Abstract

This paper discusses the spectroscopic fundametals, the scaling properties and experimental results of quasi-three-level resonantly diode-pumped Er3+:YAG solid-state heat-capacity laser (SSHCL) technology. With an output power of 4650 W and output energies in excess of 440 J this laser is currently the most powerful ”eye-safe” SSHCL. Due to a moderate crystal temperature rise of only 56.7 K/s at 11.3 kW of pump power and a temperature-related power drop of 8.8 W/K the laser shows strong potential for further upscaling.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 91, 269–316 (2008).
    [CrossRef]
  2. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31, 754–756 (2006).
    [CrossRef] [PubMed]
  3. D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from a resonantly diode-laser-pumped 1.6 μm Er:YAG laser,” Appl. Phys. Lett. 87, 121101 (2005).
    [CrossRef]
  4. M. Eichhorn, “Thermal lens effects in an Er3+:YAG laser with crystalline fiber geometry,” Appl. Phys. B 94, 451–457 (2009).
    [CrossRef]
  5. G. Albrecht, S. Sutton, V. George, W. Sooy, and W. Krupke, “Solid state heat capacity disk laser,” Laser Part. Beams 16, 605–625 (1998).
    [CrossRef]
  6. C. B. Dane, L. Flath, M. Rotter, S. Fochs, and J. Brase, “The design and operation of a 10kW solid-state heat-capacity laser,” Conference on Lasers and Electro-Optics CLEO 2001 (2001), Paper CPD9-1.
  7. R. M. Yamamoto, K. Allen, R. Allmon, K. Alviso, B. Bhachu, C. Boley, R. Combs, K. Cutter, S. Fochs, S. Gonzales, R. Hurd, K. LaFortune, W. Manning, R. Merrill, L. Molina, J. Parker, C. Parks, P. Pax, A. Posey, M. Rotter, B. Roy, A. Rubenchik, and T. Soules, “A solid state laser for the battlefield,” 25th Army Science Conference, Nov. 27–30 2006, Orlando, FL, USA, Paper DO-01.
  8. M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300 K–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91, 249–256 (2008).
    [CrossRef]
  9. M. Eichhorn, “Numerical modeling of diode-end-pumped high-power Er3+:YAG lasers,” IEEE J. Quantum. Electron. 44(9), 803–810 (2008).
    [CrossRef]
  10. M. Eichhorn, “First investigations on an Er3+:YAG SSHCL,” Appl. Phys. B 93, 817–822 (2008).
    [CrossRef]
  11. M. Eichhorn, “Thermal effects and upconversion in the Er3+:YAG solid-state heat-capacity laser,” Proc. SPIE 7836, 783608 (2010).
  12. R. L. Boulanger, J.-L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4 and phosphate glass,” Phys. Rev. B 60, 11380–11380 (1999).
    [CrossRef]
  13. R. J. Beach, “Theory and optimization of lens ducts,” Appl. Opt. 35, 2005–2015 (1996).
    [CrossRef] [PubMed]
  14. M. Eichhorn, “Theory and optimization of hollow ducts,” Appl. Opt. 47, 1740–1744 (2008).
    [CrossRef] [PubMed]
  15. M. Eichhorn, “Fluorescence reabsorption and its effects on the local effective excitation lifetime,” Appl. Phys. B 96, 369–377 (2009).
    [CrossRef]
  16. M. Eichhorn, “High-efficiency multi-kilowatt Er3+:YAG solid-state heat-capacity laser,” Opt. Lett. 36, 1245–1247 (2011).
    [CrossRef] [PubMed]
  17. M. Eichhorn, “Multi-kW Er3+:YAG solid-state heat-capacity laser,” ASSP 2011, Istanbul, Turkey (2001), Post-deadline paper AMF2.
  18. W. Koechner, Solid-State Laser Engineering (Springer, 1999).

