Abstract

Microlens arrays fabricated by a direct ink-jet printing of UV-curable hybrid polymer are reported. A periodic pattern of polymer drops was ink-jet printed on the surface-treated glass substrate and cured in the UV-light. Using this simple technique, we demonstrated periodic arrays of almost semi-spherical microlenses of 50 µm diameter size and a focal distance of 48µm. The optical characteristics of solitary µ-lenses and arrays comprising up to 64x64 microlenses are measured both in the near- and far-field zones. Large numerical aperture and short focal distance make the ink-jet printing of microlenses very attractive for applications in optical interconnects, large 2D VCSEL arrays and pixelated imagine sensors utilizing CCD or SPAD arrays, offering thus an efficient, simple and a cheap alternative to the conventionally used photolithography technique.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
    [CrossRef]
  2. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), S407–S429 (2006).
    [CrossRef]
  3. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988).
    [CrossRef] [PubMed]
  4. C. Croutxé-Barghorn, O. Soppera, and D. J. Lougnot, “Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters,” Eur. Phys. J. Appl. Phys. 13(1), 31–37 (2001).
    [CrossRef]
  5. A. Tripathi, T. V. Chokshi, and N. Chronis, “A high numerical aperture, polymer-based, planar microlens array,” Opt. Express 17(22), 19908–19918 (2009).
    [CrossRef] [PubMed]
  6. M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling,” J. Opt. A, Pure Appl. Opt. 6(1), 94–97 (2004).
    [CrossRef]
  7. D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
    [CrossRef]
  8. W. Cheong, L. Yuan, V. Koudriachov, and W. Yu, “High sensitive SiO2/TiO2 hybrid sol-gel material for fabrication of 3 dimensional continuous surface relief diffractive optical elements by electron-beam lithography,” Opt. Express 10(14), 586–590 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-14-586 .
    [PubMed]
  9. V. Fakhfouri, N. Cantale, G. Mermoud, J. Y. Kim, D. Boiko, E. Charbon, A. Martinoli, and J. Brugger, “Inkjet printing of SU-8 for polymer-based MEMS a case study for microlenses,” in Proceedings of 21st IEEE International Conference on Micro Electro Mechanical Systems MEMS 2008 (Tucson, AZ, 2008), pp. 407–410.
  10. Y. S. Yang, D. H. Youn, S. H. Kim, S. Ch. Lim, H. S. Shim, S. Y. Kang, and I. K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 520, 239–244 (2010).
    [CrossRef]
  11. C. H. Tien, C. H. Hung, and T. H. Yu, “Microlens arrays by direct-writing inkjet print for LCD backlighting applications,” IEEE J. Display Technol. 5(5), 147–151 (2009).
    [CrossRef]
  12. S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhofer, “Replicated optical MEMS in sol-gel materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004).
    [CrossRef]
  13. P. Ruffieux, T. Scharf, H. P. Herzig, R. Völkel, and K. J. Weible, “On the chromatic aberration of microlenses,” Opt. Express 14(11), 4687–4694 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4687 .
    [CrossRef] [PubMed]
  14. S. A. Akhmanov Y. E. D'yakov, and A. S. Chirkin, Introduction to Statistical Radiophysics and Optics (Nauka, Moscow, 1981), pp. 306–307.
  15. A. A. Grütter, H. P. Weber, and R. Dändliker, “Imperfectly mode-locked laser emission and its effects on nonlinear optics,” Phys. Rev. 185(2), 629–643 (1969).
    [CrossRef]

2010 (2)

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[CrossRef]

Y. S. Yang, D. H. Youn, S. H. Kim, S. Ch. Lim, H. S. Shim, S. Y. Kang, and I. K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 520, 239–244 (2010).
[CrossRef]

2009 (2)

C. H. Tien, C. H. Hung, and T. H. Yu, “Microlens arrays by direct-writing inkjet print for LCD backlighting applications,” IEEE J. Display Technol. 5(5), 147–151 (2009).
[CrossRef]

A. Tripathi, T. V. Chokshi, and N. Chronis, “A high numerical aperture, polymer-based, planar microlens array,” Opt. Express 17(22), 19908–19918 (2009).
[CrossRef] [PubMed]

2006 (2)

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), S407–S429 (2006).
[CrossRef]

P. Ruffieux, T. Scharf, H. P. Herzig, R. Völkel, and K. J. Weible, “On the chromatic aberration of microlenses,” Opt. Express 14(11), 4687–4694 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4687 .
[CrossRef] [PubMed]

2004 (2)

S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhofer, “Replicated optical MEMS in sol-gel materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004).
[CrossRef]

M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling,” J. Opt. A, Pure Appl. Opt. 6(1), 94–97 (2004).
[CrossRef]

2002 (1)

2001 (1)

C. Croutxé-Barghorn, O. Soppera, and D. J. Lougnot, “Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters,” Eur. Phys. J. Appl. Phys. 13(1), 31–37 (2001).
[CrossRef]

1994 (1)

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

1988 (1)

1969 (1)

A. A. Grütter, H. P. Weber, and R. Dändliker, “Imperfectly mode-locked laser emission and its effects on nonlinear optics,” Phys. Rev. 185(2), 629–643 (1969).
[CrossRef]

Bu, J.

M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling,” J. Opt. A, Pure Appl. Opt. 6(1), 94–97 (2004).
[CrossRef]

Chen, Q.

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[CrossRef]

Chen, T.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Cheong, W.

Chokshi, T. V.

Chronis, N.

Connell, G. A. N.

Cox, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), S407–S429 (2006).
[CrossRef]

Cox, W. R.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Croutxé-Barghorn, C.

C. Croutxé-Barghorn, O. Soppera, and D. J. Lougnot, “Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters,” Eur. Phys. J. Appl. Phys. 13(1), 31–37 (2001).
[CrossRef]

Dändliker, R.

A. A. Grütter, H. P. Weber, and R. Dändliker, “Imperfectly mode-locked laser emission and its effects on nonlinear optics,” Phys. Rev. 185(2), 629–643 (1969).
[CrossRef]

Fang, H.

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[CrossRef]

Gale, M. T.

S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhofer, “Replicated optical MEMS in sol-gel materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004).
[CrossRef]

Gimkiewicz, C.

S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhofer, “Replicated optical MEMS in sol-gel materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004).
[CrossRef]

Grütter, A. A.

A. A. Grütter, H. P. Weber, and R. Dändliker, “Imperfectly mode-locked laser emission and its effects on nonlinear optics,” Phys. Rev. 185(2), 629–643 (1969).
[CrossRef]

Hayes, D. J.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

He, M.

M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling,” J. Opt. A, Pure Appl. Opt. 6(1), 94–97 (2004).
[CrossRef]

Herzig, H. P.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), S407–S429 (2006).
[CrossRef]

P. Ruffieux, T. Scharf, H. P. Herzig, R. Völkel, and K. J. Weible, “On the chromatic aberration of microlenses,” Opt. Express 14(11), 4687–4694 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4687 .
[CrossRef] [PubMed]

Hung, C. H.

C. H. Tien, C. H. Hung, and T. H. Yu, “Microlens arrays by direct-writing inkjet print for LCD backlighting applications,” IEEE J. Display Technol. 5(5), 147–151 (2009).
[CrossRef]

Kang, S. Y.

Y. S. Yang, D. H. Youn, S. H. Kim, S. Ch. Lim, H. S. Shim, S. Y. Kang, and I. K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 520, 239–244 (2010).
[CrossRef]

Kim, S. H.

Y. S. Yang, D. H. Youn, S. H. Kim, S. Ch. Lim, H. S. Shim, S. Y. Kang, and I. K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 520, 239–244 (2010).
[CrossRef]

Koudriachov, V.

Lim, S. Ch.

Y. S. Yang, D. H. Youn, S. H. Kim, S. Ch. Lim, H. S. Shim, S. Y. Kang, and I. K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 520, 239–244 (2010).
[CrossRef]

Lougnot, D. J.

C. Croutxé-Barghorn, O. Soppera, and D. J. Lougnot, “Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters,” Eur. Phys. J. Appl. Phys. 13(1), 31–37 (2001).
[CrossRef]

MacFarlane, D. L.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Miyashita, T.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), S407–S429 (2006).
[CrossRef]

Naessens, K.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), S407–S429 (2006).
[CrossRef]

Narayan, V.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Ngo, N. Q.

M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling,” J. Opt. A, Pure Appl. Opt. 6(1), 94–97 (2004).
[CrossRef]

Niu, L.

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[CrossRef]

Obi, S.

S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhofer, “Replicated optical MEMS in sol-gel materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004).
[CrossRef]

Ottevaere, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), S407–S429 (2006).
[CrossRef]

Popovic, Z. D.

Ruffieux, P.

Scharf, T.

Shim, H. S.

Y. S. Yang, D. H. Youn, S. H. Kim, S. Ch. Lim, H. S. Shim, S. Y. Kang, and I. K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 520, 239–244 (2010).
[CrossRef]

Song, J.

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[CrossRef]

Soppera, O.

C. Croutxé-Barghorn, O. Soppera, and D. J. Lougnot, “Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters,” Eur. Phys. J. Appl. Phys. 13(1), 31–37 (2001).
[CrossRef]

Sprague, R. A.

Sun, H.

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[CrossRef]

Taghizadeh, M.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), S407–S429 (2006).
[CrossRef]

Tao, S. H.

M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling,” J. Opt. A, Pure Appl. Opt. 6(1), 94–97 (2004).
[CrossRef]

Tatum, J. A.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Thienpont, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), S407–S429 (2006).
[CrossRef]

Tien, C. H.

C. H. Tien, C. H. Hung, and T. H. Yu, “Microlens arrays by direct-writing inkjet print for LCD backlighting applications,” IEEE J. Display Technol. 5(5), 147–151 (2009).
[CrossRef]

Tripathi, A.

Volkel, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), S407–S429 (2006).
[CrossRef]

Völkel, R.

Wang, R.

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[CrossRef]

Weber, H. P.

A. A. Grütter, H. P. Weber, and R. Dändliker, “Imperfectly mode-locked laser emission and its effects on nonlinear optics,” Phys. Rev. 185(2), 629–643 (1969).
[CrossRef]

Weible, K. J.

Westenhofer, S.

S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhofer, “Replicated optical MEMS in sol-gel materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004).
[CrossRef]

Woo, H. J.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), S407–S429 (2006).
[CrossRef]

Wu, D.

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[CrossRef]

Wu, S.

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[CrossRef]

Yang, Y. S.

Y. S. Yang, D. H. Youn, S. H. Kim, S. Ch. Lim, H. S. Shim, S. Y. Kang, and I. K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 520, 239–244 (2010).
[CrossRef]

You, I. K.

Y. S. Yang, D. H. Youn, S. H. Kim, S. Ch. Lim, H. S. Shim, S. Y. Kang, and I. K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 520, 239–244 (2010).
[CrossRef]

Youn, D. H.

Y. S. Yang, D. H. Youn, S. H. Kim, S. Ch. Lim, H. S. Shim, S. Y. Kang, and I. K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 520, 239–244 (2010).
[CrossRef]

Yu, T. H.

C. H. Tien, C. H. Hung, and T. H. Yu, “Microlens arrays by direct-writing inkjet print for LCD backlighting applications,” IEEE J. Display Technol. 5(5), 147–151 (2009).
[CrossRef]

Yu, W.

Yuan, L.

Yuan, X.-C.

M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling,” J. Opt. A, Pure Appl. Opt. 6(1), 94–97 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

C. Croutxé-Barghorn, O. Soppera, and D. J. Lougnot, “Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters,” Eur. Phys. J. Appl. Phys. 13(1), 31–37 (2001).
[CrossRef]

IEEE J. Display Technol. (1)

C. H. Tien, C. H. Hung, and T. H. Yu, “Microlens arrays by direct-writing inkjet print for LCD backlighting applications,” IEEE J. Display Technol. 5(5), 147–151 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhofer, “Replicated optical MEMS in sol-gel materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), S407–S429 (2006).
[CrossRef]

M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling,” J. Opt. A, Pure Appl. Opt. 6(1), 94–97 (2004).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

Y. S. Yang, D. H. Youn, S. H. Kim, S. Ch. Lim, H. S. Shim, S. Y. Kang, and I. K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 520, 239–244 (2010).
[CrossRef]

Opt. Express (3)

Phys. Rev. (1)

A. A. Grütter, H. P. Weber, and R. Dändliker, “Imperfectly mode-locked laser emission and its effects on nonlinear optics,” Phys. Rev. 185(2), 629–643 (1969).
[CrossRef]

Other (2)

S. A. Akhmanov Y. E. D'yakov, and A. S. Chirkin, Introduction to Statistical Radiophysics and Optics (Nauka, Moscow, 1981), pp. 306–307.

V. Fakhfouri, N. Cantale, G. Mermoud, J. Y. Kim, D. Boiko, E. Charbon, A. Martinoli, and J. Brugger, “Inkjet printing of SU-8 for polymer-based MEMS a case study for microlenses,” in Proceedings of 21st IEEE International Conference on Micro Electro Mechanical Systems MEMS 2008 (Tucson, AZ, 2008), pp. 407–410.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the DOD ink-jet printing and the process flow used to fabricate microlenses. (a) Untreated (cleaned) glass substrate, (b) SAM-treated glass substrate (dark grey), (c) Ink-jet printing of a hybrid polymer and pre-bake, (d) UV-exposure and post-exposure bake, (e) SEM images of 64 x 64 ink-jet printed hybrid polymer microlens arrays (part of) on the SAM-treated glass with high magnification inset. The diameter and the height of the microlens are about 53 and 18 µm, respectively.

Fig. 2
Fig. 2

Contact angle of deposited water drop on quartz (qz), glass, SAM coated quartz (SAM-qz), SAM coated Si (SAM-Si) and SAM coated glass (SAM-glass).

Fig. 3
Fig. 3

Microlens array. (a) Optical microscope image of back-side illuminated array. The zoomed image in the inset shows the dark ring caused by the total internal reflections (TIR) at the steep edges of a microlens surface. (b) Surface profile of the 2x2 microlense domain obtained from the phase accrual reconstruction in the transmission mode of DHM imaging. Note a large displacement of the microlens in the left bottom corner caused by imperfections of the ink-jet printing. The inset shows details of the reconstructed lens profile with false notch at the microlens edge (highlighted in red) due to the phase accrual uncertainty in the TIR region (c) SEM image used to measure the height of microlenses. No notch ring is available at the microlens edge.

Fig. 4
Fig. 4

(a) Schematic of the setups for optical characterization of solitary microlenses: O - 40x microscope objective (f = 4.1 mm, NA = 0.65), F1- lens (F1 = 150 mm). O and F1 form a 4-f optical length system of magnification M = 37. Near field (b) and focal-plane far field (c) intensity patterns and line scans of solitary microlens in 64x64 array. (d) Intensity distribution behind a microlens used to define the focal plane. (e) Histogram of measured focal distances.

Fig. 5
Fig. 5

(a) Schematic of the setup for optical characterization of NxN microlens arrays: O and F1 form the 4-f optical length system as in Fig. 2(a); lens F2 = 150 mm. (b) Far field image of the 30x30 entire array with superimposed line scan of the central lobe (logarithmic scale). (c) Left axis: measured (points) and modeled (curve) FWHM of the first diffraction order lobe (averaged over the ( ± 1,0), (0, ± 1) lobes); right axis: ratio of the measured and modeled FWHM of the first diffraction order lobe as a function of array size N in NxN microlens arrays. (d) Measured (points) and numerically fitted (curve) intensity ratio of the ( ± 1, ± 1) and (0, ± 1) lobes.

Tables (1)

Tables Icon

Table 1 Optical Characteristics of Solitary Microlenses a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( Θ x , Θ y ) | n , m ( F μ ( Θ x , Θ y ) + ξ n , m ) exp ( i Θ x n + i Θ y m + i ϕ n , m ) | 2 ,
I ( 0 ) ( Θ x , Θ y ) | F μ ( Θ x , Θ y ) | 2 sin 2 N Θ x / 2 sin 2 Θ x / 2 sin 2 N Θ y / 2 sin 2 Θ y / 2 ,
F μ ( Θ x , Θ y ) 1 γ 2 J 1 ( Θ x 2 + Θ y 2 D / 2 Λ ) Θ x 2 + Θ y 2 D / 2 Λ
I | F μ ( Θ x , Θ y ) | 2 ( e ( Θ x 2 + Θ y 2 ) α 0 2 [ sin 2 N Θ x / 2 sin 2 Θ x / 2 sin 2 N Θ y / 2 sin 2 Θ y / 2 N 2 ] + N 2 )
I 1 , 1 I 1 , 0 = | 1 γ 2 J 1 ( 2 π D / Λ ) 2 π D / Λ | 2 | 1 γ 2 J 1 ( π D / Λ ) π D / Λ | 2 ( e 8 π 2 α 0 2 [ N 2 1 ] + 1 ) ( e 4 π 2 α 0 2 [ N 2 1 ] + 1 )

Metrics