Abstract

We report on the ultrafast excited-state relaxation dynamics of the metastable photo-merocyanine (open-form) isomer of spiro-phenantroxazine, measured by pump and probe spectroscopy with sub-40-fs temporal resolution. We found that the photo-induced yield for ring-closure is negligible, and that the excited-state lifetime is only on the order of 300 fs. Relaxation leads to the non-adiabatic formation of a hot ground state (HGS). In this state, a coherent oscillation with 45 cm−1 frequency is present, showing strong anharmonicity. We attribute it to the motion (torsion/bending) of the molecular backbone attempting geometric relaxation to the close form. The strength of the coherent oscillation and the subsequent spectral relaxation in the HGS, together with the ultrashort lifetime, points to a crossing through a conical intersection (CI). We conclude that excited-states on the merocyanine form pass through a CI that is different from the one that would lead to ring-closure. We discuss design rules for the spiro-oxazine class, allowing for bidirectional switching avoiding this parasitic CI.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Crano and R. J. Guglielmetti, Organic Photochromic and Thermochromic Compounds, Kluwer Academic Publishers, New York, 2002.
  2. E. Fischer and Y. Hirshberg, “Formation of coloured forms of spirans by low-temperature irradiation,” J. Chem. Soc. 868, 4522–4524 (1952).
  3. N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100(5), 1875–1890 (2000).
    [CrossRef] [PubMed]
  4. M. Garavelli, F. Bernardi, M. Olivucci, T. Vreven, S. Klein, P. Celani, and M. A. Robb, “Potential-energy surfaces for ultrafast photochemistry static and dynamic aspects,” Faraday Discuss. 110, 51–70 (1998).
    [CrossRef]
  5. B. G. Levine and T. J. Martínez, “Isomerization through conical intersections,” Annu. Rev. Phys. Chem. 58(1), 613–634 (2007).
    [CrossRef] [PubMed]
  6. D. R. Yarkony, “Diabolical conical intersections,” Rev. Mod. Phys. 68(4), 985–1013 (1996).
    [CrossRef]
  7. M. A. Robb, F. Bernardi, and M. Olivucci, “Conical intersections as a mechanistic feature of organic photochemistry,” Pure Appl. Chem. 67(5), 783–789 (1995).
    [CrossRef]
  8. H. Dürr, H. B-Laurent, Photochromism: Molecules and Systems, Elsevier, New York, 2003.
  9. V. A. Lokshin, A. Samat, and A. V. Metelitsa, “Spirooxazines: synthesis, structure, spectral and photochromic properties,” Russ. Chem. Rev. 71(11), 893–916 (2002) (and references therein).
    [CrossRef]
  10. G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100(5), 1741–1754 (2000).
    [CrossRef] [PubMed]
  11. P. Andersson, N. D. Robinson, and M. Berggren, “Switchable charge traps in polymer diodes,” Adv. Mater. (Deerfield Beach Fla.) 17(14), 1798–1803 (2005).
    [CrossRef]
  12. S. Schneider, A. Mindl, G. Elfinger, and M. Melzig, “Photochromism of spirooxazines. 1. Investigation of the primary processes in the ring-opening reactions by picoseconds time-resolved absorption and emission spectroscopy,” Ber. Bunsenges. Phys. Chem 91, 1222 (1987).
  13. S. Aramaki and G. H. Atkinson, “Spirooxazine photochromism: picosecond time-resolved Raman and absorption spectroscopy,” Chem. Phys. Lett. 170(2-3), 181–186 (1990).
    [CrossRef]
  14. N. Tamai and M. Masuhara, “Femtosecond transient absorption spectroscopy of a spirooxazine photochromic reaction,” Chem. Phys. Lett. 191(1-2), 189–194 (1992).
    [CrossRef]
  15. S. A. Antipin, A. N. Petrukhin, F. E. Gostev, V. S. Marevtsev, A. A. Titov, V. A. Barachevsky, Yu. P. Strokach, and O. M. Sarkisov, “Femtosecond transient absorption spectroscopy of non-substituted photochromic spirocompounds,” Chem. Phys. Lett. 331(5-6), 378–386 (2000).
    [CrossRef]
  16. F. Maurel, J. Aubard, P. Millie, J. P. Dognon, M. Rajzmann, R. Guglielmetti, and A. Samat, “Quantum chemical study of the photocoloration reaction in the napthoxazine series,” J. Phys. Chem. A 110(14), 4759–4771 (2006).
    [CrossRef] [PubMed]
  17. G. Buntinx, S. Foley, C. Lefumeux, V. Lokshin, O. Poizat, and A. Samat, “Evidence for a photophysical deactivation pathway competing with the photochromic transformation in a cyano-substituted spironaphthoxazine,” Chem. Phys. Lett. 391(1-3), 33–37 (2004).
    [CrossRef]
  18. M. Suzuki, T. Asahi, and H. Masuhara, “Photochromic reactions of crystalline spiropyrans and spirooxazines induced by intense femtosecond laser excitation,” Phys. Chem. Chem. Phys. 4(2), 185–192 (2002).
    [CrossRef]
  19. M. Suzuki, T. Asahi, and H. Masuhara, “Cooperative photochemical reaction mechanism of femtosecond laser-induced photocoloration in spirooxazine microcrystals,” ChemPhysChem 6(11), 2396–2403 (2005).
    [CrossRef] [PubMed]
  20. G. Favaro, V. Malatesta, U. Mazzucato, G. Ottavi, and A. Romani, “Thermally reversible photoconversion of spiroindoline-naphthooxazines to photomerocyanines: a photochemical and kinetic study,” J. Photochem. Photobiol. Chem. 87(3), 235–241 (1995).
    [CrossRef]
  21. A. Chibisov and H. Görner, “Photoprocesses in spirooxazines and their merocyanines,” J. Phys. Chem. A 103(26), 5211–5216 (1999).
    [CrossRef]
  22. J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
    [CrossRef] [PubMed]
  23. I. Gómez, M. Reguero, and M. A. Robb, “Efficient photochemical merocyanine-to-spiropyran ring closure mechanism through an extended conical intersection seam. A model CASSCF/CASPT2 study,” J. Phys. Chem. A 110(11), 3986–3991 (2006).
    [CrossRef] [PubMed]
  24. G. Cerullo and S. De Silvestri, “Optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
    [CrossRef]
  25. D. Polli, D. Brida, S. Mukamel, G. Lanzani, and G. Cerullo, “Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses,” Phys. Rev. A 82(053809), 1–8 (2010).
  26. L. Lüer, C. Manzoni, G. Cerullo, G. Lanzani, and M. Meneghetti, “Ultrafast dynamics of a charge-transfer dimmer as a model for the photoinduced phase transition of charge-tranfer compounds,” Phys. Rev. Lett. 99(027401), 1–4 (2007).
  27. D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010).
    [CrossRef] [PubMed]
  28. Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266(5184), 422–424 (1994).
    [CrossRef] [PubMed]

2010 (3)

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

D. Polli, D. Brida, S. Mukamel, G. Lanzani, and G. Cerullo, “Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses,” Phys. Rev. A 82(053809), 1–8 (2010).

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010).
[CrossRef] [PubMed]

2007 (2)

L. Lüer, C. Manzoni, G. Cerullo, G. Lanzani, and M. Meneghetti, “Ultrafast dynamics of a charge-transfer dimmer as a model for the photoinduced phase transition of charge-tranfer compounds,” Phys. Rev. Lett. 99(027401), 1–4 (2007).

B. G. Levine and T. J. Martínez, “Isomerization through conical intersections,” Annu. Rev. Phys. Chem. 58(1), 613–634 (2007).
[CrossRef] [PubMed]

2006 (2)

F. Maurel, J. Aubard, P. Millie, J. P. Dognon, M. Rajzmann, R. Guglielmetti, and A. Samat, “Quantum chemical study of the photocoloration reaction in the napthoxazine series,” J. Phys. Chem. A 110(14), 4759–4771 (2006).
[CrossRef] [PubMed]

I. Gómez, M. Reguero, and M. A. Robb, “Efficient photochemical merocyanine-to-spiropyran ring closure mechanism through an extended conical intersection seam. A model CASSCF/CASPT2 study,” J. Phys. Chem. A 110(11), 3986–3991 (2006).
[CrossRef] [PubMed]

2005 (2)

M. Suzuki, T. Asahi, and H. Masuhara, “Cooperative photochemical reaction mechanism of femtosecond laser-induced photocoloration in spirooxazine microcrystals,” ChemPhysChem 6(11), 2396–2403 (2005).
[CrossRef] [PubMed]

P. Andersson, N. D. Robinson, and M. Berggren, “Switchable charge traps in polymer diodes,” Adv. Mater. (Deerfield Beach Fla.) 17(14), 1798–1803 (2005).
[CrossRef]

2004 (1)

G. Buntinx, S. Foley, C. Lefumeux, V. Lokshin, O. Poizat, and A. Samat, “Evidence for a photophysical deactivation pathway competing with the photochromic transformation in a cyano-substituted spironaphthoxazine,” Chem. Phys. Lett. 391(1-3), 33–37 (2004).
[CrossRef]

2003 (1)

G. Cerullo and S. De Silvestri, “Optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[CrossRef]

2002 (2)

M. Suzuki, T. Asahi, and H. Masuhara, “Photochromic reactions of crystalline spiropyrans and spirooxazines induced by intense femtosecond laser excitation,” Phys. Chem. Chem. Phys. 4(2), 185–192 (2002).
[CrossRef]

V. A. Lokshin, A. Samat, and A. V. Metelitsa, “Spirooxazines: synthesis, structure, spectral and photochromic properties,” Russ. Chem. Rev. 71(11), 893–916 (2002) (and references therein).
[CrossRef]

2000 (3)

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100(5), 1741–1754 (2000).
[CrossRef] [PubMed]

N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100(5), 1875–1890 (2000).
[CrossRef] [PubMed]

S. A. Antipin, A. N. Petrukhin, F. E. Gostev, V. S. Marevtsev, A. A. Titov, V. A. Barachevsky, Yu. P. Strokach, and O. M. Sarkisov, “Femtosecond transient absorption spectroscopy of non-substituted photochromic spirocompounds,” Chem. Phys. Lett. 331(5-6), 378–386 (2000).
[CrossRef]

1999 (1)

A. Chibisov and H. Görner, “Photoprocesses in spirooxazines and their merocyanines,” J. Phys. Chem. A 103(26), 5211–5216 (1999).
[CrossRef]

1998 (1)

M. Garavelli, F. Bernardi, M. Olivucci, T. Vreven, S. Klein, P. Celani, and M. A. Robb, “Potential-energy surfaces for ultrafast photochemistry static and dynamic aspects,” Faraday Discuss. 110, 51–70 (1998).
[CrossRef]

1996 (1)

D. R. Yarkony, “Diabolical conical intersections,” Rev. Mod. Phys. 68(4), 985–1013 (1996).
[CrossRef]

1995 (2)

M. A. Robb, F. Bernardi, and M. Olivucci, “Conical intersections as a mechanistic feature of organic photochemistry,” Pure Appl. Chem. 67(5), 783–789 (1995).
[CrossRef]

G. Favaro, V. Malatesta, U. Mazzucato, G. Ottavi, and A. Romani, “Thermally reversible photoconversion of spiroindoline-naphthooxazines to photomerocyanines: a photochemical and kinetic study,” J. Photochem. Photobiol. Chem. 87(3), 235–241 (1995).
[CrossRef]

1994 (1)

Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266(5184), 422–424 (1994).
[CrossRef] [PubMed]

1992 (1)

N. Tamai and M. Masuhara, “Femtosecond transient absorption spectroscopy of a spirooxazine photochromic reaction,” Chem. Phys. Lett. 191(1-2), 189–194 (1992).
[CrossRef]

1990 (1)

S. Aramaki and G. H. Atkinson, “Spirooxazine photochromism: picosecond time-resolved Raman and absorption spectroscopy,” Chem. Phys. Lett. 170(2-3), 181–186 (1990).
[CrossRef]

1987 (1)

S. Schneider, A. Mindl, G. Elfinger, and M. Melzig, “Photochromism of spirooxazines. 1. Investigation of the primary processes in the ring-opening reactions by picoseconds time-resolved absorption and emission spectroscopy,” Ber. Bunsenges. Phys. Chem 91, 1222 (1987).

1952 (1)

E. Fischer and Y. Hirshberg, “Formation of coloured forms of spirans by low-temperature irradiation,” J. Chem. Soc. 868, 4522–4524 (1952).

Altoè, P.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010).
[CrossRef] [PubMed]

Andersson, P.

P. Andersson, N. D. Robinson, and M. Berggren, “Switchable charge traps in polymer diodes,” Adv. Mater. (Deerfield Beach Fla.) 17(14), 1798–1803 (2005).
[CrossRef]

Antipin, S. A.

S. A. Antipin, A. N. Petrukhin, F. E. Gostev, V. S. Marevtsev, A. A. Titov, V. A. Barachevsky, Yu. P. Strokach, and O. M. Sarkisov, “Femtosecond transient absorption spectroscopy of non-substituted photochromic spirocompounds,” Chem. Phys. Lett. 331(5-6), 378–386 (2000).
[CrossRef]

Aramaki, S.

S. Aramaki and G. H. Atkinson, “Spirooxazine photochromism: picosecond time-resolved Raman and absorption spectroscopy,” Chem. Phys. Lett. 170(2-3), 181–186 (1990).
[CrossRef]

Asahi, T.

M. Suzuki, T. Asahi, and H. Masuhara, “Cooperative photochemical reaction mechanism of femtosecond laser-induced photocoloration in spirooxazine microcrystals,” ChemPhysChem 6(11), 2396–2403 (2005).
[CrossRef] [PubMed]

M. Suzuki, T. Asahi, and H. Masuhara, “Photochromic reactions of crystalline spiropyrans and spirooxazines induced by intense femtosecond laser excitation,” Phys. Chem. Chem. Phys. 4(2), 185–192 (2002).
[CrossRef]

Atkinson, G. H.

S. Aramaki and G. H. Atkinson, “Spirooxazine photochromism: picosecond time-resolved Raman and absorption spectroscopy,” Chem. Phys. Lett. 170(2-3), 181–186 (1990).
[CrossRef]

Aubard, J.

F. Maurel, J. Aubard, P. Millie, J. P. Dognon, M. Rajzmann, R. Guglielmetti, and A. Samat, “Quantum chemical study of the photocoloration reaction in the napthoxazine series,” J. Phys. Chem. A 110(14), 4759–4771 (2006).
[CrossRef] [PubMed]

Barachevsky, V. A.

S. A. Antipin, A. N. Petrukhin, F. E. Gostev, V. S. Marevtsev, A. A. Titov, V. A. Barachevsky, Yu. P. Strokach, and O. M. Sarkisov, “Femtosecond transient absorption spectroscopy of non-substituted photochromic spirocompounds,” Chem. Phys. Lett. 331(5-6), 378–386 (2000).
[CrossRef]

Berggren, M.

P. Andersson, N. D. Robinson, and M. Berggren, “Switchable charge traps in polymer diodes,” Adv. Mater. (Deerfield Beach Fla.) 17(14), 1798–1803 (2005).
[CrossRef]

Berkovic, G.

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100(5), 1741–1754 (2000).
[CrossRef] [PubMed]

Bernardi, F.

M. Garavelli, F. Bernardi, M. Olivucci, T. Vreven, S. Klein, P. Celani, and M. A. Robb, “Potential-energy surfaces for ultrafast photochemistry static and dynamic aspects,” Faraday Discuss. 110, 51–70 (1998).
[CrossRef]

M. A. Robb, F. Bernardi, and M. Olivucci, “Conical intersections as a mechanistic feature of organic photochemistry,” Pure Appl. Chem. 67(5), 783–789 (1995).
[CrossRef]

Brida, D.

D. Polli, D. Brida, S. Mukamel, G. Lanzani, and G. Cerullo, “Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses,” Phys. Rev. A 82(053809), 1–8 (2010).

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010).
[CrossRef] [PubMed]

Brixner, T.

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

Buback, J.

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

Buntinx, G.

G. Buntinx, S. Foley, C. Lefumeux, V. Lokshin, O. Poizat, and A. Samat, “Evidence for a photophysical deactivation pathway competing with the photochromic transformation in a cyano-substituted spironaphthoxazine,” Chem. Phys. Lett. 391(1-3), 33–37 (2004).
[CrossRef]

Celani, P.

M. Garavelli, F. Bernardi, M. Olivucci, T. Vreven, S. Klein, P. Celani, and M. A. Robb, “Potential-energy surfaces for ultrafast photochemistry static and dynamic aspects,” Faraday Discuss. 110, 51–70 (1998).
[CrossRef]

Cerullo, G.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010).
[CrossRef] [PubMed]

D. Polli, D. Brida, S. Mukamel, G. Lanzani, and G. Cerullo, “Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses,” Phys. Rev. A 82(053809), 1–8 (2010).

L. Lüer, C. Manzoni, G. Cerullo, G. Lanzani, and M. Meneghetti, “Ultrafast dynamics of a charge-transfer dimmer as a model for the photoinduced phase transition of charge-tranfer compounds,” Phys. Rev. Lett. 99(027401), 1–4 (2007).

G. Cerullo and S. De Silvestri, “Optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[CrossRef]

Chibisov, A.

A. Chibisov and H. Görner, “Photoprocesses in spirooxazines and their merocyanines,” J. Phys. Chem. A 103(26), 5211–5216 (1999).
[CrossRef]

De Silvestri, S.

G. Cerullo and S. De Silvestri, “Optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[CrossRef]

Dognon, J. P.

F. Maurel, J. Aubard, P. Millie, J. P. Dognon, M. Rajzmann, R. Guglielmetti, and A. Samat, “Quantum chemical study of the photocoloration reaction in the napthoxazine series,” J. Phys. Chem. A 110(14), 4759–4771 (2006).
[CrossRef] [PubMed]

Elfinger, G.

S. Schneider, A. Mindl, G. Elfinger, and M. Melzig, “Photochromism of spirooxazines. 1. Investigation of the primary processes in the ring-opening reactions by picoseconds time-resolved absorption and emission spectroscopy,” Ber. Bunsenges. Phys. Chem 91, 1222 (1987).

Favaro, G.

G. Favaro, V. Malatesta, U. Mazzucato, G. Ottavi, and A. Romani, “Thermally reversible photoconversion of spiroindoline-naphthooxazines to photomerocyanines: a photochemical and kinetic study,” J. Photochem. Photobiol. Chem. 87(3), 235–241 (1995).
[CrossRef]

Fischer, E.

E. Fischer and Y. Hirshberg, “Formation of coloured forms of spirans by low-temperature irradiation,” J. Chem. Soc. 868, 4522–4524 (1952).

Foley, S.

G. Buntinx, S. Foley, C. Lefumeux, V. Lokshin, O. Poizat, and A. Samat, “Evidence for a photophysical deactivation pathway competing with the photochromic transformation in a cyano-substituted spironaphthoxazine,” Chem. Phys. Lett. 391(1-3), 33–37 (2004).
[CrossRef]

Garavelli, M.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010).
[CrossRef] [PubMed]

M. Garavelli, F. Bernardi, M. Olivucci, T. Vreven, S. Klein, P. Celani, and M. A. Robb, “Potential-energy surfaces for ultrafast photochemistry static and dynamic aspects,” Faraday Discuss. 110, 51–70 (1998).
[CrossRef]

Gómez, I.

I. Gómez, M. Reguero, and M. A. Robb, “Efficient photochemical merocyanine-to-spiropyran ring closure mechanism through an extended conical intersection seam. A model CASSCF/CASPT2 study,” J. Phys. Chem. A 110(11), 3986–3991 (2006).
[CrossRef] [PubMed]

Görner, H.

A. Chibisov and H. Görner, “Photoprocesses in spirooxazines and their merocyanines,” J. Phys. Chem. A 103(26), 5211–5216 (1999).
[CrossRef]

Gostev, F. E.

S. A. Antipin, A. N. Petrukhin, F. E. Gostev, V. S. Marevtsev, A. A. Titov, V. A. Barachevsky, Yu. P. Strokach, and O. M. Sarkisov, “Femtosecond transient absorption spectroscopy of non-substituted photochromic spirocompounds,” Chem. Phys. Lett. 331(5-6), 378–386 (2000).
[CrossRef]

Guglielmetti, R.

F. Maurel, J. Aubard, P. Millie, J. P. Dognon, M. Rajzmann, R. Guglielmetti, and A. Samat, “Quantum chemical study of the photocoloration reaction in the napthoxazine series,” J. Phys. Chem. A 110(14), 4759–4771 (2006).
[CrossRef] [PubMed]

Hirshberg, Y.

E. Fischer and Y. Hirshberg, “Formation of coloured forms of spirans by low-temperature irradiation,” J. Chem. Soc. 868, 4522–4524 (1952).

Klein, S.

M. Garavelli, F. Bernardi, M. Olivucci, T. Vreven, S. Klein, P. Celani, and M. A. Robb, “Potential-energy surfaces for ultrafast photochemistry static and dynamic aspects,” Faraday Discuss. 110, 51–70 (1998).
[CrossRef]

Krongauz, V.

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100(5), 1741–1754 (2000).
[CrossRef] [PubMed]

Kukura, P.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010).
[CrossRef] [PubMed]

Kullmann, M.

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

Langhojer, F.

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

Lanzani, G.

D. Polli, D. Brida, S. Mukamel, G. Lanzani, and G. Cerullo, “Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses,” Phys. Rev. A 82(053809), 1–8 (2010).

L. Lüer, C. Manzoni, G. Cerullo, G. Lanzani, and M. Meneghetti, “Ultrafast dynamics of a charge-transfer dimmer as a model for the photoinduced phase transition of charge-tranfer compounds,” Phys. Rev. Lett. 99(027401), 1–4 (2007).

Lefumeux, C.

G. Buntinx, S. Foley, C. Lefumeux, V. Lokshin, O. Poizat, and A. Samat, “Evidence for a photophysical deactivation pathway competing with the photochromic transformation in a cyano-substituted spironaphthoxazine,” Chem. Phys. Lett. 391(1-3), 33–37 (2004).
[CrossRef]

Levine, B. G.

B. G. Levine and T. J. Martínez, “Isomerization through conical intersections,” Annu. Rev. Phys. Chem. 58(1), 613–634 (2007).
[CrossRef] [PubMed]

Lokshin, V.

G. Buntinx, S. Foley, C. Lefumeux, V. Lokshin, O. Poizat, and A. Samat, “Evidence for a photophysical deactivation pathway competing with the photochromic transformation in a cyano-substituted spironaphthoxazine,” Chem. Phys. Lett. 391(1-3), 33–37 (2004).
[CrossRef]

Lokshin, V. A.

V. A. Lokshin, A. Samat, and A. V. Metelitsa, “Spirooxazines: synthesis, structure, spectral and photochromic properties,” Russ. Chem. Rev. 71(11), 893–916 (2002) (and references therein).
[CrossRef]

Lüer, L.

L. Lüer, C. Manzoni, G. Cerullo, G. Lanzani, and M. Meneghetti, “Ultrafast dynamics of a charge-transfer dimmer as a model for the photoinduced phase transition of charge-tranfer compounds,” Phys. Rev. Lett. 99(027401), 1–4 (2007).

Malatesta, V.

G. Favaro, V. Malatesta, U. Mazzucato, G. Ottavi, and A. Romani, “Thermally reversible photoconversion of spiroindoline-naphthooxazines to photomerocyanines: a photochemical and kinetic study,” J. Photochem. Photobiol. Chem. 87(3), 235–241 (1995).
[CrossRef]

Manzoni, C.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010).
[CrossRef] [PubMed]

L. Lüer, C. Manzoni, G. Cerullo, G. Lanzani, and M. Meneghetti, “Ultrafast dynamics of a charge-transfer dimmer as a model for the photoinduced phase transition of charge-tranfer compounds,” Phys. Rev. Lett. 99(027401), 1–4 (2007).

Marevtsev, V. S.

S. A. Antipin, A. N. Petrukhin, F. E. Gostev, V. S. Marevtsev, A. A. Titov, V. A. Barachevsky, Yu. P. Strokach, and O. M. Sarkisov, “Femtosecond transient absorption spectroscopy of non-substituted photochromic spirocompounds,” Chem. Phys. Lett. 331(5-6), 378–386 (2000).
[CrossRef]

Martínez, T. J.

B. G. Levine and T. J. Martínez, “Isomerization through conical intersections,” Annu. Rev. Phys. Chem. 58(1), 613–634 (2007).
[CrossRef] [PubMed]

Masuhara, H.

M. Suzuki, T. Asahi, and H. Masuhara, “Cooperative photochemical reaction mechanism of femtosecond laser-induced photocoloration in spirooxazine microcrystals,” ChemPhysChem 6(11), 2396–2403 (2005).
[CrossRef] [PubMed]

M. Suzuki, T. Asahi, and H. Masuhara, “Photochromic reactions of crystalline spiropyrans and spirooxazines induced by intense femtosecond laser excitation,” Phys. Chem. Chem. Phys. 4(2), 185–192 (2002).
[CrossRef]

Masuhara, M.

N. Tamai and M. Masuhara, “Femtosecond transient absorption spectroscopy of a spirooxazine photochromic reaction,” Chem. Phys. Lett. 191(1-2), 189–194 (1992).
[CrossRef]

Mathies, R. A.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010).
[CrossRef] [PubMed]

Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266(5184), 422–424 (1994).
[CrossRef] [PubMed]

Maurel, F.

F. Maurel, J. Aubard, P. Millie, J. P. Dognon, M. Rajzmann, R. Guglielmetti, and A. Samat, “Quantum chemical study of the photocoloration reaction in the napthoxazine series,” J. Phys. Chem. A 110(14), 4759–4771 (2006).
[CrossRef] [PubMed]

Mazzucato, U.

G. Favaro, V. Malatesta, U. Mazzucato, G. Ottavi, and A. Romani, “Thermally reversible photoconversion of spiroindoline-naphthooxazines to photomerocyanines: a photochemical and kinetic study,” J. Photochem. Photobiol. Chem. 87(3), 235–241 (1995).
[CrossRef]

Melzig, M.

S. Schneider, A. Mindl, G. Elfinger, and M. Melzig, “Photochromism of spirooxazines. 1. Investigation of the primary processes in the ring-opening reactions by picoseconds time-resolved absorption and emission spectroscopy,” Ber. Bunsenges. Phys. Chem 91, 1222 (1987).

Meneghetti, M.

L. Lüer, C. Manzoni, G. Cerullo, G. Lanzani, and M. Meneghetti, “Ultrafast dynamics of a charge-transfer dimmer as a model for the photoinduced phase transition of charge-tranfer compounds,” Phys. Rev. Lett. 99(027401), 1–4 (2007).

Metelitsa, A. V.

V. A. Lokshin, A. Samat, and A. V. Metelitsa, “Spirooxazines: synthesis, structure, spectral and photochromic properties,” Russ. Chem. Rev. 71(11), 893–916 (2002) (and references therein).
[CrossRef]

Millie, P.

F. Maurel, J. Aubard, P. Millie, J. P. Dognon, M. Rajzmann, R. Guglielmetti, and A. Samat, “Quantum chemical study of the photocoloration reaction in the napthoxazine series,” J. Phys. Chem. A 110(14), 4759–4771 (2006).
[CrossRef] [PubMed]

Mindl, A.

S. Schneider, A. Mindl, G. Elfinger, and M. Melzig, “Photochromism of spirooxazines. 1. Investigation of the primary processes in the ring-opening reactions by picoseconds time-resolved absorption and emission spectroscopy,” Ber. Bunsenges. Phys. Chem 91, 1222 (1987).

Miyasaka, H.

N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100(5), 1875–1890 (2000).
[CrossRef] [PubMed]

Mukamel, S.

D. Polli, D. Brida, S. Mukamel, G. Lanzani, and G. Cerullo, “Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses,” Phys. Rev. A 82(053809), 1–8 (2010).

Nuernberger, P.

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

Olivucci, M.

M. Garavelli, F. Bernardi, M. Olivucci, T. Vreven, S. Klein, P. Celani, and M. A. Robb, “Potential-energy surfaces for ultrafast photochemistry static and dynamic aspects,” Faraday Discuss. 110, 51–70 (1998).
[CrossRef]

M. A. Robb, F. Bernardi, and M. Olivucci, “Conical intersections as a mechanistic feature of organic photochemistry,” Pure Appl. Chem. 67(5), 783–789 (1995).
[CrossRef]

Orlandi, G.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010).
[CrossRef] [PubMed]

Ottavi, G.

G. Favaro, V. Malatesta, U. Mazzucato, G. Ottavi, and A. Romani, “Thermally reversible photoconversion of spiroindoline-naphthooxazines to photomerocyanines: a photochemical and kinetic study,” J. Photochem. Photobiol. Chem. 87(3), 235–241 (1995).
[CrossRef]

Peteanu, L. A.

Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266(5184), 422–424 (1994).
[CrossRef] [PubMed]

Petrukhin, A. N.

S. A. Antipin, A. N. Petrukhin, F. E. Gostev, V. S. Marevtsev, A. A. Titov, V. A. Barachevsky, Yu. P. Strokach, and O. M. Sarkisov, “Femtosecond transient absorption spectroscopy of non-substituted photochromic spirocompounds,” Chem. Phys. Lett. 331(5-6), 378–386 (2000).
[CrossRef]

Poizat, O.

G. Buntinx, S. Foley, C. Lefumeux, V. Lokshin, O. Poizat, and A. Samat, “Evidence for a photophysical deactivation pathway competing with the photochromic transformation in a cyano-substituted spironaphthoxazine,” Chem. Phys. Lett. 391(1-3), 33–37 (2004).
[CrossRef]

Polli, D.

D. Polli, D. Brida, S. Mukamel, G. Lanzani, and G. Cerullo, “Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses,” Phys. Rev. A 82(053809), 1–8 (2010).

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010).
[CrossRef] [PubMed]

Rajzmann, M.

F. Maurel, J. Aubard, P. Millie, J. P. Dognon, M. Rajzmann, R. Guglielmetti, and A. Samat, “Quantum chemical study of the photocoloration reaction in the napthoxazine series,” J. Phys. Chem. A 110(14), 4759–4771 (2006).
[CrossRef] [PubMed]

Reguero, M.

I. Gómez, M. Reguero, and M. A. Robb, “Efficient photochemical merocyanine-to-spiropyran ring closure mechanism through an extended conical intersection seam. A model CASSCF/CASPT2 study,” J. Phys. Chem. A 110(11), 3986–3991 (2006).
[CrossRef] [PubMed]

Robb, M. A.

I. Gómez, M. Reguero, and M. A. Robb, “Efficient photochemical merocyanine-to-spiropyran ring closure mechanism through an extended conical intersection seam. A model CASSCF/CASPT2 study,” J. Phys. Chem. A 110(11), 3986–3991 (2006).
[CrossRef] [PubMed]

M. Garavelli, F. Bernardi, M. Olivucci, T. Vreven, S. Klein, P. Celani, and M. A. Robb, “Potential-energy surfaces for ultrafast photochemistry static and dynamic aspects,” Faraday Discuss. 110, 51–70 (1998).
[CrossRef]

M. A. Robb, F. Bernardi, and M. Olivucci, “Conical intersections as a mechanistic feature of organic photochemistry,” Pure Appl. Chem. 67(5), 783–789 (1995).
[CrossRef]

Robinson, N. D.

P. Andersson, N. D. Robinson, and M. Berggren, “Switchable charge traps in polymer diodes,” Adv. Mater. (Deerfield Beach Fla.) 17(14), 1798–1803 (2005).
[CrossRef]

Romani, A.

G. Favaro, V. Malatesta, U. Mazzucato, G. Ottavi, and A. Romani, “Thermally reversible photoconversion of spiroindoline-naphthooxazines to photomerocyanines: a photochemical and kinetic study,” J. Photochem. Photobiol. Chem. 87(3), 235–241 (1995).
[CrossRef]

Samat, A.

F. Maurel, J. Aubard, P. Millie, J. P. Dognon, M. Rajzmann, R. Guglielmetti, and A. Samat, “Quantum chemical study of the photocoloration reaction in the napthoxazine series,” J. Phys. Chem. A 110(14), 4759–4771 (2006).
[CrossRef] [PubMed]

G. Buntinx, S. Foley, C. Lefumeux, V. Lokshin, O. Poizat, and A. Samat, “Evidence for a photophysical deactivation pathway competing with the photochromic transformation in a cyano-substituted spironaphthoxazine,” Chem. Phys. Lett. 391(1-3), 33–37 (2004).
[CrossRef]

V. A. Lokshin, A. Samat, and A. V. Metelitsa, “Spirooxazines: synthesis, structure, spectral and photochromic properties,” Russ. Chem. Rev. 71(11), 893–916 (2002) (and references therein).
[CrossRef]

Sarkisov, O. M.

S. A. Antipin, A. N. Petrukhin, F. E. Gostev, V. S. Marevtsev, A. A. Titov, V. A. Barachevsky, Yu. P. Strokach, and O. M. Sarkisov, “Femtosecond transient absorption spectroscopy of non-substituted photochromic spirocompounds,” Chem. Phys. Lett. 331(5-6), 378–386 (2000).
[CrossRef]

Schmidt, R.

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

Schneider, S.

S. Schneider, A. Mindl, G. Elfinger, and M. Melzig, “Photochromism of spirooxazines. 1. Investigation of the primary processes in the ring-opening reactions by picoseconds time-resolved absorption and emission spectroscopy,” Ber. Bunsenges. Phys. Chem 91, 1222 (1987).

Schoenlein, R. W.

Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266(5184), 422–424 (1994).
[CrossRef] [PubMed]

Shank, C. V.

Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266(5184), 422–424 (1994).
[CrossRef] [PubMed]

Spillane, K. M.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010).
[CrossRef] [PubMed]

Strokach, Yu. P.

S. A. Antipin, A. N. Petrukhin, F. E. Gostev, V. S. Marevtsev, A. A. Titov, V. A. Barachevsky, Yu. P. Strokach, and O. M. Sarkisov, “Femtosecond transient absorption spectroscopy of non-substituted photochromic spirocompounds,” Chem. Phys. Lett. 331(5-6), 378–386 (2000).
[CrossRef]

Suzuki, M.

M. Suzuki, T. Asahi, and H. Masuhara, “Cooperative photochemical reaction mechanism of femtosecond laser-induced photocoloration in spirooxazine microcrystals,” ChemPhysChem 6(11), 2396–2403 (2005).
[CrossRef] [PubMed]

M. Suzuki, T. Asahi, and H. Masuhara, “Photochromic reactions of crystalline spiropyrans and spirooxazines induced by intense femtosecond laser excitation,” Phys. Chem. Chem. Phys. 4(2), 185–192 (2002).
[CrossRef]

Tamai, N.

N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100(5), 1875–1890 (2000).
[CrossRef] [PubMed]

N. Tamai and M. Masuhara, “Femtosecond transient absorption spectroscopy of a spirooxazine photochromic reaction,” Chem. Phys. Lett. 191(1-2), 189–194 (1992).
[CrossRef]

Titov, A. A.

S. A. Antipin, A. N. Petrukhin, F. E. Gostev, V. S. Marevtsev, A. A. Titov, V. A. Barachevsky, Yu. P. Strokach, and O. M. Sarkisov, “Femtosecond transient absorption spectroscopy of non-substituted photochromic spirocompounds,” Chem. Phys. Lett. 331(5-6), 378–386 (2000).
[CrossRef]

Tomasello, G.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010).
[CrossRef] [PubMed]

Vreven, T.

M. Garavelli, F. Bernardi, M. Olivucci, T. Vreven, S. Klein, P. Celani, and M. A. Robb, “Potential-energy surfaces for ultrafast photochemistry static and dynamic aspects,” Faraday Discuss. 110, 51–70 (1998).
[CrossRef]

Wang, Q.

Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266(5184), 422–424 (1994).
[CrossRef] [PubMed]

Weingart, O.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010).
[CrossRef] [PubMed]

Weiss, V.

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100(5), 1741–1754 (2000).
[CrossRef] [PubMed]

Würthner, F.

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

Yarkony, D. R.

D. R. Yarkony, “Diabolical conical intersections,” Rev. Mod. Phys. 68(4), 985–1013 (1996).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

P. Andersson, N. D. Robinson, and M. Berggren, “Switchable charge traps in polymer diodes,” Adv. Mater. (Deerfield Beach Fla.) 17(14), 1798–1803 (2005).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

B. G. Levine and T. J. Martínez, “Isomerization through conical intersections,” Annu. Rev. Phys. Chem. 58(1), 613–634 (2007).
[CrossRef] [PubMed]

Ber. Bunsenges. Phys. Chem (1)

S. Schneider, A. Mindl, G. Elfinger, and M. Melzig, “Photochromism of spirooxazines. 1. Investigation of the primary processes in the ring-opening reactions by picoseconds time-resolved absorption and emission spectroscopy,” Ber. Bunsenges. Phys. Chem 91, 1222 (1987).

Chem. Phys. Lett. (4)

S. Aramaki and G. H. Atkinson, “Spirooxazine photochromism: picosecond time-resolved Raman and absorption spectroscopy,” Chem. Phys. Lett. 170(2-3), 181–186 (1990).
[CrossRef]

N. Tamai and M. Masuhara, “Femtosecond transient absorption spectroscopy of a spirooxazine photochromic reaction,” Chem. Phys. Lett. 191(1-2), 189–194 (1992).
[CrossRef]

S. A. Antipin, A. N. Petrukhin, F. E. Gostev, V. S. Marevtsev, A. A. Titov, V. A. Barachevsky, Yu. P. Strokach, and O. M. Sarkisov, “Femtosecond transient absorption spectroscopy of non-substituted photochromic spirocompounds,” Chem. Phys. Lett. 331(5-6), 378–386 (2000).
[CrossRef]

G. Buntinx, S. Foley, C. Lefumeux, V. Lokshin, O. Poizat, and A. Samat, “Evidence for a photophysical deactivation pathway competing with the photochromic transformation in a cyano-substituted spironaphthoxazine,” Chem. Phys. Lett. 391(1-3), 33–37 (2004).
[CrossRef]

Chem. Rev. (2)

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100(5), 1741–1754 (2000).
[CrossRef] [PubMed]

N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100(5), 1875–1890 (2000).
[CrossRef] [PubMed]

ChemPhysChem (1)

M. Suzuki, T. Asahi, and H. Masuhara, “Cooperative photochemical reaction mechanism of femtosecond laser-induced photocoloration in spirooxazine microcrystals,” ChemPhysChem 6(11), 2396–2403 (2005).
[CrossRef] [PubMed]

Faraday Discuss. (1)

M. Garavelli, F. Bernardi, M. Olivucci, T. Vreven, S. Klein, P. Celani, and M. A. Robb, “Potential-energy surfaces for ultrafast photochemistry static and dynamic aspects,” Faraday Discuss. 110, 51–70 (1998).
[CrossRef]

J. Am. Chem. Soc. (1)

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

J. Chem. Soc. (1)

E. Fischer and Y. Hirshberg, “Formation of coloured forms of spirans by low-temperature irradiation,” J. Chem. Soc. 868, 4522–4524 (1952).

J. Photochem. Photobiol. Chem. (1)

G. Favaro, V. Malatesta, U. Mazzucato, G. Ottavi, and A. Romani, “Thermally reversible photoconversion of spiroindoline-naphthooxazines to photomerocyanines: a photochemical and kinetic study,” J. Photochem. Photobiol. Chem. 87(3), 235–241 (1995).
[CrossRef]

J. Phys. Chem. A (3)

A. Chibisov and H. Görner, “Photoprocesses in spirooxazines and their merocyanines,” J. Phys. Chem. A 103(26), 5211–5216 (1999).
[CrossRef]

I. Gómez, M. Reguero, and M. A. Robb, “Efficient photochemical merocyanine-to-spiropyran ring closure mechanism through an extended conical intersection seam. A model CASSCF/CASPT2 study,” J. Phys. Chem. A 110(11), 3986–3991 (2006).
[CrossRef] [PubMed]

F. Maurel, J. Aubard, P. Millie, J. P. Dognon, M. Rajzmann, R. Guglielmetti, and A. Samat, “Quantum chemical study of the photocoloration reaction in the napthoxazine series,” J. Phys. Chem. A 110(14), 4759–4771 (2006).
[CrossRef] [PubMed]

Nature (1)

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010).
[CrossRef] [PubMed]

Phys. Chem. Chem. Phys. (1)

M. Suzuki, T. Asahi, and H. Masuhara, “Photochromic reactions of crystalline spiropyrans and spirooxazines induced by intense femtosecond laser excitation,” Phys. Chem. Chem. Phys. 4(2), 185–192 (2002).
[CrossRef]

Phys. Rev. A (1)

D. Polli, D. Brida, S. Mukamel, G. Lanzani, and G. Cerullo, “Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses,” Phys. Rev. A 82(053809), 1–8 (2010).

Phys. Rev. Lett. (1)

L. Lüer, C. Manzoni, G. Cerullo, G. Lanzani, and M. Meneghetti, “Ultrafast dynamics of a charge-transfer dimmer as a model for the photoinduced phase transition of charge-tranfer compounds,” Phys. Rev. Lett. 99(027401), 1–4 (2007).

Pure Appl. Chem. (1)

M. A. Robb, F. Bernardi, and M. Olivucci, “Conical intersections as a mechanistic feature of organic photochemistry,” Pure Appl. Chem. 67(5), 783–789 (1995).
[CrossRef]

Rev. Mod. Phys. (1)

D. R. Yarkony, “Diabolical conical intersections,” Rev. Mod. Phys. 68(4), 985–1013 (1996).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, “Optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[CrossRef]

Russ. Chem. Rev. (1)

V. A. Lokshin, A. Samat, and A. V. Metelitsa, “Spirooxazines: synthesis, structure, spectral and photochromic properties,” Russ. Chem. Rev. 71(11), 893–916 (2002) (and references therein).
[CrossRef]

Science (1)

Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266(5184), 422–424 (1994).
[CrossRef] [PubMed]

Other (2)

H. Dürr, H. B-Laurent, Photochromism: Molecules and Systems, Elsevier, New York, 2003.

J. C. Crano and R. J. Guglielmetti, Organic Photochromic and Thermochromic Compounds, Kluwer Academic Publishers, New York, 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Molecular structure of the molecule under study, and (b) absorbance spectrum of the Form B species. The shaded region represents the pump-pulse used in the experiment.

Fig. 2
Fig. 2

∆T/T spectra at various probe delays for Form B pumped at 580 nm; the positive region (green) represents the PB and SE spectral bands, while the negative regions (blue) correspond to the two PA signals; the arrows highlight the gradual blue shift of the peak of the PA2 signal.

Fig. 3
Fig. 3

∆T/T spectra in the first 400 fs; (a) rapid decay of 460-510 nm spectral region (PA1) within 400 fs; (b) spectral evolution in the 620-750 nm showing rapid decay of SE decaying leading to the formation of PA2.

Fig. 4
Fig. 4

ΔT/T dynamics at selected probe wavelengths. The black dotted line represents the experimental data while the red solid line represents the calculated fits using the modeling described in the section 4.1

Fig. 5
Fig. 5

(a) Basis spectra obtained from the global fitting procedure; (b) the decay dynamics of the different species with the rate constant.

Fig. 6
Fig. 6

(a) Typical ΔT/T time traces after removal of the exponential decay term, showing oscillatory patterns having opposite phase; (b) amplitude (blue solid curve) and phase (red dash-dot curve) of fourier-transform spectra at 45 cm−1 frequency.

Fig. 7
Fig. 7

: Proposed scheme of the PES model for the photo-chemical reaction, adapted from [23] CIs are given as star-shaped objects.The pathway of a successful ring- closure is given by black curvy arrows, crossing through the “useful” CI “b” that connects the spiro and cis-PMC forms. Unsuccessful attempts to close the ring pass through a “parasitic” CI “a” along an additional reaction coordinate (dashed lines) that causes sub-picosecond excited-state relaxation and leads to a HGS, in agreement with our experimental findings

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dN 0 ( t ) d t = g e n ( t ) + k 3 N 3 ( t ) ,
dN 1 ( t ) d t = g e n ( t ) k 1 N 1 ( t ) ,
dN 2 ( t ) d t = k 1 N 1 ( t ) k 2 N 2 ( t ) ,
dN 3 ( t ) d t = k 2 N 2 ( t ) k 3 N 3 ( t ) ,
d T ( t , λ ) T d A = S 1 ( λ ) N 1 ( t ) + S 01 h o t ( λ ) N 2 ( t ) + S 0 h o t ( λ ) N 3 ( t ) ,

Metrics