2011

2010

M. Eichhorn, “Thermal effects and upconversion in the Er3+:YAG solid-state heat-capacity laser,” Proc. SPIE 7836, 783608 (2010).

2009

M. Eichhorn, “Thermal lens effects in an Er3+:YAG laser with crystalline fiber geometry,” Appl. Phys. B 94, 451–457 (2009).
[CrossRef]

M. Eichhorn, “Fluorescence reabsorption and its effects on the local effective excitation lifetime,” Appl. Phys. B 96, 369–377 (2009).
[CrossRef]

2008

M. Eichhorn, “Theory and optimization of hollow ducts,” Appl. Opt. 47, 1740–1744 (2008).
[CrossRef] [PubMed]

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300 K–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91, 249–256 (2008).
[CrossRef]

M. Eichhorn, “Numerical modeling of diode-end-pumped high-power Er3+:YAG lasers,” IEEE J. Quantum. Electron. 44(9), 803–810 (2008).
[CrossRef]

M. Eichhorn, “First investigations on an Er3+:YAG SSHCL,” Appl. Phys. B 93, 817–822 (2008).
[CrossRef]

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 91, 269–316 (2008).
[CrossRef]

2006

2005

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from a resonantly diode-laser-pumped 1.6 μm Er:YAG laser,” Appl. Phys. Lett. 87, 121101 (2005).
[CrossRef]

1999

R. L. Boulanger, J.-L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4 and phosphate glass,” Phys. Rev. B 60, 11380–11380 (1999).
[CrossRef]

W. Koechner, Solid-State Laser Engineering (Springer, 1999).

1998

G. Albrecht, S. Sutton, V. George, W. Sooy, and W. Krupke, “Solid state heat capacity disk laser,” Laser Part. Beams 16, 605–625 (1998).
[CrossRef]

1996

Albrecht, G.

G. Albrecht, S. Sutton, V. George, W. Sooy, and W. Krupke, “Solid state heat capacity disk laser,” Laser Part. Beams 16, 605–625 (1998).
[CrossRef]

Beach, R. J.

Boulanger, R. L.

R. L. Boulanger, J.-L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4 and phosphate glass,” Phys. Rev. B 60, 11380–11380 (1999).
[CrossRef]

Clarkson, W. A.

Doualan, J.-L.

R. L. Boulanger, J.-L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4 and phosphate glass,” Phys. Rev. B 60, 11380–11380 (1999).
[CrossRef]

Dubinskii, M.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from a resonantly diode-laser-pumped 1.6 μm Er:YAG laser,” Appl. Phys. Lett. 87, 121101 (2005).
[CrossRef]

Eichhorn, M.

M. Eichhorn, “High-efficiency multi-kilowatt Er3+:YAG solid-state heat-capacity laser,” Opt. Lett. 36, 1245–1247 (2011).
[CrossRef] [PubMed]

M. Eichhorn, “Thermal effects and upconversion in the Er3+:YAG solid-state heat-capacity laser,” Proc. SPIE 7836, 783608 (2010).

M. Eichhorn, “Thermal lens effects in an Er3+:YAG laser with crystalline fiber geometry,” Appl. Phys. B 94, 451–457 (2009).
[CrossRef]

M. Eichhorn, “Fluorescence reabsorption and its effects on the local effective excitation lifetime,” Appl. Phys. B 96, 369–377 (2009).
[CrossRef]

M. Eichhorn, “Theory and optimization of hollow ducts,” Appl. Opt. 47, 1740–1744 (2008).
[CrossRef] [PubMed]

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 91, 269–316 (2008).
[CrossRef]

M. Eichhorn, “Numerical modeling of diode-end-pumped high-power Er3+:YAG lasers,” IEEE J. Quantum. Electron. 44(9), 803–810 (2008).
[CrossRef]

M. Eichhorn, “First investigations on an Er3+:YAG SSHCL,” Appl. Phys. B 93, 817–822 (2008).
[CrossRef]

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300 K–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91, 249–256 (2008).
[CrossRef]

Fredrich-Thornton, S. T.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300 K–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91, 249–256 (2008).
[CrossRef]

Garbuzov, D.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from a resonantly diode-laser-pumped 1.6 μm Er:YAG laser,” Appl. Phys. Lett. 87, 121101 (2005).
[CrossRef]

George, V.

