Abstract

We propose a novel electric field poling technique for the fabrication of nonlinear photonic crystals in congruent LiNbO3 substrates, based on a hybrid bi-dimensional mask, which combines periodic proton-exchange and electrode patterns. With it we demonstrate rectangular bulk lattices with a periodicity of 8 µm x 6.78 µm in 500 µm-thick substrates.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Scott, Ferroelectric Memories (Springer, 2000).
  2. P. Ferraro, S. Grilli, and P. De Natale, eds., Ferroelectric Crystals for Photonic Applications, Vol. 91 of Springer Material Science Series (Springer, 2008), pp. 229–250.
  3. K. Tanaka and Y. Cho, “Actual information storage with a recording density of 4 Tbit/in2 in a ferroelectric recording medium,” Appl. Phys. Lett. 97(9), 092901 (2010).
    [CrossRef] [PubMed]
  4. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
    [CrossRef]
  5. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
    [CrossRef]
  6. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
    [CrossRef]
  7. H. Ishizuki and T. Taira, “High energy quasi-phase matched optical parametric oscillation using Mg-doped congruent LiTaO3 crystals,” Opt. Express 18(1), 253–258 (2010).
    [CrossRef]
  8. H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
    [CrossRef]
  9. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
    [CrossRef] [PubMed]
  10. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
    [CrossRef]
  11. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95(13), 133901 (2005).
    [CrossRef] [PubMed]
  12. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
    [CrossRef] [PubMed]
  13. K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett. 100(5), 053901 (2008).
    [CrossRef] [PubMed]
  14. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
    [CrossRef]
  15. K. Gallo, C. Codemard, C. B. Gawith, J. Nilsson, P. G. R. Smith, N. G. R. Broderick, and D. J. Richardson, “Guided-wave second-harmonic generation in a LiNbO3 nonlinear photonic crystal,” Opt. Lett. 31(9), 1232–1234 (2006).
    [CrossRef] [PubMed]
  16. A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010).
    [CrossRef]
  17. G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
    [CrossRef]
  18. R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Ermann, “CW quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch poled lithium niobate,” Appl. Phys. Lett. 24, 1293–1295 (1999).
  19. M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” Appl. Phys. Lett. 98(12), 122910 (2011).
    [CrossRef]
  20. L.-H. Peng, Y.-C. Zhang, and Y.-C. Lin, “Zinc oxide doping effects in polarization switching of lithium niobate,” Appl. Phys. Lett. 78(1), 4–6 (2001).
    [CrossRef]
  21. L.-H. Peng, C.-C. Hsu, and Y.-C. Shih, “Second harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83(17), 3447–3449 (2003).
    [CrossRef]
  22. D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton exchange slab optical waveguides in z cut LiNbO3,” J. Appl. Phys. 54(11), 6218–6220 (1983).
    [CrossRef]
  23. F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique,” J. Lightwave Technol. 10(11), 1606–1609 (1992).
    [CrossRef]
  24. C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86(2), 022906 (2005).
    [CrossRef]
  25. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coeffcients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
    [CrossRef]
  26. W. H. Li, R. Tavlykaev, R. V. Ramaswamy, and S. Samson, “On the fabrication of annealed proton exchanged waveguides with electric field poled domain reversals in Z‐cut LiNbO3,” Appl. Phys. Lett. 68(11), 1470–1472 (1996).
    [CrossRef]

2011 (1)

M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” Appl. Phys. Lett. 98(12), 122910 (2011).
[CrossRef]

2010 (3)

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010).
[CrossRef]

K. Tanaka and Y. Cho, “Actual information storage with a recording density of 4 Tbit/in2 in a ferroelectric recording medium,” Appl. Phys. Lett. 97(9), 092901 (2010).
[CrossRef] [PubMed]

H. Ishizuki and T. Taira, “High energy quasi-phase matched optical parametric oscillation using Mg-doped congruent LiTaO3 crystals,” Opt. Express 18(1), 253–258 (2010).
[CrossRef]

2009 (1)

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

2008 (1)

K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett. 100(5), 053901 (2008).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95(13), 133901 (2005).
[CrossRef] [PubMed]

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86(2), 022906 (2005).
[CrossRef]

2004 (1)

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

2003 (1)

L.-H. Peng, C.-C. Hsu, and Y.-C. Shih, “Second harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83(17), 3447–3449 (2003).
[CrossRef]

2001 (1)

L.-H. Peng, Y.-C. Zhang, and Y.-C. Lin, “Zinc oxide doping effects in polarization switching of lithium niobate,” Appl. Phys. Lett. 78(1), 4–6 (2001).
[CrossRef]

2000 (1)

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

1999 (1)

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Ermann, “CW quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch poled lithium niobate,” Appl. Phys. Lett. 24, 1293–1295 (1999).

