosono, M. Mizuguchi, H. Kawazoe, and J. Nishi, “Correlation between Ge E′ centers and optical bands in SiO2:GeO2 glasses,” Jpn. J. Appl. Phys. 35, L234–L236 (1996).
[CrossRef]

1995

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2-SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B Condens. Matter 52(3), 1661–1665 (1995).
[CrossRef] [PubMed]

1992

D. L. Griscom, “Electron spin resonance characterization of self-trapped holes in amorphous silicon dioxide,” J. Non-Cryst. Solids 149(1-2), 137–160 (1992).
[CrossRef]

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[CrossRef] [PubMed]

1991

E. V. Anoikin, A. N. Guryanov, D. D. Gusovskii, V. M. Mashinskii, S. I. Miroshnichenko, V. B. Nuestruev, V. A. Tikhomirov, and Yu. B. Zverev, “Photonic defects in silica glass doped with germanium and cerium,” Sov. Lightwave Commun. 1, 123–131 (1991).

1989

D. L. Griscom, “Self-trapped holes in amorphous silicon dioxide,” Phys. Rev. B Condens. Matter 40(6), 4224–4227 (1989).
[CrossRef] [PubMed]

1988

K. Nagasawa, T. Fujii, Y. Ohki, and Y. Hama, “Relation between Ge(2) center and 11.9 mT hyperfine structure of ESR spectra in Ge-doped silica fibers,” Jpn. J. Appl. Phys. 27(Part 2, No. 2), L240–L243 (1988).
[CrossRef]

1987

D. L. Griscom, E. J. Friebele, and S. P. Mukherjee, “Studies of radiation-induced point defects in silica aerogel monoliths,” Cryst. Latt. Def. Amorph. Mat. 17, 157–163 (1987).

1986

D. L. Griscom and E. J. Friebele, “Fundamental radiation-induced defect centers in synthetic fused silicas: Atomic chlorine, delocalized E’ centers, and a triplet state,” Phys. Rev. B Condens. Matter 34(11), 7524–7533 (1986).
[CrossRef] [PubMed]

1978

J. Isoya, J. A. Weil, and R. F. C. Claridge, “The dynamic interchange and relationship between germanium centers in α quartz,” J. Chem. Phys. 69(11), 4876–4884 (1978).
[CrossRef]

1974

E. J. Friebele, D. L. Griscom, and G. H. Sigel., “Defect centers in a germanium-doped silica-core optical fiber,” J. Appl. Phys. 45(8), 3424–3428 (1974).
[CrossRef]

1930

A. Smakula, “Über Erregung und Entfärbung lichtelektrisch leitender Alkalihalogenide,” Z. Phys. 59(9-10), 603–614 (1930).
[CrossRef]

Abe, Y.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[CrossRef] [PubMed]

Agnello, S.

S. Agnello, R. Boscaino, M. Canas, F. M. Gelardi, F. La Mattina, S. Grandi, and A. Magistris, “Ge related centers induced by gamma irradiation in sol-gel Ge-doped silica,” J. Non-Cryst. Solids 322(1-3), 134–138 (2003).
[CrossRef]

A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of Photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express . in press.
[PubMed]

Alessi, A.

A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of Photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express . in press.
[PubMed]

Anoikin, E. V.

E. V. Anoikin, A. N. Guryanov, D. D. Gusovskii, V. M. Mashinskii, S. I. Miroshnichenko, V. B. Nuestruev, V. A. Tikhomirov, and Yu. B. Zverev, “Photonic defects in silica glass doped with germanium and cerium,” Sov. Lightwave Commun. 1, 123–131 (1991).

Boscaino, R.

S. Agnello, R. Boscaino, M. Canas, F. M. Gelardi, F. La Mattina, S. Grandi, and A. Magistris, “Ge related centers induced by gamma irradiation in sol-gel Ge-doped silica,” J. Non-Cryst. Solids 322(1-3), 134–138 (2003).
[CrossRef]

Boukenter, A.

A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of Photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express . in press.
[PubMed]

Canas, M.

S. Agnello, R. Boscaino, M. Canas, F. M. Gelardi, F. La Mattina, S. Grandi, and A. Magistris, “Ge related centers induced by gamma irradiation in sol-gel Ge-doped silica,” J. Non-Cryst. Solids 322(1-3), 134–138 (2003).
[CrossRef]

Cannas, M.

A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of Photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express . in press.
[PubMed]

Claridge, R. F. C.

J. Isoya, J. A. Weil, and R. F. C. Claridge, “The dynamic interchange and relationship between germanium centers in α quartz,” J. Chem. Phys. 69(11), 4876–4884 (1978).
[CrossRef]

Friebele, E. J.

D. L. Griscom, E. J. Friebele, and S. P. Mukherjee, “Studies of radiation-induced point defects in silica aerogel monoliths,” Cryst. Latt. Def. Amorph. Mat. 17, 157–163 (1987).

D. L. Griscom and E. J. Friebele, “Fundamental radiation-induced defect centers in synthetic fused silicas: Atomic chlorine, delocalized E’ centers, and a triplet state,” Phys. Rev. B Condens. Matter 34(11), 7524–7533 (1986).
[CrossRef] [PubMed]

E. J. Friebele, D. L. Griscom, and G. H. Sigel., “Defect centers in a germanium-doped silica-core optical fiber,” J. Appl. Phys. 45(8), 3424–3428 (1974).
[CrossRef]

Fujii, T.

K. Nagasawa, T. Fujii, Y. Ohki, and Y. Hama, “Relation between Ge(2) center and 11.9 mT hyperfine structure of ESR spectra in Ge-doped silica fibers,” Jpn. J. Appl. Phys. 27(Part 2, No. 2), L240–L243 (1988).
[CrossRef]

Fujimaki, M.

M. Fujimaki, T. Watanabe, T. Katoh, T. Kasahara, N. Miyazaki, Y. Ohki, and H. Nishikawa, “Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical fiber gratings,” Phys. Rev. B 57(7), 3920–3926 (1998).
[CrossRef]

Fukumi, K.

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2-SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B Condens. Matter 52(3), 1661–1665 (1995).
[CrossRef] [PubMed]

Gelardi, F. M.

S. Agnello, R. Boscaino, M. Canas, F. M. Gelardi, F. La Mattina, S. Grandi, and A. Magistris, “Ge related centers induced by gamma irradiation in sol-gel Ge-doped silica,” J. Non-Cryst. Solids 322(1-3), 134–138 (2003).
[CrossRef]

Girard, S.

A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of Photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express . in press.
[PubMed]

Grandi, S.

S. Agnello, R. Boscaino, M. Canas, F. M. Gelardi, F. La Mattina, S. Grandi, and A. Magistris, “Ge related centers induced by gamma irradiation in sol-gel Ge-doped silica,” J. Non-Cryst. Solids 322(1-3), 134–138 (2003).
[CrossRef]

Griscom, D. L.

D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: A review and synthesis,” J. Non-Cryst. Solids 357(8-9), 1945–1962 (2011).
[CrossRef]

A. N. Trukhin, J. Troks, and D. L. Griscom, “Thermostimulated luminescence and electron spin resonance in X-ray- and photon-irradiated oxygen-deficient silica,” J. Non-Cryst. Solids 353(16-17), 1560–1566 (2007).
[CrossRef]

D. L. Griscom, “Self-trapped holes in pure-silica glass: A history of their discovery and characterization and an example of their critical significance to industry,” J. Non-Cryst. Solids 352(23-25), 2601–2617 (2006).
[CrossRef]

D. L. Griscom, “γ-ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers: Are they due to self-trapped holes?” J. Non-Cryst. Solids 349, 139–147 (2004).
[CrossRef]

D. L. Griscom, “Electron spin resonance characterization of self-trapped holes in amorphous silicon dioxide,” J. Non-Cryst. Solids 149(1-2), 137–160 (1992).
[CrossRef]

D. L. Griscom, “Self-trapped holes in amorphous silicon dioxide,” Phys. Rev. B Condens. Matter 40(6), 4224–4227 (1989).
[CrossRef] [PubMed]

D. L. Griscom, E. J. Friebele, and S. P. Mukherjee, “Studies of radiation-induced point defects in silica aerogel monoliths,” Cryst. Latt. Def. Amorph. Mat. 17, 157–163 (1987).

D. L. Griscom and E. J. Friebele, “Fundamental radiation-induced defect centers in synthetic fused silicas: Atomic chlorine, delocalized E’ centers, and a triplet state,” Phys. Rev. B Condens. Matter 34(11), 7524–7533 (1986).
[CrossRef] [PubMed]

E. J. Friebele, D. L. Griscom, and G. H. Sigel., “Defect centers in a germanium-doped silica-core optical fiber,” J. Appl. Phys. 45(8), 3424–3428 (1974).
[CrossRef]

Guryanov, A. N.

E. V. Anoikin, A. N. Guryanov, D. D. Gusovskii, V. M. Mashinskii, S. I. Miroshnichenko, V. B. Nuestruev, V. A. Tikhomirov, and Yu. B. Zverev, “Photonic defects in silica glass doped with germanium and cerium,” Sov. Lightwave Commun. 1, 123–131 (1991).

Gusovskii, D. D.

E. V. Anoikin, A. N. Guryanov, D. D. Gusovskii, V. M. Mashinskii, S. I. Miroshnichenko, V. B. Nuestruev, V. A. Tikhomirov, and Yu. B. Zverev, “Photonic defects in silica glass doped with germanium and cerium,” Sov. Lightwave Commun. 1, 123–131 (1991).

Hama, Y.

K. Nagasawa, T. Fujii, Y. Ohki, and Y. Hama, “Relation between Ge(2) center and 11.9 mT hyperfine structure of ESR spectra in Ge-doped silica fibers,” Jpn. J. Appl. Phys. 27(Part 2, No. 2), L240–L243 (1988).
[CrossRef]

Hosono, H.

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

H. Hosono, M. Mizuguchi, H. Kawazoe, and J. Nishi, “Correlation between Ge E′ centers and optical bands in SiO2:GeO2 glasses,” Jpn. J. Appl. Phys. 35, L234–L236 (1996).
[CrossRef]

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2-SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B Condens. Matter 52(3), 1661–1665 (1995).
[CrossRef] [PubMed]

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[CrossRef] [PubMed]

Isoya, J.

J. Isoya, J. A. Weil, and R. F. C. Claridge, “The dynamic interchange and relationship between germanium centers in α quartz,” J. Chem. Phys. 69(11), 4876–4884 (1978).
[CrossRef]

Kasahara, T.

M. Fujimaki, T. Watanabe, T. Katoh, T. Kasahara, N. Miyazaki, Y. Ohki, and H. Nishikawa, “Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical fiber gratings,” Phys. Rev. B 57(7), 3920–3926 (1998).
[CrossRef]

Kato, M.

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

Katoh, T.

M. Fujimaki, T. Watanabe, T. Katoh, T. Kasahara, N. Miyazaki, Y. Ohki, and H. Nishikawa, “Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical fiber gratings,” Phys. Rev. B 57(7), 3920–3926 (1998).
[CrossRef]

Kawamura, K.

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2-SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B Condens. Matter 52(3), 1661–1665 (1995).
[CrossRef] [PubMed]

Kawazoe, H.

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

H. Hosono, M. Mizuguchi, H. Kawazoe, and J. Nishi, “Correlation between Ge E′ centers and optical bands in SiO2:GeO2 glasses,” Jpn. J. Appl. Phys. 35, L234–L236 (1996).
[CrossRef]

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2-SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B Condens. Matter 52(3), 1661–1665 (1995).
[CrossRef] [PubMed]

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[CrossRef] [PubMed]

Kinser, D. L.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[CrossRef] [PubMed]

Kintaka, K.

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

La Mattina, F.

S. Agnello, R. Boscaino, M. Canas, F. M. Gelardi, F. La Mattina, S. Grandi, and A. Magistris, “Ge related centers induced by gamma irradiation in sol-gel Ge-doped silica,” J. Non-Cryst. Solids 322(1-3), 134–138 (2003).
[CrossRef]

Magistris, A.

S. Agnello, R. Boscaino, M. Canas, F. M. Gelardi, F. La Mattina, S. Grandi, and A. Magistris, “Ge related centers induced by gamma irradiation in sol-gel Ge-doped silica,” J. Non-Cryst. Solids 322(1-3), 134–138 (2003).
[CrossRef]

Mashinskii, V. M.

E. V. Anoikin, A. N. Guryanov, D. D. Gusovskii, V. M. Mashinskii, S. I. Miroshnichenko, V. B. Nuestruev, V. A. Tikhomirov, and Yu. B. Zverev, “Photonic defects in silica glass doped with germanium and cerium,” Sov. Lightwave Commun. 1, 123–131 (1991).

Miroshnichenko, S. I.

E. V. Anoikin, A. N. Guryanov, D. D. Gusovskii, V. M. Mashinskii, S. I. Miroshnichenko, V. B. Nuestruev, V. A. Tikhomirov, and Yu. B. Zverev, “Photonic defects in silica glass doped with germanium and cerium,” Sov. Lightwave Commun. 1, 123–131 (1991).

Miyazaki, N.

M. Fujimaki, T. Watanabe, T. Katoh, T. Kasahara, N. Miyazaki, Y. Ohki, and H. Nishikawa, “Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical fiber gratings,” Phys. Rev. B 57(7), 3920–3926 (1998).
[CrossRef]

Mizuguchi, M.

H. Hosono, M. Mizuguchi, H. Kawazoe, and J. Nishi, “Correlation between Ge E′ centers and optical bands in SiO2:GeO2 glasses,” Jpn. J. Appl. Phys. 35, L234–L236 (1996).
[CrossRef]

Mukherjee, S. P.

D. L. Griscom, E. J. Friebele, and S. P. Mukherjee, “Studies of radiation-induced point defects in silica aerogel monoliths,” Cryst. Latt. Def. Amorph. Mat. 17, 157–163 (1987).

Muta, K.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[CrossRef] [PubMed]

Muta, K.-

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

Nagasawa, K.

K. Nagasawa, T. Fujii, Y. Ohki, and Y. Hama, “Relation between Ge(2) center and 11.9 mT hyperfine structure of ESR spectra in Ge-doped silica fibers,” Jpn. J. Appl. Phys. 27(Part 2, No. 2), L240–L243 (1988).
[CrossRef]

Nishi, J.

H. Hosono, M. Mizuguchi, H. Kawazoe, and J. Nishi, “Correlation between Ge E′ centers and optical bands in SiO2:GeO2 glasses,” Jpn. J. Appl. Phys. 35, L234–L236 (1996).
[CrossRef]

Nishii, J.

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2-SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B Condens. Matter 52(3), 1661–1665 (1995).
[CrossRef] [PubMed]

Nishikawa, H.

M. Fujimaki, T. Watanabe, T. Katoh, T. Kasahara, N. Miyazaki, Y. Ohki, and H. Nishikawa, “Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical fiber gratings,” Phys. Rev. B 57(7), 3920–3926 (1998).
[CrossRef]

Nuestruev, V. B.

E. V. Anoikin, A. N. Guryanov, D. D. Gusovskii, V. M. Mashinskii, S. I. Miroshnichenko, V. B. Nuestruev, V. A. Tikhomirov, and Yu. B. Zverev, “Photonic defects in silica glass doped with germanium and cerium,” Sov. Lightwave Commun. 1, 123–131 (1991).

Ohki, Y.

M. Fujimaki, T. Watanabe, T. Katoh, T. Kasahara, N. Miyazaki, Y. Ohki, and H. Nishikawa, “Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical fiber gratings,” Phys. Rev. B 57(7), 3920–3926 (1998).
[CrossRef]

K. Nagasawa, T. Fujii, Y. Ohki, and Y. Hama, “Relation between Ge(2) center and 11.9 mT hyperfine structure of ESR spectra in Ge-doped silica fibers,” Jpn. J. Appl. Phys. 27(Part 2, No. 2), L240–L243 (1988).
[CrossRef]

Ouerdane, Y.

A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of Photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express . in press.
[PubMed]

Sasajima, Y.

Y. Sasajima and K. Tanimura, “Optical transitions of self-trapped holes in amorphous SiO2,” Phys. Rev. B 68(1), 014204 (2003).
[CrossRef]

Sigel, G. H.

E. J. Friebele, D. L. Griscom, and G. H. Sigel., “Defect centers in a germanium-doped silica-core optical fiber,” J. Appl. Phys. 45(8), 3424–3428 (1974).
[CrossRef]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

Smakula, A.

A. Smakula, “Über Erregung und Entfärbung lichtelektrisch leitender Alkalihalogenide,” Z. Phys. 59(9-10), 603–614 (1930).
[CrossRef]

Tanimura, K.

Y. Sasajima and K. Tanimura, “Optical transitions of self-trapped holes in amorphous SiO2,” Phys. Rev. B 68(1), 014204 (2003).
[CrossRef]

Tikhomirov, V. A.

E. V. Anoikin, A. N. Guryanov, D. D. Gusovskii, V. M. Mashinskii, S. I. Miroshnichenko, V. B. Nuestruev, V. A. Tikhomirov, and Yu. B. Zverev, “Photonic defects in silica glass doped with germanium and cerium,” Sov. Lightwave Commun. 1, 123–131 (1991).

Troks, J.

A. N. Trukhin, J. Troks, and D. L. Griscom, “Thermostimulated luminescence and electron spin resonance in X-ray- and photon-irradiated oxygen-deficient silica,” J. Non-Cryst. Solids 353(16-17), 1560–1566 (2007).
[CrossRef]

Trukhin, A. N.

A. N. Trukhin, J. Troks, and D. L. Griscom, “Thermostimulated luminescence and electron spin resonance in X-ray- and photon-irradiated oxygen-deficient silica,” J. Non-Cryst. Solids 353(16-17), 1560–1566 (2007).
[CrossRef]

Watanabe, T.

M. Fujimaki, T. Watanabe, T. Katoh, T. Kasahara, N. Miyazaki, Y. Ohki, and H. Nishikawa, “Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical fiber gratings,” Phys. Rev. B 57(7), 3920–3926 (1998).
[CrossRef]

Weeks, R. A.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[CrossRef] [PubMed]

Weil, J. A.

J. Isoya, J. A. Weil, and R. F. C. Claridge, “The dynamic interchange and relationship between germanium centers in α quartz,” J. Chem. Phys. 69(11), 4876–4884 (1978).
[CrossRef]

Yamanaka, H.

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2-SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B Condens. Matter 52(3), 1661–1665 (1995).
[CrossRef] [PubMed]

Zverev, Yu. B.

E. V. Anoikin, A. N. Guryanov, D. D. Gusovskii, V. M. Mashinskii, S. I. Miroshnichenko, V. B. Nuestruev, V. A. Tikhomirov, and Yu. B. Zverev, “Photonic defects in silica glass doped with germanium and cerium,” Sov. Lightwave Commun. 1, 123–131 (1991).

Cryst. Latt. Def. Amorph. Mat.

D. L. Griscom, E. J. Friebele, and S. P. Mukherjee, “Studies of radiation-induced point defects in silica aerogel monoliths,” Cryst. Latt. Def. Amorph. Mat. 17, 157–163 (1987).

J. Appl. Phys.

E. J. Friebele, D. L. Griscom, and G. H. Sigel., “Defect centers in a germanium-doped silica-core optical fiber,” J. Appl. Phys. 45(8), 3424–3428 (1974).
[CrossRef]

J. Chem. Phys.

J. Isoya, J. A. Weil, and R. F. C. Claridge, “The dynamic interchange and relationship between germanium centers in α quartz,” J. Chem. Phys. 69(11), 4876–4884 (1978).
[CrossRef]

J. Non-Cryst. Solids

D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: A review and synthesis,” J. Non-Cryst. Solids 357(8-9), 1945–1962 (2011).
[CrossRef]

D. L. Griscom, “γ-ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers: Are they due to self-trapped holes?” J. Non-Cryst. Solids 349, 139–147 (2004).
[CrossRef]

D. L. Griscom, “Electron spin resonance characterization of self-trapped holes in amorphous silicon dioxide,” J. Non-Cryst. Solids 149(1-2), 137–160 (1992).
[CrossRef]

D. L. Griscom, “Self-trapped holes in pure-silica glass: A history of their discovery and characterization and an example of their critical significance to industry,” J. Non-Cryst. Solids 352(23-25), 2601–2617 (2006).
[CrossRef]

S. Agnello, R. Boscaino, M. Canas, F. M. Gelardi, F. La Mattina, S. Grandi, and A. Magistris, “Ge related centers induced by gamma irradiation in sol-gel Ge-doped silica,” J. Non-Cryst. Solids 322(1-3), 134–138 (2003).
[CrossRef]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

A. N. Trukhin, J. Troks, and D. L. Griscom, “Thermostimulated luminescence and electron spin resonance in X-ray- and photon-irradiated oxygen-deficient silica,” J. Non-Cryst. Solids 353(16-17), 1560–1566 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

H. Hosono, M. Mizuguchi, H. Kawazoe, and J. Nishi, “Correlation between Ge E′ centers and optical bands in SiO2:GeO2 glasses,” Jpn. J. Appl. Phys. 35, L234–L236 (1996).
[CrossRef]

K. Nagasawa, T. Fujii, Y. Ohki, and Y. Hama, “Relation between Ge(2) center and 11.9 mT hyperfine structure of ESR spectra in Ge-doped silica fibers,” Jpn. J. Appl. Phys. 27(Part 2, No. 2), L240–L243 (1988).
[CrossRef]

Opt. Express

A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of Photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express . in press.
[PubMed]

Phys. Rev. B

M. Fujimaki, T. Watanabe, T. Katoh, T. Kasahara, N. Miyazaki, Y. Ohki, and H. Nishikawa, “Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical fiber gratings,” Phys. Rev. B 57(7), 3920–3926 (1998).
[CrossRef]

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

Y. Sasajima and K. Tanimura, “Optical transitions of self-trapped holes in amorphous SiO2,” Phys. Rev. B 68(1), 014204 (2003).
[CrossRef]

Phys. Rev. B Condens. Matter

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2-SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B Condens. Matter 52(3), 1661–1665 (1995).
[CrossRef] [PubMed]

D. L. Griscom, “Self-trapped holes in amorphous silicon dioxide,” Phys. Rev. B Condens. Matter 40(6), 4224–4227 (1989).
[CrossRef] [PubMed]

D. L. Griscom and E. J. Friebele, “Fundamental radiation-induced defect centers in synthetic fused silicas: Atomic chlorine, delocalized E’ centers, and a triplet state,” Phys. Rev. B Condens. Matter 34(11), 7524–7533 (1986).
[CrossRef] [PubMed]

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[CrossRef] [PubMed]

Sov. Lightwave Commun.

E. V. Anoikin, A. N. Guryanov, D. D. Gusovskii, V. M. Mashinskii, S. I. Miroshnichenko, V. B. Nuestruev, V. A. Tikhomirov, and Yu. B. Zverev, “Photonic defects in silica glass doped with germanium and cerium,” Sov. Lightwave Commun. 1, 123–131 (1991).

Z. Phys.

A. Smakula, “Über Erregung und Entfärbung lichtelektrisch leitender Alkalihalogenide,” Z. Phys. 59(9-10), 603–614 (1930).
[CrossRef]

Other

E. J. Friebele and D. L. Griscom, “Color centers in glass optical fiber waveguides,” in Defects in Glasses - MRS Vol. 61, F.J. Galeener, D.L. Griscom, M.J. Weber, Eds. (Materials Research Society, Pittsburgh, Pa, 1986), pp. 319–331.

E. J. Friebele, “Radiation effects,” in Optical Properties of Glass, D.R. Uhlmann, N.J. Kreidl, Eds. (American Ceramic Society, Westerville, OH, 1991), pp. 205–262.

J. S. Hyde, ESR Standard Sample Data (Varian Associates, Palo Alto, CA, 1961).

D. L. Griscom, “Visible/infra-red absorption study in fiber geometry of metastable defect states in high-purity fused silicas,” Defects in Insulating Materials, G.E. Matthews and R.W. Williams, Eds., Materials Sci. Forum Vols. 239–241, 19–24 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical absorption spectrum of the GeO2-SiO2 glass of this study after x-irradiation to a dose of 5 kGy at 77 K and measurement at 100 K. Fitted curves are Gaussians. Figure taken directly from [1].

Fig. 2
Fig. 2

Isochronal annealing behavior of the ESR spin concentrations of various paramagnetic defects (continuous and broken lines) and optical intensities of optical bands (symbols) recorded for separate sub-samples of the same GeO2-SiO2 glass following identical x-irradiations at 77 K. The y-axis scale is calibrated to the optical intensities only. As discussed in the text, the interrelationships of the various ESR data are not entirely correct as relative number densities. This figure is replotted from the original [1] without any changes of the plotted data points or curves.

Fig. 3
Fig. 3

Isochronal annealing behavior of the ESR-determined number densities of various paramagnetic defects (continuous and dash-dot bold lines) and optical band intensities (squares, triangles, and circles) recorded for separate pieces of the same GeO2-SiO2 glass following 100-keV equal-dose x-irradiations at 77 K. The y-axis scale is calibrated in optical-intensity units (eV/cm), but as described in the text this scale is also used here to represent the relative number densities of the paramagnetic species corresponding to the three bold unbroken lines and the dash-dot one; (the bold short-dash line is added for comparison purposes and is not a true number density). “Ge(2) true” is corrected from “Ge(2)” in Fig. 2 as described in the text. The thin unbroken curve in the temperature range 200 to 375 K represents one half of the sum of the decreases of Ge(1) and “Ge(2) true” in the same temperature range, expressed as positive numbers (added to the mean value of the diamonds in the range 150 – 175 K); thus this curve represents a sequence of number densities comparable to any other number density tied the present y-axis scale. The diamonds comprise the optical intensities shown in Fig. 2 moved upward to discover their coincidence with the thin unbroken curve in the range ~250 – 375 K. Therefore, in this presentation, the units of the diamonds are no longer optical intensity but instead become relative number densities of the GLPC (see text). The dotted TSL curve is taken from [20] and has been added for comparison purposes as described in the text. This figure is replotted from the original [1] (reproduced here as Fig. 2) in order to elucidate the important corrections and correlations mentioned above and further described in the text.

Fig. 4
Fig. 4

The author’s visualization of (a) the configuration coordinates of the Ge(II) and Ge(I) trapped-electron centers in x-irradiated Ge-doped α quartz based on the work of Isoya, Weil, and Claridge [3] and (b) the analogous Ge(1) and Ge(2) centers, respectively [2], in an x-irradiated GeO2-SiO2 glass based on Fig. 3 of the present work. The potential wells represent the directionalities of the orbitals of the unpaired spins, as well as the directions of any spontaneous movements of the Ge4+ ion away from the origin of coordinates in response to having captured an electron. There is a crystallographic difference between positive and negative distortions along the twofold a axis of α quartz, which evidently favors distortions in the positive direction [3], thus the deeper well in this direction shown in (a). Isoya et al. [3] reported the energetic separation Δ between the Ge(II) excited state and the Ge(I) ground state in α quartz to be temperature dependent and equal to ~0.0025, ~0.0055, ~0.0077, and ~0.0078 eV at ~15, ~80, ~220, and ~300 K, respectively. No comparable numbers exist for Ge(1) and Ge(2) in glasses. However, from Fig. 3 it is inferred that in the glasses Ge(1) is the ground state at ~100 K, as illustrated in (b).

Tables (1)

Tables Icon

Table 1 Parameters of the ESR and optical measurements at 77 K partially reported in [1] and used to develop Fig. 2 (same as in [1]) and Fig. 3 (original to the present work).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

N i f i =   ( 8 . 7 1 0 16 ) n a i W i / ( n 2 +  2 ) 2 ,
N Ge ( 1 ) =  C O I 4 . 4 eV / f Ge ( 1 )   and     N STH =  C O I 2 . 4 / f STH ,
N Ge ( 2 ) =  C O I 5 . 8 eV / f Ge ( 2 ) ,
[ = Ge · · ] 0 + h + [ = Ge · ] + .
f GLPC =  C O I 5 . 2 eV / N GLPC ,

Metrics