G. Albrecht, S. Sutton, V. George, W. Sooy, and W. Krupke, “Solid state heat capacity disk laser,” Laser Part. Beams 16, 605–625 (1998).
[CrossRef]

Girard, S.

R. L. Boulanger, J.-L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4 and phosphate glass,” Phys. Rev. B 60, 11380–11380 (1999).
[CrossRef]

Heumann, E.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300 K–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91, 249–256 (2008).
[CrossRef]

Huber, G.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300 K–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91, 249–256 (2008).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 1999).

Krupke, W.

G. Albrecht, S. Sutton, V. George, W. Sooy, and W. Krupke, “Solid state heat capacity disk laser,” Laser Part. Beams 16, 605–625 (1998).
[CrossRef]

Kudryashov, I.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from a resonantly diode-laser-pumped 1.6 μm Er:YAG laser,” Appl. Phys. Lett. 87, 121101 (2005).
[CrossRef]

Margerie, J.

R. L. Boulanger, J.-L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4 and phosphate glass,” Phys. Rev. B 60, 11380–11380 (1999).
[CrossRef]

Moncorgé, R.

R. L. Boulanger, J.-L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4 and phosphate glass,” Phys. Rev. B 60, 11380–11380 (1999).
[CrossRef]

Sahu, J. K.

Shen, D. Y.

Sooy, W.

G. Albrecht, S. Sutton, V. George, W. Sooy, and W. Krupke, “Solid state heat capacity disk laser,” Laser Part. Beams 16, 605–625 (1998).
[CrossRef]

Sutton, S.

G. Albrecht, S. Sutton, V. George, W. Sooy, and W. Krupke, “Solid state heat capacity disk laser,” Laser Part. Beams 16, 605–625 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 91, 269–316 (2008).
[CrossRef]

M. Eichhorn, “Fluorescence reabsorption and its effects on the local effective excitation lifetime,” Appl. Phys. B 96, 369–377 (2009).
[CrossRef]

M. Eichhorn, “Thermal lens effects in an Er3+:YAG laser with crystalline fiber geometry,” Appl. Phys. B 94, 451–457 (2009).
[CrossRef]

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300 K–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91, 249–256 (2008).
[CrossRef]

M. Eichhorn, “First investigations on an Er3+:YAG SSHCL,” Appl. Phys. B 93, 817–822 (2008).
[CrossRef]

Appl. Phys. Lett.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from a resonantly diode-laser-pumped 1.6 μm Er:YAG laser,” Appl. Phys. Lett. 87, 121101 (2005).
[CrossRef]

IEEE J. Quantum. Electron.

M. Eichhorn, “Numerical modeling of diode-end-pumped high-power Er3+:YAG lasers,” IEEE J. Quantum. Electron. 44(9), 803–810 (2008).
[CrossRef]

Laser Part. Beams

G. Albrecht, S. Sutton, V. George, W. Sooy, and W. Krupke, “Solid state heat capacity disk laser,” Laser Part. Beams 16, 605–625 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev. B

R. L. Boulanger, J.-L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4 and phosphate glass,” Phys. Rev. B 60, 11380–11380 (1999).
[CrossRef]

Proc. SPIE

M. Eichhorn, “Thermal effects and upconversion in the Er3+:YAG solid-state heat-capacity laser,” Proc. SPIE 7836, 783608 (2010).

Other

C. B. Dane, L. Flath, M. Rotter, S. Fochs, and J. Brase, “The design and operation of a 10kW solid-state heat-capacity laser,” Conference on Lasers and Electro-Optics CLEO 2001 (2001), Paper CPD9-1.

R. M. Yamamoto, K. Allen, R. Allmon, K. Alviso, B. Bhachu, C. Boley, R. Combs, K. Cutter, S. Fochs, S. Gonzales, R. Hurd, K. LaFortune, W. Manning, R. Merrill, L. Molina, J. Parker, C. Parks, P. Pax, A. Posey, M. Rotter, B. Roy, A. Rubenchik, and T. Soules, “A solid state laser for the battlefield,” 25th Army Science Conference, Nov. 27–30 2006, Orlando, FL, USA, Paper DO-01.

M. Eichhorn, “Multi-kW Er3+:YAG solid-state heat-capacity laser,” ASSP 2011, Istanbul, Turkey (2001), Post-deadline paper AMF2.

W. Koechner, Solid-State Laser Engineering (Springer, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a hollow duct and its mathematical description by the equivalent surface.

Fig. 2
Fig. 2

Evolution of laser threshold of a 5 mm diameter rod [15].

Fig. 3
Fig. 3

Schematic of the experimental setup of the kW-class laser [16].

Fig. 4
Fig. 4

Left: Output power and energy performance for 8 ms pump pulses at different crystal lengths. Right: Effect of the variation of the output coupler reflectivity on the laser performance for a L = 160 mm crystal.

Fig. 5
Fig. 5

Scaling performance verified by comparison with 5 mm-diameter rods.

Fig. 6
Fig. 6

Pulse energy and temperature rise per pulse at various pulse durations for 11.3 kW of pump power.

Fig. 7
Fig. 7

Simulated pump irradiation (in 10 kW/cm2) in the current cylindrical setup (10 mm diameter, left) and for the future setup using square cross-section crystals (here for 8 × 8 mm2 for identical geometrical cross section, right). The plots from top to bottom show equidistant irradiance profiles from the entrance surface of the crystal towards the center. The concentration effect in the cylindrical geometry is clearly visible.

Fig. 8
Fig. 8

Measured laser output power for a fixed pulse duration of 0.8 s at 11.3 kW of pump power. The inset shows a measurement of 8 ms probe pulses fired during the cool-down phase of the crystal.

Fig. 9
Fig. 9

Measured pulse energy of a series of pulses for a fixed pulse duration of 0.8 s at 11.3 kW of pump power. The inset shows the corresponding temperature evolution during this measurement.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

a = ξ ˜ a ˜ , b = ξ b ˜ , a = ξ a ˜ , b = ξ b ˜ , and L D = ξ L ˜ D ,
a d = ξ a ˜ d and b d = ξ b ˜ d .
θ = θ ˜ and ϕ = ϕ ˜ ,
r i = ξ r ˜ i and r 0 = ξ r ˜ 0
D = 1 ξ 2 D ˜ and d 2 Ω t = d 2 Ω ˜ t .
d 2 T R = 1 ξ 2 d 2 T ˜ R
η T = b d 2 b d 2 d x d a d 2 a d 2 d z d θ = π 2 θ = π 2 ϕ = π ϕ = 0 d 2 T R = b d 2 b d 2 d x d a d 2 a d 2 d z d θ = π 2 θ = π 2 ϕ = π ϕ = 0 1 ξ 2 d 2 T ˜ R = b d 2 b d 2 1 ξ d x d a d 2 a d 2 1 ξ d z d θ ˜ = π 2 θ ˜ = π 2 ϕ ˜ = π ϕ ˜ = 0 d 2 T ˜ R .
η T = b ˜ d 2 b ˜ d 2 d x ˜ d a ˜ d 2 a ˜ d 2 d z ˜ d θ ˜ = π 2 θ ˜ = π 2 ϕ ˜ = π ϕ ˜ = 0 d 2 T ˜ R = η ˜ T .
τ th = C ρ λ th R 2 = 4.8 s ,

Metrics