1998 (2)

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[CrossRef]

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[CrossRef]

1997 (2)

1996 (1)

W. H. Li, R. Tavlykaev, R. V. Ramaswamy, and S. Samson, “On the fabrication of annealed proton exchanged waveguides with electric field poled domain reversals in Z‐cut LiNbO3,” Appl. Phys. Lett. 68(11), 1470–1472 (1996).
[CrossRef]

1995 (1)

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

1992 (1)

F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique,” J. Lightwave Technol. 10(11), 1606–1609 (1992).
[CrossRef]

1983 (1)

D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton exchange slab optical waveguides in z cut LiNbO3,” J. Appl. Phys. 54(11), 6218–6220 (1983).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Arie, A.

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010).
[CrossRef]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95(13), 133901 (2005).
[CrossRef] [PubMed]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Arvidsson, G.

F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique,” J. Lightwave Technol. 10(11), 1606–1609 (1992).
[CrossRef]

Assanto, G.

K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett. 100(5), 053901 (2008).
[CrossRef] [PubMed]

Bahabad, A.

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95(13), 133901 (2005).
[CrossRef] [PubMed]

Batchko, R. G.

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Ermann, “CW quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch poled lithium niobate,” Appl. Phys. Lett. 24, 1293–1295 (1999).

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Bosenberg, W. R.

Broderick, N. G. R.

K. Gallo, C. Codemard, C. B. Gawith, J. Nilsson, P. G. R. Smith, N. G. R. Broderick, and D. J. Richardson, “Guided-wave second-harmonic generation in a LiNbO3 nonlinear photonic crystal,” Opt. Lett. 31(9), 1232–1234 (2006).
[CrossRef] [PubMed]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Byer, R. L.

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Ermann, “CW quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch poled lithium niobate,” Appl. Phys. Lett. 24, 1293–1295 (1999).

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
[CrossRef]

Cho, Y.

K. Tanaka and Y. Cho, “Actual information storage with a recording density of 4 Tbit/in2 in a ferroelectric recording medium,” Appl. Phys. Lett. 97(9), 092901 (2010).
[CrossRef] [PubMed]

Clark, D. F.

D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton exchange slab optical waveguides in z cut LiNbO3,” J. Appl. Phys. 54(11), 6218–6220 (1983).
[CrossRef]

Clark, I.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86(2), 022906 (2005).
[CrossRef]

Codemard, C.

De La Rue, R. M.

D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton exchange slab optical waveguides in z cut LiNbO3,” J. Appl. Phys. 54(11), 6218–6220 (1983).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Eason, R. W.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86(2), 022906 (2005).
[CrossRef]

Eckardt, R. C.

Eger, D.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[CrossRef]

Ellenbogen, T.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

Ermann, L.

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Ermann, “CW quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch poled lithium niobate,” Appl. Phys. Lett. 24, 1293–1295 (1999).

Fejer, M. M.

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Ermann, “CW quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch poled lithium niobate,” Appl. Phys. Lett. 24, 1293–1295 (1999).

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
[CrossRef]

Gallo, K.

M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” Appl. Phys. Lett. 98(12), 122910 (2011).
[CrossRef]

K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett. 100(5), 053901 (2008).
[CrossRef] [PubMed]

K. Gallo, C. Codemard, C. B. Gawith, J. Nilsson, P. G. R. Smith, N. G. R. Broderick, and D. J. Richardson, “Guided-wave second-harmonic generation in a LiNbO3 nonlinear photonic crystal,” Opt. Lett. 31(9), 1232–1234 (2006).
[CrossRef] [PubMed]

Ganany-Padowicz, A.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

Garb, Kh.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[CrossRef]

Gawith, C. B.

Gopalan, V.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86(2), 022906 (2005).
[CrossRef]

Hanna, D. C.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

He, J. L.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Holmberg, J.

