Abstract

We fabricated Mn2+-activated nanocrystallized glasses (NCG) with willemite-type Zn2GeO4 from a zincogermanate system glass added by various MnO-concentrations, and examined their photoluminescence (PL) properties. The Mn2+-activated NCGs indicated bright green-emission based on the 4T16A1 transition of the Mn2+, indicating exclusive Mn2+-occupation of Zn site in the Zn2GeO4 nanocrystals. In addition, green long-lasting photoluminescence (LLP) was also observed in the NCGs with low MnO-concentration. Relation between the MnO-concentration and the LLP property was also considered.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, “Optical properties of manganese-doped nanocrystals of ZnS,” Phys. Rev. Lett. 72(3), 416–419 (1994).
    [CrossRef] [PubMed]
  2. T. Nagata, P. Ahmet, Y. Sakuma, T. Sekiguchi, and T. Chikyow, “GaN nanostructure fabrication by focused-ion-beam-assisted chemical vapor deposition,” Appl. Phys. Lett. 87(1), 013103 (2005).
    [CrossRef]
  3. R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, and H. Nakajima, “Formation of hollow ZnO through low temperature oxidation of Zn nanoparticles,” Mater. Lett. 61(4-5), 1060–1063 (2007).
    [CrossRef]
  4. A. Venkatachalam, B. Klein, J. H. Ryou, S. C. Shen, R. D. Dupuis, and P. D. Yoder, “Design strategies for InGaN-based green lasers,” IEEE J. Quantum Electron. 46(2), 238–245 (2010).
    [CrossRef]
  5. M. Zhu, S. You, T. Detchprohm, T. Paskova, E. A. Preble, and C. Wetzel, “Various misfit dislocations in green and yellow GaInN/GaN light emitting diodes,” Phys. Status Solidi 207(6), 1305–1308 (2010).
    [CrossRef]
  6. C. Liu, Y. K. Kwon, and J. Heo, “Near-infrared photoluminescence of PbS QDs precipitated in the glass matrix,” J. Ceram. Soc. Jpn. 116(1358), 1071–1074 (2008).
    [CrossRef]
  7. R. Nagai, T. Honma, and T. Komatsu, “Laser patterning of ZnO crystals on the surface of borosilicate glass,” J. Am. Ceram. Soc. 93(3), 658–661 (2010).
    [CrossRef]
  8. J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, and Y. Inoue, “Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration,” J. Phys. Chem. B 108(14), 4369–4375 (2004).
    [CrossRef]
  9. Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, and Z. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
    [CrossRef] [PubMed]
  10. J. K. Feng, M. O. Lai, and L. Lu, “Zn2GeO4 nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery,” Electrochem. Commun. 13(3), 287–289 (2011).
    [CrossRef]
  11. J. P. Bender, J. F. Wager, J. Kissick, B. L. Clark, and D. A. Keszler, “Zn2GeO4:Mn alternating-current thin-film electroluminescent devices,” J. Lumin. 99(4), 311–324 (2002).
    [CrossRef]
  12. K. H. Yoon and J. H. Kim, “Structure analysis and luminescent study of thin film zinc germanate doped with manganese,” Thin Solid Films 519(5), 1583–1586 (2010).
    [CrossRef]
  13. S. Takeshita, J. Honda, T. Isobe, T. Sawayama, and S. Niikura, “Size-tunable solvothermal synthesis of Zn2GeO4:Mn2+ nanophosphor in water/diethylene glycol system,” Cryst. Growth Des. 10(10), 4494–4500 (2010).
    [CrossRef]
  14. Y. Takahashi, M. Ando, K. Iwasaki, H. Masai, and T. Fujiwara, “Defect activation in willemite-type Zn2GeO4 by nanocrystallization,” Appl. Phys. Lett. 97(7), 071906 (2010).
    [CrossRef]
  15. M. Ando, Y. Takahashi, K. Iwasaki, H. Masai, R. Ihara, and T. Fujiwara, “Fabrication and photoluminescent property of transparent nanocrystallized-glass in Li2O-ZnO-GeO2 system,” IOP Conf. Ser.: Mater. Sci. Eng. (to be published).
  16. K. Iwasaki, Y. Takahashi, H. Masai, and T. Fujiwara, “Blue photoluminescence, greenish-blue afterglow and their Ti-concentration dependence in rare-earth free bazirite-type BaZn1-xTixSi3O9,” Opt. Express 17(20), 18054–18062 (2009).
    [CrossRef] [PubMed]
  17. M. Kawano, H. Takebe, and M. Kuwabara, “Compositional dependence of the luminescence properties of Mn2+-doped metaphosphate glasses,” Opt. Mater. 32(2), 277–280 (2009).
    [CrossRef]
  18. N. Da, M. Peng, S. Krolikowski, and L. Wondraczek, “Intense red photoluminescence from Mn2+-doped (Na+; Zn2+) sulfophosphate glasses and glass ceramics as LED converters,” Opt. Express 18(3), 2549–2557 (2010).
    [CrossRef] [PubMed]
  19. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [CrossRef]
  20. Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions II,” J. Phys. Soc. Jpn. 9(5), 766–779 (1954).
    [CrossRef]
  21. G. Gao, R. Meszaros, M. Peng, and L. Wondraczek, “Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics,” Opt. Express 19(S3), A312–A318 (2011).
    [CrossRef]
  22. F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001).
    [CrossRef]
  23. A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth-activated glass-ceramic in planar format,” Opt. Eng. 50(7), 071105 (2011).
    [CrossRef]
  24. D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, and H. Fukumura, “Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide film doped with tri- and tetravalent cations prepared by liquid phase epitaxy,” J. Mater. Chem. 16(33), 3369–3374 (2006).
    [CrossRef]
  25. P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
    [CrossRef]
  26. Y. Takahashi, M. Ando, R. Ihara, and T. Fujiwara, “Formation of Zn defects in willemite-type Zn2GeO4 during supercooled liquid−crystal phase transition,” Appl. Phys. Lett. 98(22), 221907 (2011).
    [CrossRef]
  27. T. M. Chen, Y. H. Lee, L. Y. Luo, and N. S. Wang, “Luminescence and time-resolved fluorescence decay of Mn2+-activated Zn2GeO4 phosphors under ultraviolet excitation,” Chinese J. Lumin. 26, 183–188 (2005).
  28. T. Maruyama, A. Enomoto, and K. Shirasawa, “Solar cell module colored with fluorescent plate,” Sol. Energy Mater. Sol. Cells 64(3), 269–278 (2000).
    [CrossRef]
  29. P. Chung, H. H. Chung, and P. H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A 25(1), 61–66 (2007).
    [CrossRef]
  30. A. F. Khan, D. Haranath, R. Yadav, S. Singh, S. Chawla, and V. Dutta, “Controlled surface distribution and luminescence of YVO4:Eu3+ nanophosphor layer,” Appl. Phys. Lett. 93(7), 073103 (2008).
    [CrossRef]

2011 (4)

J. K. Feng, M. O. Lai, and L. Lu, “Zn2GeO4 nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery,” Electrochem. Commun. 13(3), 287–289 (2011).
[CrossRef]

G. Gao, R. Meszaros, M. Peng, and L. Wondraczek, “Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics,” Opt. Express 19(S3), A312–A318 (2011).
[CrossRef]

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth-activated glass-ceramic in planar format,” Opt. Eng. 50(7), 071105 (2011).
[CrossRef]

Y. Takahashi, M. Ando, R. Ihara, and T. Fujiwara, “Formation of Zn defects in willemite-type Zn2GeO4 during supercooled liquid−crystal phase transition,” Appl. Phys. Lett. 98(22), 221907 (2011).
[CrossRef]

2010 (8)

N. Da, M. Peng, S. Krolikowski, and L. Wondraczek, “Intense red photoluminescence from Mn2+-doped (Na+; Zn2+) sulfophosphate glasses and glass ceramics as LED converters,” Opt. Express 18(3), 2549–2557 (2010).
[CrossRef] [PubMed]

K. H. Yoon and J. H. Kim, “Structure analysis and luminescent study of thin film zinc germanate doped with manganese,” Thin Solid Films 519(5), 1583–1586 (2010).
[CrossRef]

S. Takeshita, J. Honda, T. Isobe, T. Sawayama, and S. Niikura, “Size-tunable solvothermal synthesis of Zn2GeO4:Mn2+ nanophosphor in water/diethylene glycol system,” Cryst. Growth Des. 10(10), 4494–4500 (2010).
[CrossRef]

Y. Takahashi, M. Ando, K. Iwasaki, H. Masai, and T. Fujiwara, “Defect activation in willemite-type Zn2GeO4 by nanocrystallization,” Appl. Phys. Lett. 97(7), 071906 (2010).
[CrossRef]

A. Venkatachalam, B. Klein, J. H. Ryou, S. C. Shen, R. D. Dupuis, and P. D. Yoder, “Design strategies for InGaN-based green lasers,” IEEE J. Quantum Electron. 46(2), 238–245 (2010).
[CrossRef]

M. Zhu, S. You, T. Detchprohm, T. Paskova, E. A. Preble, and C. Wetzel, “Various misfit dislocations in green and yellow GaInN/GaN light emitting diodes,” Phys. Status Solidi 207(6), 1305–1308 (2010).
[CrossRef]

R. Nagai, T. Honma, and T. Komatsu, “Laser patterning of ZnO crystals on the surface of borosilicate glass,” J. Am. Ceram. Soc. 93(3), 658–661 (2010).
[CrossRef]

Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, and Z. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

C. Liu, Y. K. Kwon, and J. Heo, “Near-infrared photoluminescence of PbS QDs precipitated in the glass matrix,” J. Ceram. Soc. Jpn. 116(1358), 1071–1074 (2008).
[CrossRef]

A. F. Khan, D. Haranath, R. Yadav, S. Singh, S. Chawla, and V. Dutta, “Controlled surface distribution and luminescence of YVO4:Eu3+ nanophosphor layer,” Appl. Phys. Lett. 93(7), 073103 (2008).
[CrossRef]

2007 (2)

P. Chung, H. H. Chung, and P. H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A 25(1), 61–66 (2007).
[CrossRef]

R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, and H. Nakajima, “Formation of hollow ZnO through low temperature oxidation of Zn nanoparticles,” Mater. Lett. 61(4-5), 1060–1063 (2007).
[CrossRef]

2006 (1)

D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, and H. Fukumura, “Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide film doped with tri- and tetravalent cations prepared by liquid phase epitaxy,” J. Mater. Chem. 16(33), 3369–3374 (2006).
[CrossRef]

2005 (3)

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[CrossRef]

T. M. Chen, Y. H. Lee, L. Y. Luo, and N. S. Wang, “Luminescence and time-resolved fluorescence decay of Mn2+-activated Zn2GeO4 phosphors under ultraviolet excitation,” Chinese J. Lumin. 26, 183–188 (2005).

T. Nagata, P. Ahmet, Y. Sakuma, T. Sekiguchi, and T. Chikyow, “GaN nanostructure fabrication by focused-ion-beam-assisted chemical vapor deposition,” Appl. Phys. Lett. 87(1), 013103 (2005).
[CrossRef]

2004 (1)

J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, and Y. Inoue, “Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration,” J. Phys. Chem. B 108(14), 4369–4375 (2004).
[CrossRef]

2002 (1)

J. P. Bender, J. F. Wager, J. Kissick, B. L. Clark, and D. A. Keszler, “Zn2GeO4:Mn alternating-current thin-film electroluminescent devices,” J. Lumin. 99(4), 311–324 (2002).
[CrossRef]

2001 (1)

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001).
[CrossRef]

2000 (1)

T. Maruyama, A. Enomoto, and K. Shirasawa, “Solar cell module colored with fluorescent plate,” Sol. Energy Mater. Sol. Cells 64(3), 269–278 (2000).
[CrossRef]

1994 (1)

R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, “Optical properties of manganese-doped nanocrystals of ZnS,” Phys. Rev. Lett. 72(3), 416–419 (1994).
[CrossRef] [PubMed]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[CrossRef]

1954 (1)

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions II,” J. Phys. Soc. Jpn. 9(5), 766–779 (1954).
[CrossRef]

Ahmet, P.

T. Nagata, P. Ahmet, Y. Sakuma, T. Sekiguchi, and T. Chikyow, “GaN nanostructure fabrication by focused-ion-beam-assisted chemical vapor deposition,” Appl. Phys. Lett. 87(1), 013103 (2005).
[CrossRef]

Alombert-Goget, G.

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth-activated glass-ceramic in planar format,” Opt. Eng. 50(7), 071105 (2011).
[CrossRef]

Ando, M.

Y. Takahashi, M. Ando, R. Ihara, and T. Fujiwara, “Formation of Zn defects in willemite-type Zn2GeO4 during supercooled liquid−crystal phase transition,” Appl. Phys. Lett. 98(22), 221907 (2011).
[CrossRef]

Y. Takahashi, M. Ando, K. Iwasaki, H. Masai, and T. Fujiwara, “Defect activation in willemite-type Zn2GeO4 by nanocrystallization,” Appl. Phys. Lett. 97(7), 071906 (2010).
[CrossRef]

Arfuso, C. D.

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth-activated glass-ceramic in planar format,” Opt. Eng. 50(7), 071105 (2011).
[CrossRef]

Auzel, F.

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001).
[CrossRef]

Bender, J. P.

J. P. Bender, J. F. Wager, J. Kissick, B. L. Clark, and D. A. Keszler, “Zn2GeO4:Mn alternating-current thin-film electroluminescent devices,” J. Lumin. 99(4), 311–324 (2002).
[CrossRef]

Berneschi, S.

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth-activated glass-ceramic in planar format,” Opt. Eng. 50(7), 071105 (2011).
[CrossRef]

Bhargava, R. N.

R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, “Optical properties of manganese-doped nanocrystals of ZnS,” Phys. Rev. Lett. 72(3), 416–419 (1994).
[CrossRef] [PubMed]

Boulard, B.

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth-activated glass-ceramic in planar format,” Opt. Eng. 50(7), 071105 (2011).
[CrossRef]

Chawla, S.

A. F. Khan, D. Haranath, R. Yadav, S. Singh, S. Chawla, and V. Dutta, “Controlled surface distribution and luminescence of YVO4:Eu3+ nanophosphor layer,” Appl. Phys. Lett. 93(7), 073103 (2008).
[CrossRef]

Chen, T. M.

T. M. Chen, Y. H. Lee, L. Y. Luo, and N. S. Wang, “Luminescence and time-resolved fluorescence decay of Mn2+-activated Zn2GeO4 phosphors under ultraviolet excitation,” Chinese J. Lumin. 26, 183–188 (2005).

Chen, X.

Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, and Z. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

Chiasera, A.

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth-activated glass-ceramic in planar format,” Opt. Eng. 50(7), 071105 (2011).
[CrossRef]

Chikyow, T.

T. Nagata, P. Ahmet, Y. Sakuma, T. Sekiguchi, and T. Chikyow, “GaN nanostructure fabrication by focused-ion-beam-assisted chemical vapor deposition,” Appl. Phys. Lett. 87(1), 013103 (2005).
[CrossRef]

Chung, H. H.

P. Chung, H. H. Chung, and P. H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A 25(1), 61–66 (2007).
[CrossRef]

Chung, P.

P. Chung, H. H. Chung, and P. H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A 25(1), 61–66 (2007).
[CrossRef]

Clark, B. L.

J. P. Bender, J. F. Wager, J. Kissick, B. L. Clark, and D. A. Keszler, “Zn2GeO4:Mn alternating-current thin-film electroluminescent devices,” J. Lumin. 99(4), 311–324 (2002).
[CrossRef]

Da, N.

Detchprohm, T.

M. Zhu, S. You, T. Detchprohm, T. Paskova, E. A. Preble, and C. Wetzel, “Various misfit dislocations in green and yellow GaInN/GaN light emitting diodes,” Phys. Status Solidi 207(6), 1305–1308 (2010).
[CrossRef]

Dupuis, R. D.

A. Venkatachalam, B. Klein, J. H. Ryou, S. C. Shen, R. D. Dupuis, and P. D. Yoder, “Design strategies for InGaN-based green lasers,” IEEE J. Quantum Electron. 46(2), 238–245 (2010).
[CrossRef]

Dutta, V.

A. F. Khan, D. Haranath, R. Yadav, S. Singh, S. Chawla, and V. Dutta, “Controlled surface distribution and luminescence of YVO4:Eu3+ nanophosphor layer,” Appl. Phys. Lett. 93(7), 073103 (2008).
[CrossRef]

Ehrentraut, D.

D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, and H. Fukumura, “Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide film doped with tri- and tetravalent cations prepared by liquid phase epitaxy,” J. Mater. Chem. 16(33), 3369–3374 (2006).
[CrossRef]

Enomoto, A.

T. Maruyama, A. Enomoto, and K. Shirasawa, “Solar cell module colored with fluorescent plate,” Sol. Energy Mater. Sol. Cells 64(3), 269–278 (2000).
[CrossRef]

Fang, X.

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[CrossRef]

Feng, J. K.

J. K. Feng, M. O. Lai, and L. Lu, “Zn2GeO4 nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery,” Electrochem. Commun. 13(3), 287–289 (2011).
[CrossRef]

Ferrari, M.

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth-activated glass-ceramic in planar format,” Opt. Eng. 50(7), 071105 (2011).
[CrossRef]

Fujiwara, T.

Y. Takahashi, M. Ando, R. Ihara, and T. Fujiwara, “Formation of Zn defects in willemite-type Zn2GeO4 during supercooled liquid−crystal phase transition,” Appl. Phys. Lett. 98(22), 221907 (2011).
[CrossRef]

Y. Takahashi, M. Ando, K. Iwasaki, H. Masai, and T. Fujiwara, “Defect activation in willemite-type Zn2GeO4 by nanocrystallization,” Appl. Phys. Lett. 97(7), 071906 (2010).
[CrossRef]

K. Iwasaki, Y. Takahashi, H. Masai, and T. Fujiwara, “Blue photoluminescence, greenish-blue afterglow and their Ti-concentration dependence in rare-earth free bazirite-type BaZn1-xTixSi3O9,” Opt. Express 17(20), 18054–18062 (2009).
[CrossRef] [PubMed]

Fukuda, T.

D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, and H. Fukumura, “Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide film doped with tri- and tetravalent cations prepared by liquid phase epitaxy,” J. Mater. Chem. 16(33), 3369–3374 (2006).
[CrossRef]

Fukumura, H.

D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, and H. Fukumura, “Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide film doped with tri- and tetravalent cations prepared by liquid phase epitaxy,” J. Mater. Chem. 16(33), 3369–3374 (2006).
[CrossRef]

Gallagher, D.

R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, “Optical properties of manganese-doped nanocrystals of ZnS,” Phys. Rev. Lett. 72(3), 416–419 (1994).
[CrossRef] [PubMed]

Gao, G.

Gao, J.

Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, and Z. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

Goldner, P.

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001).
[CrossRef]

Haranath, D.

A. F. Khan, D. Haranath, R. Yadav, S. Singh, S. Chawla, and V. Dutta, “Controlled surface distribution and luminescence of YVO4:Eu3+ nanophosphor layer,” Appl. Phys. Lett. 93(7), 073103 (2008).
[CrossRef]

Hatanaka, K.

D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, and H. Fukumura, “Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide film doped with tri- and tetravalent cations prepared by liquid phase epitaxy,” J. Mater. Chem. 16(33), 3369–3374 (2006).
[CrossRef]

Heo, J.

C. Liu, Y. K. Kwon, and J. Heo, “Near-infrared photoluminescence of PbS QDs precipitated in the glass matrix,” J. Ceram. Soc. Jpn. 116(1358), 1071–1074 (2008).
[CrossRef]

Holloway, P. H.

P. Chung, H. H. Chung, and P. H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A 25(1), 61–66 (2007).
[CrossRef]

Honda, J.

S. Takeshita, J. Honda, T. Isobe, T. Sawayama, and S. Niikura, “Size-tunable solvothermal synthesis of Zn2GeO4:Mn2+ nanophosphor in water/diethylene glycol system,” Cryst. Growth Des. 10(10), 4494–4500 (2010).
[CrossRef]

Hong, X.

R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, “Optical properties of manganese-doped nanocrystals of ZnS,” Phys. Rev. Lett. 72(3), 416–419 (1994).
[CrossRef] [PubMed]

Hong, Z.

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[CrossRef]

Honma, T.

R. Nagai, T. Honma, and T. Komatsu, “Laser patterning of ZnO crystals on the surface of borosilicate glass,” J. Am. Ceram. Soc. 93(3), 658–661 (2010).
[CrossRef]

Ihara, R.

Y. Takahashi, M. Ando, R. Ihara, and T. Fujiwara, “Formation of Zn defects in willemite-type Zn2GeO4 during supercooled liquid−crystal phase transition,” Appl. Phys. Lett. 98(22), 221907 (2011).
[CrossRef]

Ikarashi, K.

J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, and Y. Inoue, “Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration,” J. Phys. Chem. B 108(14), 4369–4375 (2004).
[CrossRef]

Inoue, Y.

J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, and Y. Inoue, “Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration,” J. Phys. Chem. B 108(14), 4369–4375 (2004).
[CrossRef]

Isobe, T.

S. Takeshita, J. Honda, T. Isobe, T. Sawayama, and S. Niikura, “Size-tunable solvothermal synthesis of Zn2GeO4:Mn2+ nanophosphor in water/diethylene glycol system,” Cryst. Growth Des. 10(10), 4494–4500 (2010).
[CrossRef]

Iwasaki, K.

Kagamitani, Y.

D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, and H. Fukumura, “Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide film doped with tri- and tetravalent cations prepared by liquid phase epitaxy,” J. Mater. Chem. 16(33), 3369–3374 (2006).
[CrossRef]

Kawano, M.

M. Kawano, H. Takebe, and M. Kuwabara, “Compositional dependence of the luminescence properties of Mn2+-doped metaphosphate glasses,” Opt. Mater. 32(2), 277–280 (2009).
[CrossRef]

Keszler, D. A.

J. P. Bender, J. F. Wager, J. Kissick, B. L. Clark, and D. A. Keszler, “Zn2GeO4:Mn alternating-current thin-film electroluminescent devices,” J. Lumin. 99(4), 311–324 (2002).
[CrossRef]

Khan, A. F.

A. F. Khan, D. Haranath, R. Yadav, S. Singh, S. Chawla, and V. Dutta, “Controlled surface distribution and luminescence of YVO4:Eu3+ nanophosphor layer,” Appl. Phys. Lett. 93(7), 073103 (2008).
[CrossRef]

Kim, J. H.

K. H. Yoon and J. H. Kim, “Structure analysis and luminescent study of thin film zinc germanate doped with manganese,” Thin Solid Films 519(5), 1583–1586 (2010).
[CrossRef]

Kissick, J.

J. P. Bender, J. F. Wager, J. Kissick, B. L. Clark, and D. A. Keszler, “Zn2GeO4:Mn alternating-current thin-film electroluminescent devices,” J. Lumin. 99(4), 311–324 (2002).
[CrossRef]

Klein, B.

A. Venkatachalam, B. Klein, J. H. Ryou, S. C. Shen, R. D. Dupuis, and P. D. Yoder, “Design strategies for InGaN-based green lasers,” IEEE J. Quantum Electron. 46(2), 238–245 (2010).
[CrossRef]

Kobayashi, H.

J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, and Y. Inoue, “Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration,” J. Phys. Chem. B 108(14), 4369–4375 (2004).
[CrossRef]

Komatsu, T.

R. Nagai, T. Honma, and T. Komatsu, “Laser patterning of ZnO crystals on the surface of borosilicate glass,” J. Am. Ceram. Soc. 93(3), 658–661 (2010).
[CrossRef]

Kou, J.

Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, and Z. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

Krolikowski, S.

Kuwabara, M.

M. Kawano, H. Takebe, and M. Kuwabara, “Compositional dependence of the luminescence properties of Mn2+-doped metaphosphate glasses,” Opt. Mater. 32(2), 277–280 (2009).
[CrossRef]

Kwon, Y. K.

C. Liu, Y. K. Kwon, and J. Heo, “Near-infrared photoluminescence of PbS QDs precipitated in the glass matrix,” J. Ceram. Soc. Jpn. 116(1358), 1071–1074 (2008).
[CrossRef]

Lai, M. O.

J. K. Feng, M. O. Lai, and L. Lu, “Zn2GeO4 nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery,” Electrochem. Commun. 13(3), 287–289 (2011).
[CrossRef]

Lee, J. G.

R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, and H. Nakajima, “Formation of hollow ZnO through low temperature oxidation of Zn nanoparticles,” Mater. Lett. 61(4-5), 1060–1063 (2007).
[CrossRef]

Lee, Y. H.

T. M. Chen, Y. H. Lee, L. Y. Luo, and N. S. Wang, “Luminescence and time-resolved fluorescence decay of Mn2+-activated Zn2GeO4 phosphors under ultraviolet excitation,” Chinese J. Lumin. 26, 183–188 (2005).

Liu, C.

C. Liu, Y. K. Kwon, and J. Heo, “Near-infrared photoluminescence of PbS QDs precipitated in the glass matrix,” J. Ceram. Soc. Jpn. 116(1358), 1071–1074 (2008).
[CrossRef]

Liu, Q.

Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, and Z. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

Lu, L.

J. K. Feng, M. O. Lai, and L. Lu, “Zn2GeO4 nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery,” Electrochem. Commun. 13(3), 287–289 (2011).
[CrossRef]

Luo, L. Y.

T. M. Chen, Y. H. Lee, L. Y. Luo, and N. S. Wang, “Luminescence and time-resolved fluorescence decay of Mn2+-activated Zn2GeO4 phosphors under ultraviolet excitation,” Chinese J. Lumin. 26, 183–188 (2005).

Maruyama, T.

T. Maruyama, A. Enomoto, and K. Shirasawa, “Solar cell module colored with fluorescent plate,” Sol. Energy Mater. Sol. Cells 64(3), 269–278 (2000).
[CrossRef]

Masai, H.

Meszaros, R.

Mori, H.

R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, and H. Nakajima, “Formation of hollow ZnO through low temperature oxidation of Zn nanoparticles,” Mater. Lett. 61(4-5), 1060–1063 (2007).
[CrossRef]

Nagai, R.

R. Nagai, T. Honma, and T. Komatsu, “Laser patterning of ZnO crystals on the surface of borosilicate glass,” J. Am. Ceram. Soc. 93(3), 658–661 (2010).
[CrossRef]

Nagata, T.

T. Nagata, P. Ahmet, Y. Sakuma, T. Sekiguchi, and T. Chikyow, “GaN nanostructure fabrication by focused-ion-beam-assisted chemical vapor deposition,” Appl. Phys. Lett. 87(1), 013103 (2005).
[CrossRef]

Nakajima, H.

R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, and H. Nakajima, “Formation of hollow ZnO through low temperature oxidation of Zn nanoparticles,” Mater. Lett. 61(4-5), 1060–1063 (2007).
[CrossRef]

Nakamura, R.

R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, and H. Nakajima, “Formation of hollow ZnO through low temperature oxidation of Zn nanoparticles,” Mater. Lett. 61(4-5), 1060–1063 (2007).
[CrossRef]

Niikura, S.

S. Takeshita, J. Honda, T. Isobe, T. Sawayama, and S. Niikura, “Size-tunable solvothermal synthesis of Zn2GeO4:Mn2+ nanophosphor in water/diethylene glycol system,” Cryst. Growth Des. 10(10), 4494–4500 (2010).
[CrossRef]

Nikl, M.

D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, and H. Fukumura, “Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide film doped with tri- and tetravalent cations prepared by liquid phase epitaxy,” J. Mater. Chem. 16(33), 3369–3374 (2006).
[CrossRef]

Nishiyama, H.

J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, and Y. Inoue, “Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration,” J. Phys. Chem. B 108(14), 4369–4375 (2004).
[CrossRef]

Nurmikko, A.

R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, “Optical properties of manganese-doped nanocrystals of ZnS,” Phys. Rev. Lett. 72(3), 416–419 (1994).
[CrossRef] [PubMed]

Odaka, H.

D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, and H. Fukumura, “Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide film doped with tri- and tetravalent cations prepared by liquid phase epitaxy,” J. Mater. Chem. 16(33), 3369–3374 (2006).
[CrossRef]

Paskova, T.

M. Zhu, S. You, T. Detchprohm, T. Paskova, E. A. Preble, and C. Wetzel, “Various misfit dislocations in green and yellow GaInN/GaN light emitting diodes,” Phys. Status Solidi 207(6), 1305–1308 (2010).
[CrossRef]

Pejchal, J.

D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, and H. Fukumura, “Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide film doped with tri- and tetravalent cations prepared by liquid phase epitaxy,” J. Mater. Chem. 16(33), 3369–3374 (2006).
[CrossRef]

Pelli, S.

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth-activated glass-ceramic in planar format,” Opt. Eng. 50(7), 071105 (2011).
[CrossRef]

Peng, M.

Polak, K.

D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, and H. Fukumura, “Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide film doped with tri- and tetravalent cations prepared by liquid phase epitaxy,” J. Mater. Chem. 16(33), 3369–3374 (2006).
[CrossRef]

Preble, E. A.

M. Zhu, S. You, T. Detchprohm, T. Paskova, E. A. Preble, and C. Wetzel, “Various misfit dislocations in green and yellow GaInN/GaN light emitting diodes,” Phys. Status Solidi 207(6), 1305–1308 (2010).
[CrossRef]

Qian, G.

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[CrossRef]

Ryou, J. H.

A. Venkatachalam, B. Klein, J. H. Ryou, S. C. Shen, R. D. Dupuis, and P. D. Yoder, “Design strategies for InGaN-based green lasers,” IEEE J. Quantum Electron. 46(2), 238–245 (2010).
[CrossRef]

Saito, N.

J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, and Y. Inoue, “Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration,” J. Phys. Chem. B 108(14), 4369–4375 (2004).
[CrossRef]

Sakuma, Y.

T. Nagata, P. Ahmet, Y. Sakuma, T. Sekiguchi, and T. Chikyow, “GaN nanostructure fabrication by focused-ion-beam-assisted chemical vapor deposition,” Appl. Phys. Lett. 87(1), 013103 (2005).
[CrossRef]

Sato, H.

D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, and H. Fukumura, “Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide film doped with tri- and tetravalent cations prepared by liquid phase epitaxy,” J. Mater. Chem. 16(33), 3369–3374 (2006).
[CrossRef]

Sato, J.

J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, and Y. Inoue, “Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration,” J. Phys. Chem. B 108(14), 4369–4375 (2004).
[CrossRef]

Sawayama, T.

S. Takeshita, J. Honda, T. Isobe, T. Sawayama, and S. Niikura, “Size-tunable solvothermal synthesis of Zn2GeO4:Mn2+ nanophosphor in water/diethylene glycol system,” Cryst. Growth Des. 10(10), 4494–4500 (2010).
[CrossRef]

Sekiguchi, T.

T. Nagata, P. Ahmet, Y. Sakuma, T. Sekiguchi, and T. Chikyow, “GaN nanostructure fabrication by focused-ion-beam-assisted chemical vapor deposition,” Appl. Phys. Lett. 87(1), 013103 (2005).
[CrossRef]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[CrossRef]

Shen, S. C.

A. Venkatachalam, B. Klein, J. H. Ryou, S. C. Shen, R. D. Dupuis, and P. D. Yoder, “Design strategies for InGaN-based green lasers,” IEEE J. Quantum Electron. 46(2), 238–245 (2010).
[CrossRef]

Shirasawa, K.

T. Maruyama, A. Enomoto, and K. Shirasawa, “Solar cell module colored with fluorescent plate,” Sol. Energy Mater. Sol. Cells 64(3), 269–278 (2000).
[CrossRef]

Singh, S.

A. F. Khan, D. Haranath, R. Yadav, S. Singh, S. Chawla, and V. Dutta, “Controlled surface distribution and luminescence of YVO4:Eu3+ nanophosphor layer,” Appl. Phys. Lett. 93(7), 073103 (2008).
[CrossRef]

Sugano, S.

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions II,” J. Phys. Soc. Jpn. 9(5), 766–779 (1954).
[CrossRef]

Takahashi, Y.

Y. Takahashi, M. Ando, R. Ihara, and T. Fujiwara, “Formation of Zn defects in willemite-type Zn2GeO4 during supercooled liquid−crystal phase transition,” Appl. Phys. Lett. 98(22), 221907 (2011).
[CrossRef]

Y. Takahashi, M. Ando, K. Iwasaki, H. Masai, and T. Fujiwara, “Defect activation in willemite-type Zn2GeO4 by nanocrystallization,” Appl. Phys. Lett. 97(7), 071906 (2010).
[CrossRef]

K. Iwasaki, Y. Takahashi, H. Masai, and T. Fujiwara, “Blue photoluminescence, greenish-blue afterglow and their Ti-concentration dependence in rare-earth free bazirite-type BaZn1-xTixSi3O9,” Opt. Express 17(20), 18054–18062 (2009).
[CrossRef] [PubMed]

Takebe, H.

M. Kawano, H. Takebe, and M. Kuwabara, “Compositional dependence of the luminescence properties of Mn2+-doped metaphosphate glasses,” Opt. Mater. 32(2), 277–280 (2009).
[CrossRef]

Takeshita, S.

S. Takeshita, J. Honda, T. Isobe, T. Sawayama, and S. Niikura, “Size-tunable solvothermal synthesis of Zn2GeO4:Mn2+ nanophosphor in water/diethylene glycol system,” Cryst. Growth Des. 10(10), 4494–4500 (2010).
[CrossRef]

Tanabe, Y.

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions II,” J. Phys. Soc. Jpn. 9(5), 766–779 (1954).
[CrossRef]

Tian, Z.

Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, and Z. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

Tokozakura, D.

R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, and H. Nakajima, “Formation of hollow ZnO through low temperature oxidation of Zn nanoparticles,” Mater. Lett. 61(4-5), 1060–1063 (2007).
[CrossRef]

Venkatachalam, A.

A. Venkatachalam, B. Klein, J. H. Ryou, S. C. Shen, R. D. Dupuis, and P. D. Yoder, “Design strategies for InGaN-based green lasers,” IEEE J. Quantum Electron. 46(2), 238–245 (2010).
[CrossRef]

Wager, J. F.

J. P. Bender, J. F. Wager, J. Kissick, B. L. Clark, and D. A. Keszler, “Zn2GeO4:Mn alternating-current thin-film electroluminescent devices,” J. Lumin. 99(4), 311–324 (2002).
[CrossRef]

Wang, M.

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[CrossRef]

Wang, N. S.

T. M. Chen, Y. H. Lee, L. Y. Luo, and N. S. Wang, “Luminescence and time-resolved fluorescence decay of Mn2+-activated Zn2GeO4 phosphors under ultraviolet excitation,” Chinese J. Lumin. 26, 183–188 (2005).

Wang, Z.

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[CrossRef]

Wetzel, C.

M. Zhu, S. You, T. Detchprohm, T. Paskova, E. A. Preble, and C. Wetzel, “Various misfit dislocations in green and yellow GaInN/GaN light emitting diodes,” Phys. Status Solidi 207(6), 1305–1308 (2010).
[CrossRef]

Wondraczek, L.

Yadav, R.

A. F. Khan, D. Haranath, R. Yadav, S. Singh, S. Chawla, and V. Dutta, “Controlled surface distribution and luminescence of YVO4:Eu3+ nanophosphor layer,” Appl. Phys. Lett. 93(7), 073103 (2008).
[CrossRef]

Yan, S.

Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, and Z. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

Yoder, P. D.

A. Venkatachalam, B. Klein, J. H. Ryou, S. C. Shen, R. D. Dupuis, and P. D. Yoder, “Design strategies for InGaN-based green lasers,” IEEE J. Quantum Electron. 46(2), 238–245 (2010).
[CrossRef]

Yoon, K. H.

K. H. Yoon and J. H. Kim, “Structure analysis and luminescent study of thin film zinc germanate doped with manganese,” Thin Solid Films 519(5), 1583–1586 (2010).
[CrossRef]

Yoshikawa, A.

D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, and H. Fukumura, “Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide film doped with tri- and tetravalent cations prepared by liquid phase epitaxy,” J. Mater. Chem. 16(33), 3369–3374 (2006).
[CrossRef]

You, S.

M. Zhu, S. You, T. Detchprohm, T. Paskova, E. A. Preble, and C. Wetzel, “Various misfit dislocations in green and yellow GaInN/GaN light emitting diodes,” Phys. Status Solidi 207(6), 1305–1308 (2010).
[CrossRef]

Zhang, P.

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[CrossRef]

Zhou, Y.

Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, and Z. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

Zhu, M.

M. Zhu, S. You, T. Detchprohm, T. Paskova, E. A. Preble, and C. Wetzel, “Various misfit dislocations in green and yellow GaInN/GaN light emitting diodes,” Phys. Status Solidi 207(6), 1305–1308 (2010).
[CrossRef]

Zou, Z.

Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, and Z. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[CrossRef]

Appl. Phys. Lett. (4)

Y. Takahashi, M. Ando, R. Ihara, and T. Fujiwara, “Formation of Zn defects in willemite-type Zn2GeO4 during supercooled liquid−crystal phase transition,” Appl. Phys. Lett. 98(22), 221907 (2011).
[CrossRef]

A. F. Khan, D. Haranath, R. Yadav, S. Singh, S. Chawla, and V. Dutta, “Controlled surface distribution and luminescence of YVO4:Eu3+ nanophosphor layer,” Appl. Phys. Lett. 93(7), 073103 (2008).
[CrossRef]

T. Nagata, P. Ahmet, Y. Sakuma, T. Sekiguchi, and T. Chikyow, “GaN nanostructure fabrication by focused-ion-beam-assisted chemical vapor deposition,” Appl. Phys. Lett. 87(1), 013103 (2005).
[CrossRef]

Y. Takahashi, M. Ando, K. Iwasaki, H. Masai, and T. Fujiwara, “Defect activation in willemite-type Zn2GeO4 by nanocrystallization,” Appl. Phys. Lett. 97(7), 071906 (2010).
[CrossRef]

Chinese J. Lumin. (1)

T. M. Chen, Y. H. Lee, L. Y. Luo, and N. S. Wang, “Luminescence and time-resolved fluorescence decay of Mn2+-activated Zn2GeO4 phosphors under ultraviolet excitation,” Chinese J. Lumin. 26, 183–188 (2005).

Cryst. Growth Des. (1)

S. Takeshita, J. Honda, T. Isobe, T. Sawayama, and S. Niikura, “Size-tunable solvothermal synthesis of Zn2GeO4:Mn2+ nanophosphor in water/diethylene glycol system,” Cryst. Growth Des. 10(10), 4494–4500 (2010).
[CrossRef]

Electrochem. Commun. (1)

J. K. Feng, M. O. Lai, and L. Lu, “Zn2GeO4 nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery,” Electrochem. Commun. 13(3), 287–289 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Venkatachalam, B. Klein, J. H. Ryou, S. C. Shen, R. D. Dupuis, and P. D. Yoder, “Design strategies for InGaN-based green lasers,” IEEE J. Quantum Electron. 46(2), 238–245 (2010).
[CrossRef]

J. Am. Ceram. Soc. (1)

R. Nagai, T. Honma, and T. Komatsu, “Laser patterning of ZnO crystals on the surface of borosilicate glass,” J. Am. Ceram. Soc. 93(3), 658–661 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, and Z. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010).
[CrossRef] [PubMed]

J. Ceram. Soc. Jpn. (1)

C. Liu, Y. K. Kwon, and J. Heo, “Near-infrared photoluminescence of PbS QDs precipitated in the glass matrix,” J. Ceram. Soc. Jpn. 116(1358), 1071–1074 (2008).
[CrossRef]

J. Lumin. (2)

J. P. Bender, J. F. Wager, J. Kissick, B. L. Clark, and D. A. Keszler, “Zn2GeO4:Mn alternating-current thin-film electroluminescent devices,” J. Lumin. 99(4), 311–324 (2002).
[CrossRef]

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[CrossRef]

J. Mater. Chem. (1)

D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, and H. Fukumura, “Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide film doped with tri- and tetravalent cations prepared by liquid phase epitaxy,” J. Mater. Chem. 16(33), 3369–3374 (2006).
[CrossRef]

J. Phys. Chem. B (1)

J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, and Y. Inoue, “Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration,” J. Phys. Chem. B 108(14), 4369–4375 (2004).
[CrossRef]

J. Phys. Soc. Jpn. (1)

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions II,” J. Phys. Soc. Jpn. 9(5), 766–779 (1954).
[CrossRef]

J. Vac. Sci. Technol. A (1)

P. Chung, H. H. Chung, and P. H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A 25(1), 61–66 (2007).
[CrossRef]

Mater. Lett. (1)

R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, and H. Nakajima, “Formation of hollow ZnO through low temperature oxidation of Zn nanoparticles,” Mater. Lett. 61(4-5), 1060–1063 (2007).
[CrossRef]

Opt. Eng. (1)

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth-activated glass-ceramic in planar format,” Opt. Eng. 50(7), 071105 (2011).
[CrossRef]

Opt. Express (3)

Opt. Mater. (2)

M. Kawano, H. Takebe, and M. Kuwabara, “Compositional dependence of the luminescence properties of Mn2+-doped metaphosphate glasses,” Opt. Mater. 32(2), 277–280 (2009).
[CrossRef]

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, “Optical properties of manganese-doped nanocrystals of ZnS,” Phys. Rev. Lett. 72(3), 416–419 (1994).
[CrossRef] [PubMed]

Phys. Status Solidi (1)

M. Zhu, S. You, T. Detchprohm, T. Paskova, E. A. Preble, and C. Wetzel, “Various misfit dislocations in green and yellow GaInN/GaN light emitting diodes,” Phys. Status Solidi 207(6), 1305–1308 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

T. Maruyama, A. Enomoto, and K. Shirasawa, “Solar cell module colored with fluorescent plate,” Sol. Energy Mater. Sol. Cells 64(3), 269–278 (2000).
[CrossRef]

Thin Solid Films (1)

K. H. Yoon and J. H. Kim, “Structure analysis and luminescent study of thin film zinc germanate doped with manganese,” Thin Solid Films 519(5), 1583–1586 (2010).
[CrossRef]

Other (1)

M. Ando, Y. Takahashi, K. Iwasaki, H. Masai, R. Ihara, and T. Fujiwara, “Fabrication and photoluminescent property of transparent nanocrystallized-glass in Li2O-ZnO-GeO2 system,” IOP Conf. Ser.: Mater. Sci. Eng. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Precursor (glass) samples and the samples subjected to heat-treatment at T p for 1 h (NCG). (b) TEM image of the heat-treated sample with x = 0.3 and a typical selected area electron diffraction (ED) pattern. Blue and red circles correspond to ED rings of the Li2Ge4O9 and Zn2GeO4 phases. White bar corresponds to 200 nm. (c) Reflectance spectra of the precursors with x = 0 and 1.0, and the difference spectrum, ΔR.

Fig. 2
Fig. 2

Contour plots of PL in (a) non-activated (x = 0) and (b) Mn2+-activated NCGs (x = 0.3). The PL spectra, which were measured under excitation at the peak energy of PL excitation spectra (~4.27 eV and ~3.81 eV for the non-activated and activated NCGs, respectively), are also indicated as white curves. Red bands across the plots correspond to secondary wave of excitation.

Fig. 3
Fig. 3

(a) Photographs of precursor and NCG samples under UV-irradiation, and of the NCGs after the UV-exposure was stopped (10 s later). (b) QY of the precursor and NCG samples. The QYs were measured under excitation at the peak energies of PL excitation spectra, which were situated within ~3.76-4.00 eV. As representative, chromaticity coordinates of the orange and green emission in the sample with x = 0.3 are (0.545, 0.386) and (0.351, 0.609), respectively.

Fig. 4
Fig. 4

LLP properties in the Mn2+-activated NCG: (a) LLP emission (closed circles) and excitation (open circles) spectra in the NCG with x = 0.05. LLP excitation spectrum of the non-activated NCG (triangles) is also included (cited from [13]). Emission and excitation photon energies for the LLP observations were ~2.31 eV and ~4.13 eV, respectively. These spectra correspond to the LLP after 10 s. (b) Decay curves of LLP in the NCGs with x = 0, 0.05, 0.3, and 1.0. Monitored photon energy was ~2.31 eV. Solid lines correspond to the fitting curves by the equation (see text). Afterglow lifetimes (time at which the initial LLP intensity becomes 1/10) were ~0.3 s, ~0.08 s, ~10−2 s, and ~10−2 s for the x = 0, 0.05, 0.3, and 1.0, respectively.

Metrics