F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique,” J. Lightwave Technol. 10(11), 1606–1609 (1992).
[CrossRef]

Hsu, C.-C.

L.-H. Peng, C.-C. Hsu, and Y.-C. Shih, “Second harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83(17), 3447–3449 (2003).
[CrossRef]

Ishizuki, H.

Ji, S. H.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Jundt, D.

Jungk, T.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86(2), 022906 (2005).
[CrossRef]

Karlsson, H.

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
[CrossRef]

Katz, M.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[CrossRef]

Laurell, F.

M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” Appl. Phys. Lett. 98(12), 122910 (2011).
[CrossRef]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
[CrossRef]

F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique,” J. Lightwave Technol. 10(11), 1606–1609 (1992).
[CrossRef]

Laybourn, P. J. R.

D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton exchange slab optical waveguides in z cut LiNbO3,” J. Appl. Phys. 54(11), 6218–6220 (1983).
[CrossRef]

Li, W. H.

W. H. Li, R. Tavlykaev, R. V. Ramaswamy, and S. Samson, “On the fabrication of annealed proton exchanged waveguides with electric field poled domain reversals in Z‐cut LiNbO3,” Appl. Phys. Lett. 68(11), 1470–1472 (1996).
[CrossRef]

Lifshitz, R.

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95(13), 133901 (2005).
[CrossRef] [PubMed]

Lin, Y.-C.

L.-H. Peng, Y.-C. Zhang, and Y.-C. Lin, “Zinc oxide doping effects in polarization switching of lithium niobate,” Appl. Phys. Lett. 78(1), 4–6 (2001).
[CrossRef]

Mailis, S.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86(2), 022906 (2005).
[CrossRef]

Manzo, M.

M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” Appl. Phys. Lett. 98(12), 122910 (2011).
[CrossRef]

Ming, N. B.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Myers, L. E.

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Nilsson, J.

Nutt, A. C. G.

D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton exchange slab optical waveguides in z cut LiNbO3,” J. Appl. Phys. 54(11), 6218–6220 (1983).
[CrossRef]

Offerhaus, H. L.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Oron, M.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[CrossRef]

Pasiskevicius, V.

M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” Appl. Phys. Lett. 98(12), 122910 (2011).
[CrossRef]

Pasquazi, A.

K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett. 100(5), 053901 (2008).
[CrossRef] [PubMed]

Peng, L.-H.

L.-H. Peng, C.-C. Hsu, and Y.-C. Shih, “Second harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83(17), 3447–3449 (2003).
[CrossRef]

L.-H. Peng, Y.-C. Zhang, and Y.-C. Lin, “Zinc oxide doping effects in polarization switching of lithium niobate,” Appl. Phys. Lett. 78(1), 4–6 (2001).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Pierce, J. W.

Ramaswamy, R. V.

W. H. Li, R. Tavlykaev, R. V. Ramaswamy, and S. Samson, “On the fabrication of annealed proton exchanged waveguides with electric field poled domain reversals in Z‐cut LiNbO3,” Appl. Phys. Lett. 68(11), 1470–1472 (1996).
[CrossRef]

Richardson, D. J.

K. Gallo, C. Codemard, C. B. Gawith, J. Nilsson, P. G. R. Smith, N. G. R. Broderick, and D. J. Richardson, “Guided-wave second-harmonic generation in a LiNbO3 nonlinear photonic crystal,” Opt. Lett. 31(9), 1232–1234 (2006).
[CrossRef] [PubMed]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Rosenman, G.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[CrossRef]

Ross, G. W.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Samson, S.

W. H. Li, R. Tavlykaev, R. V. Ramaswamy, and S. Samson, “On the fabrication of annealed proton exchanged waveguides with electric field poled domain reversals in Z‐cut LiNbO3,” Appl. Phys. Lett. 68(11), 1470–1472 (1996).
[CrossRef]

Scott, J. G.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86(2), 022906 (2005).
[CrossRef]

Scrymgeour, D. A.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86(2), 022906 (2005).
[CrossRef]

Shih, Y.-C.

L.-H. Peng, C.-C. Hsu, and Y.-C. Shih, “Second harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83(17), 3447–3449 (2003).
[CrossRef]

Shur, V. Y.

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Ermann, “CW quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch poled lithium niobate,” Appl. Phys. Lett. 24, 1293–1295 (1999).

Skliar, A.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[CrossRef]

Small, D. L.

Smith, P. G. R.

Soergel, E.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86(2), 022906 (2005).
[CrossRef]

Sones, C. L.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86(2), 022906 (2005).
[CrossRef]

Stivala, S.

K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett. 100(5), 053901 (2008).
[CrossRef] [PubMed]

Sun, J.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Taira, T.

Tanaka, K.

K. Tanaka and Y. Cho, “Actual information storage with a recording density of 4 Tbit/in2 in a ferroelectric recording medium,” Appl. Phys. Lett. 97(9), 092901 (2010).
[CrossRef] [PubMed]

Tavlykaev, R.

W. H. Li, R. Tavlykaev, R. V. Ramaswamy, and S. Samson, “On the fabrication of annealed proton exchanged waveguides with electric field poled domain reversals in Z‐cut LiNbO3,” Appl. Phys. Lett. 68(11), 1470–1472 (1996).
[CrossRef]

Valdivia, C. E.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86(2), 022906 (2005).
[CrossRef]

Voloch, N.

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010).
[CrossRef]

Voloch-Bloch, N.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

Wallenstein, R.

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Ermann, “CW quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch poled lithium niobate,” Appl. Phys. Lett. 24, 1293–1295 (1999).

Wang, H. T.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Webjorn, J.

F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique,” J. Lightwave Technol. 10(11), 1606–1609 (1992).
[CrossRef]

Woll, D.

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Ermann, “CW quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch poled lithium niobate,” Appl. Phys. Lett. 24, 1293–1295 (1999).

Wong, K. K.

D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton exchange slab optical waveguides in z cut LiNbO3,” J. Appl. Phys. 54(11), 6218–6220 (1983).
[CrossRef]

Xu, P.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Yu, X. Q.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Zelmon, D. E.

Zhang, Y.-C.

L.-H. Peng, Y.-C. Zhang, and Y.-C. Lin, “Zinc oxide doping effects in polarization switching of lithium niobate,” Appl. Phys. Lett. 78(1), 4–6 (2001).
[CrossRef]

Zhu, S. N.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Zhu, Y. Y.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (10)

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
[CrossRef]

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[CrossRef]

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Ermann, “CW quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch poled lithium niobate,” Appl. Phys. Lett. 24, 1293–1295 (1999).

M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” Appl. Phys. Lett. 98(12), 122910 (2011).
[CrossRef]

L.-H. Peng, Y.-C. Zhang, and Y.-C. Lin, “Zinc oxide doping effects in polarization switching of lithium niobate,” Appl. Phys. Lett. 78(1), 4–6 (2001).
[CrossRef]

L.-H. Peng, C.-C. Hsu, and Y.-C. Shih, “Second harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83(17), 3447–3449 (2003).
[CrossRef]

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86(2), 022906 (2005).
[CrossRef]

W. H. Li, R. Tavlykaev, R. V. Ramaswamy, and S. Samson, “On the fabrication of annealed proton exchanged waveguides with electric field poled domain reversals in Z‐cut LiNbO3,” Appl. Phys. Lett. 68(11), 1470–1472 (1996).
[CrossRef]

K. Tanaka and Y. Cho, “Actual information storage with a recording density of 4 Tbit/in2 in a ferroelectric recording medium,” Appl. Phys. Lett. 97(9), 092901 (2010).
[CrossRef] [PubMed]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

J. Appl. Phys. (1)

D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton exchange slab optical waveguides in z cut LiNbO3,” J. Appl. Phys. 54(11), 6218–6220 (1983).
[CrossRef]

J. Lightwave Technol. (1)

F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique,” J. Lightwave Technol. 10(11), 1606–1609 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010).
[CrossRef]

Nat. Photonics (1)

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Phys. Rev. Lett. (5)

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[CrossRef]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95(13), 133901 (2005).
[CrossRef] [PubMed]

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett. 100(5), 053901 (2008).
[CrossRef] [PubMed]

Other (2)

J. F. Scott, Ferroelectric Memories (Springer, 2000).

P. Ferraro, S. Grilli, and P. De Natale, eds., Ferroelectric Crystals for Photonic Applications, Vol. 91 of Springer Material Science Series (Springer, 2008), pp. 229–250.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics