Abstract

Glycidylmethacrylate and propylene oxide were used in the epoxide initiated formation of titanium oxide sols which were spun to form thin films. Glycidylmethacrylate can be used to tune the refractive index of the resulting composite and allowed us to photo-pattern the material. The refractive index of the films can be controlled between 1.76 and 2.05 at 589 nm. The thicknesses of the films ranged between 80 and 200 nm and the rms roughness below 2 nm. The films were characterized by atomic force microscopy (AFM), electric force microscopy (EFM), x-ray photoelectron spectroscopy (XPS) and ellipsometry, among other techniques.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater. 13(3), 999–1007 (2001).
    [CrossRef]
  2. R. H. Lindquist, “Dispersion-hardened metals and metal alloys,” U.S. Patent 3458306 (19690729, 1969).
  3. A. E. Gash, T. M. Tillotson, J. H. Satcher, L. W. Hrubesh, and R. L. Simpson, “New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors,” J. Non-Cryst. Solids 285(1-3), 22–28 (2001).
    [CrossRef]
  4. R. A. Reibold, J. F. Poco, T. F. Baumann, R. L. Simpson, and J. H. Satcher, “Synthesis and characterization of a low-density urania (UO3) aerogel,” J. Non-Cryst. Solids 319(3), 241–246 (2003).
    [CrossRef]
  5. T. F. Baumann, A. E. Gash, S. C. Chinn, A. M. Sawvel, R. S. Maxwell, and J. H. Satcher, “Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors,” Chem. Mater. 17(2), 395–401 (2005).
    [CrossRef]
  6. C. N. Chervin, B. J. Clapsaddle, H. W. Chiu, A. E. Gash, J. H. Satcher, and S. M. Kauzlarich, “Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route,” Chem. Mater. 17(13), 3345–3351 (2005).
    [CrossRef]
  7. L. Chen, J. Zhu, Y.-M. Liu, Y. Cao, H.-X. Li, H.-Y. He, W.-L. Dai, and K.-N. Fan, “Photocatalytic activity of epoxide sol-gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying,” J. Mol. Catal. Chem. 255(1-2), 260–268 (2006).
    [CrossRef]
  8. C. Guan, C. L. Lu, Y. F. Liu, and B. Yang, “Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites,” J. Appl. Polym. Sci. 102(2), 1631–1636 (2006).
    [CrossRef]
  9. P. Chrysicopoulou, D. Davazoglou, C. Trapalis, and G. Kordas, “Optical properties of SiO2-TiO2 sol-gel thin films,” J. Mater. Sci. 39(8), 2835–2839 (2004).
    [CrossRef]
  10. C. J. R. Gonzalezoliver, P. F. James, and H. Rawson, “Silica and silica-titania glasses prepared by the sol-gel process,” J. Non-Cryst. Solids 48(1), 129–152 (1982).
    [CrossRef]
  11. Z. C. Wang, U. Helmersson, and P. O. Kall, “Optical properties of anatase TiO2 thin films prepared by aqueous sol-gel process at low temperature,” Thin Solid Films 405(1-2), 50–54 (2002).
    [CrossRef]
  12. A. Antonello, M. Guglielmi, V. Bello, G. Mattei, A. Chiasera, M. Ferrari, and A. Martucci, “Titanate nanosheets as high refractive layer in vertical microcavity incorporating semiconductor quantum dots,” J. Phys. Chem. C 114(43), 18423–18428 (2010).
    [CrossRef]
  13. D. L. Rakhmankulov, N. E. Maksimova, R. A. Karakhanov, E. A. Kantor, M. Bartok, and S. S. Zlotskii, “Chemistry of 1,3-bifunctional systems. 20. synthesis and thiolysis of sulfur-containing 1,3-dioxacyclanes,” Acta Phys. Chem. 21, 177–180 (1975).
  14. B. Damin, J. Garapon, and B. Sillion, “A convenient synthesis of chlorohydrins using chloramine T,” Synthesis 1981(05), 362–363 (1981).
    [CrossRef]
  15. J. G. Erickson, “Glycidyl ester,” U.S. Patent 2567842 (19510911, 1951).
  16. Advanced Chemistry Development (ACD/Labs) Software 1994–2010.
  17. R. Deschenaux and J. K. Stille, “Transition-metal-catalyzed asymmetric organic synthesis via polymer-attached optically active phosphine ligands. 13. Asymmetric hydrogenation with polymer catalysts containing primary and chiral secondary pendant alcohols,” J. Org. Chem. 50(13), 2299–2302 (1985).
    [CrossRef]
  18. A. Mohammad, D. P. N. Satchell, and R. S. Satchell, “Quantitative aspects of Lewis acidity. Part VIII. The validity of infrared carbonyl shifts as measures of Lewis acid strength. The interaction of Lewis acids and phenalen-1-one(perinaphthenone),” J. Chem. Soc. B 1967, 723–725 (1967).
    [CrossRef]
  19. SDBSWeb: http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, September 16, 2010).
  20. M. H. Zhao, X. H. Gu, S. E. Lowther, C. Park, Y. C. Jean, and T. Nguyen, “Subsurface characterization of carbon nanotubes in polymer composites via quantitative electric force microscopy,” Nanotechnology 21(22), 225702 (2010).
    [CrossRef] [PubMed]
  21. C. Riedel, R. Arinero, P. Tordjeman, G. Lévêque, G. A. Schwartz, A. Alegria, and J. Colmenero, “Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 010801 (2010).
    [CrossRef] [PubMed]
  22. R. A. Parker, “Static dielectric constant of rutile (TiO2), 1.6-1060°K,” Phys. Rev. 124(6), 1719–1722 (1961).
    [CrossRef]
  23. J. Brandup and E. H. Immergut, eds., Polymer Handbook (Wiley, 1975).

2010

A. Antonello, M. Guglielmi, V. Bello, G. Mattei, A. Chiasera, M. Ferrari, and A. Martucci, “Titanate nanosheets as high refractive layer in vertical microcavity incorporating semiconductor quantum dots,” J. Phys. Chem. C 114(43), 18423–18428 (2010).
[CrossRef]

M. H. Zhao, X. H. Gu, S. E. Lowther, C. Park, Y. C. Jean, and T. Nguyen, “Subsurface characterization of carbon nanotubes in polymer composites via quantitative electric force microscopy,” Nanotechnology 21(22), 225702 (2010).
[CrossRef] [PubMed]

C. Riedel, R. Arinero, P. Tordjeman, G. Lévêque, G. A. Schwartz, A. Alegria, and J. Colmenero, “Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 010801 (2010).
[CrossRef] [PubMed]

2006

L. Chen, J. Zhu, Y.-M. Liu, Y. Cao, H.-X. Li, H.-Y. He, W.-L. Dai, and K.-N. Fan, “Photocatalytic activity of epoxide sol-gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying,” J. Mol. Catal. Chem. 255(1-2), 260–268 (2006).
[CrossRef]

C. Guan, C. L. Lu, Y. F. Liu, and B. Yang, “Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites,” J. Appl. Polym. Sci. 102(2), 1631–1636 (2006).
[CrossRef]

2005

T. F. Baumann, A. E. Gash, S. C. Chinn, A. M. Sawvel, R. S. Maxwell, and J. H. Satcher, “Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors,” Chem. Mater. 17(2), 395–401 (2005).
[CrossRef]

C. N. Chervin, B. J. Clapsaddle, H. W. Chiu, A. E. Gash, J. H. Satcher, and S. M. Kauzlarich, “Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route,” Chem. Mater. 17(13), 3345–3351 (2005).
[CrossRef]

2004

P. Chrysicopoulou, D. Davazoglou, C. Trapalis, and G. Kordas, “Optical properties of SiO2-TiO2 sol-gel thin films,” J. Mater. Sci. 39(8), 2835–2839 (2004).
[CrossRef]

2003

R. A. Reibold, J. F. Poco, T. F. Baumann, R. L. Simpson, and J. H. Satcher, “Synthesis and characterization of a low-density urania (UO3) aerogel,” J. Non-Cryst. Solids 319(3), 241–246 (2003).
[CrossRef]

2002

Z. C. Wang, U. Helmersson, and P. O. Kall, “Optical properties of anatase TiO2 thin films prepared by aqueous sol-gel process at low temperature,” Thin Solid Films 405(1-2), 50–54 (2002).
[CrossRef]

2001

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater. 13(3), 999–1007 (2001).
[CrossRef]

A. E. Gash, T. M. Tillotson, J. H. Satcher, L. W. Hrubesh, and R. L. Simpson, “New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors,” J. Non-Cryst. Solids 285(1-3), 22–28 (2001).
[CrossRef]

1985

R. Deschenaux and J. K. Stille, “Transition-metal-catalyzed asymmetric organic synthesis via polymer-attached optically active phosphine ligands. 13. Asymmetric hydrogenation with polymer catalysts containing primary and chiral secondary pendant alcohols,” J. Org. Chem. 50(13), 2299–2302 (1985).
[CrossRef]

1982

C. J. R. Gonzalezoliver, P. F. James, and H. Rawson, “Silica and silica-titania glasses prepared by the sol-gel process,” J. Non-Cryst. Solids 48(1), 129–152 (1982).
[CrossRef]

1981

B. Damin, J. Garapon, and B. Sillion, “A convenient synthesis of chlorohydrins using chloramine T,” Synthesis 1981(05), 362–363 (1981).
[CrossRef]

1975

D. L. Rakhmankulov, N. E. Maksimova, R. A. Karakhanov, E. A. Kantor, M. Bartok, and S. S. Zlotskii, “Chemistry of 1,3-bifunctional systems. 20. synthesis and thiolysis of sulfur-containing 1,3-dioxacyclanes,” Acta Phys. Chem. 21, 177–180 (1975).

1967

A. Mohammad, D. P. N. Satchell, and R. S. Satchell, “Quantitative aspects of Lewis acidity. Part VIII. The validity of infrared carbonyl shifts as measures of Lewis acid strength. The interaction of Lewis acids and phenalen-1-one(perinaphthenone),” J. Chem. Soc. B 1967, 723–725 (1967).
[CrossRef]

1961

R. A. Parker, “Static dielectric constant of rutile (TiO2), 1.6-1060°K,” Phys. Rev. 124(6), 1719–1722 (1961).
[CrossRef]

Alegria, A.

C. Riedel, R. Arinero, P. Tordjeman, G. Lévêque, G. A. Schwartz, A. Alegria, and J. Colmenero, “Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 010801 (2010).
[CrossRef] [PubMed]

Antonello, A.

A. Antonello, M. Guglielmi, V. Bello, G. Mattei, A. Chiasera, M. Ferrari, and A. Martucci, “Titanate nanosheets as high refractive layer in vertical microcavity incorporating semiconductor quantum dots,” J. Phys. Chem. C 114(43), 18423–18428 (2010).
[CrossRef]

Arinero, R.

C. Riedel, R. Arinero, P. Tordjeman, G. Lévêque, G. A. Schwartz, A. Alegria, and J. Colmenero, “Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 010801 (2010).
[CrossRef] [PubMed]

Bartok, M.

D. L. Rakhmankulov, N. E. Maksimova, R. A. Karakhanov, E. A. Kantor, M. Bartok, and S. S. Zlotskii, “Chemistry of 1,3-bifunctional systems. 20. synthesis and thiolysis of sulfur-containing 1,3-dioxacyclanes,” Acta Phys. Chem. 21, 177–180 (1975).

Baumann, T. F.

T. F. Baumann, A. E. Gash, S. C. Chinn, A. M. Sawvel, R. S. Maxwell, and J. H. Satcher, “Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors,” Chem. Mater. 17(2), 395–401 (2005).
[CrossRef]

R. A. Reibold, J. F. Poco, T. F. Baumann, R. L. Simpson, and J. H. Satcher, “Synthesis and characterization of a low-density urania (UO3) aerogel,” J. Non-Cryst. Solids 319(3), 241–246 (2003).
[CrossRef]

Bello, V.

A. Antonello, M. Guglielmi, V. Bello, G. Mattei, A. Chiasera, M. Ferrari, and A. Martucci, “Titanate nanosheets as high refractive layer in vertical microcavity incorporating semiconductor quantum dots,” J. Phys. Chem. C 114(43), 18423–18428 (2010).
[CrossRef]

Cao, Y.

L. Chen, J. Zhu, Y.-M. Liu, Y. Cao, H.-X. Li, H.-Y. He, W.-L. Dai, and K.-N. Fan, “Photocatalytic activity of epoxide sol-gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying,” J. Mol. Catal. Chem. 255(1-2), 260–268 (2006).
[CrossRef]

Chen, L.

L. Chen, J. Zhu, Y.-M. Liu, Y. Cao, H.-X. Li, H.-Y. He, W.-L. Dai, and K.-N. Fan, “Photocatalytic activity of epoxide sol-gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying,” J. Mol. Catal. Chem. 255(1-2), 260–268 (2006).
[CrossRef]

Chervin, C. N.

C. N. Chervin, B. J. Clapsaddle, H. W. Chiu, A. E. Gash, J. H. Satcher, and S. M. Kauzlarich, “Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route,” Chem. Mater. 17(13), 3345–3351 (2005).
[CrossRef]

Chiasera, A.

A. Antonello, M. Guglielmi, V. Bello, G. Mattei, A. Chiasera, M. Ferrari, and A. Martucci, “Titanate nanosheets as high refractive layer in vertical microcavity incorporating semiconductor quantum dots,” J. Phys. Chem. C 114(43), 18423–18428 (2010).
[CrossRef]

Chinn, S. C.

T. F. Baumann, A. E. Gash, S. C. Chinn, A. M. Sawvel, R. S. Maxwell, and J. H. Satcher, “Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors,” Chem. Mater. 17(2), 395–401 (2005).
[CrossRef]

Chiu, H. W.

C. N. Chervin, B. J. Clapsaddle, H. W. Chiu, A. E. Gash, J. H. Satcher, and S. M. Kauzlarich, “Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route,” Chem. Mater. 17(13), 3345–3351 (2005).
[CrossRef]

Chrysicopoulou, P.

P. Chrysicopoulou, D. Davazoglou, C. Trapalis, and G. Kordas, “Optical properties of SiO2-TiO2 sol-gel thin films,” J. Mater. Sci. 39(8), 2835–2839 (2004).
[CrossRef]

Clapsaddle, B. J.

C. N. Chervin, B. J. Clapsaddle, H. W. Chiu, A. E. Gash, J. H. Satcher, and S. M. Kauzlarich, “Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route,” Chem. Mater. 17(13), 3345–3351 (2005).
[CrossRef]

Colmenero, J.

C. Riedel, R. Arinero, P. Tordjeman, G. Lévêque, G. A. Schwartz, A. Alegria, and J. Colmenero, “Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 010801 (2010).
[CrossRef] [PubMed]

Dai, W.-L.

L. Chen, J. Zhu, Y.-M. Liu, Y. Cao, H.-X. Li, H.-Y. He, W.-L. Dai, and K.-N. Fan, “Photocatalytic activity of epoxide sol-gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying,” J. Mol. Catal. Chem. 255(1-2), 260–268 (2006).
[CrossRef]

Damin, B.

B. Damin, J. Garapon, and B. Sillion, “A convenient synthesis of chlorohydrins using chloramine T,” Synthesis 1981(05), 362–363 (1981).
[CrossRef]

Davazoglou, D.

P. Chrysicopoulou, D. Davazoglou, C. Trapalis, and G. Kordas, “Optical properties of SiO2-TiO2 sol-gel thin films,” J. Mater. Sci. 39(8), 2835–2839 (2004).
[CrossRef]

Deschenaux, R.

R. Deschenaux and J. K. Stille, “Transition-metal-catalyzed asymmetric organic synthesis via polymer-attached optically active phosphine ligands. 13. Asymmetric hydrogenation with polymer catalysts containing primary and chiral secondary pendant alcohols,” J. Org. Chem. 50(13), 2299–2302 (1985).
[CrossRef]

Fan, K.-N.

L. Chen, J. Zhu, Y.-M. Liu, Y. Cao, H.-X. Li, H.-Y. He, W.-L. Dai, and K.-N. Fan, “Photocatalytic activity of epoxide sol-gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying,” J. Mol. Catal. Chem. 255(1-2), 260–268 (2006).
[CrossRef]

Ferrari, M.

A. Antonello, M. Guglielmi, V. Bello, G. Mattei, A. Chiasera, M. Ferrari, and A. Martucci, “Titanate nanosheets as high refractive layer in vertical microcavity incorporating semiconductor quantum dots,” J. Phys. Chem. C 114(43), 18423–18428 (2010).
[CrossRef]

Garapon, J.

B. Damin, J. Garapon, and B. Sillion, “A convenient synthesis of chlorohydrins using chloramine T,” Synthesis 1981(05), 362–363 (1981).
[CrossRef]

Gash, A. E.

T. F. Baumann, A. E. Gash, S. C. Chinn, A. M. Sawvel, R. S. Maxwell, and J. H. Satcher, “Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors,” Chem. Mater. 17(2), 395–401 (2005).
[CrossRef]

C. N. Chervin, B. J. Clapsaddle, H. W. Chiu, A. E. Gash, J. H. Satcher, and S. M. Kauzlarich, “Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route,” Chem. Mater. 17(13), 3345–3351 (2005).
[CrossRef]

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater. 13(3), 999–1007 (2001).
[CrossRef]

A. E. Gash, T. M. Tillotson, J. H. Satcher, L. W. Hrubesh, and R. L. Simpson, “New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors,” J. Non-Cryst. Solids 285(1-3), 22–28 (2001).
[CrossRef]

Gonzalezoliver, C. J. R.

C. J. R. Gonzalezoliver, P. F. James, and H. Rawson, “Silica and silica-titania glasses prepared by the sol-gel process,” J. Non-Cryst. Solids 48(1), 129–152 (1982).
[CrossRef]

Gu, X. H.

M. H. Zhao, X. H. Gu, S. E. Lowther, C. Park, Y. C. Jean, and T. Nguyen, “Subsurface characterization of carbon nanotubes in polymer composites via quantitative electric force microscopy,” Nanotechnology 21(22), 225702 (2010).
[CrossRef] [PubMed]

Guan, C.

C. Guan, C. L. Lu, Y. F. Liu, and B. Yang, “Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites,” J. Appl. Polym. Sci. 102(2), 1631–1636 (2006).
[CrossRef]

Guglielmi, M.

A. Antonello, M. Guglielmi, V. Bello, G. Mattei, A. Chiasera, M. Ferrari, and A. Martucci, “Titanate nanosheets as high refractive layer in vertical microcavity incorporating semiconductor quantum dots,” J. Phys. Chem. C 114(43), 18423–18428 (2010).
[CrossRef]

He, H.-Y.

L. Chen, J. Zhu, Y.-M. Liu, Y. Cao, H.-X. Li, H.-Y. He, W.-L. Dai, and K.-N. Fan, “Photocatalytic activity of epoxide sol-gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying,” J. Mol. Catal. Chem. 255(1-2), 260–268 (2006).
[CrossRef]

Helmersson, U.

Z. C. Wang, U. Helmersson, and P. O. Kall, “Optical properties of anatase TiO2 thin films prepared by aqueous sol-gel process at low temperature,” Thin Solid Films 405(1-2), 50–54 (2002).
[CrossRef]

Hrubesh, L. W.

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater. 13(3), 999–1007 (2001).
[CrossRef]

A. E. Gash, T. M. Tillotson, J. H. Satcher, L. W. Hrubesh, and R. L. Simpson, “New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors,” J. Non-Cryst. Solids 285(1-3), 22–28 (2001).
[CrossRef]

James, P. F.

C. J. R. Gonzalezoliver, P. F. James, and H. Rawson, “Silica and silica-titania glasses prepared by the sol-gel process,” J. Non-Cryst. Solids 48(1), 129–152 (1982).
[CrossRef]

Jean, Y. C.

M. H. Zhao, X. H. Gu, S. E. Lowther, C. Park, Y. C. Jean, and T. Nguyen, “Subsurface characterization of carbon nanotubes in polymer composites via quantitative electric force microscopy,” Nanotechnology 21(22), 225702 (2010).
[CrossRef] [PubMed]

Kall, P. O.

Z. C. Wang, U. Helmersson, and P. O. Kall, “Optical properties of anatase TiO2 thin films prepared by aqueous sol-gel process at low temperature,” Thin Solid Films 405(1-2), 50–54 (2002).
[CrossRef]

Kantor, E. A.

D. L. Rakhmankulov, N. E. Maksimova, R. A. Karakhanov, E. A. Kantor, M. Bartok, and S. S. Zlotskii, “Chemistry of 1,3-bifunctional systems. 20. synthesis and thiolysis of sulfur-containing 1,3-dioxacyclanes,” Acta Phys. Chem. 21, 177–180 (1975).

Karakhanov, R. A.

D. L. Rakhmankulov, N. E. Maksimova, R. A. Karakhanov, E. A. Kantor, M. Bartok, and S. S. Zlotskii, “Chemistry of 1,3-bifunctional systems. 20. synthesis and thiolysis of sulfur-containing 1,3-dioxacyclanes,” Acta Phys. Chem. 21, 177–180 (1975).

Kauzlarich, S. M.

C. N. Chervin, B. J. Clapsaddle, H. W. Chiu, A. E. Gash, J. H. Satcher, and S. M. Kauzlarich, “Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route,” Chem. Mater. 17(13), 3345–3351 (2005).
[CrossRef]

Kordas, G.

P. Chrysicopoulou, D. Davazoglou, C. Trapalis, and G. Kordas, “Optical properties of SiO2-TiO2 sol-gel thin films,” J. Mater. Sci. 39(8), 2835–2839 (2004).
[CrossRef]

Lévêque, G.

C. Riedel, R. Arinero, P. Tordjeman, G. Lévêque, G. A. Schwartz, A. Alegria, and J. Colmenero, “Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 010801 (2010).
[CrossRef] [PubMed]

Li, H.-X.

L. Chen, J. Zhu, Y.-M. Liu, Y. Cao, H.-X. Li, H.-Y. He, W.-L. Dai, and K.-N. Fan, “Photocatalytic activity of epoxide sol-gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying,” J. Mol. Catal. Chem. 255(1-2), 260–268 (2006).
[CrossRef]

Liu, Y. F.

C. Guan, C. L. Lu, Y. F. Liu, and B. Yang, “Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites,” J. Appl. Polym. Sci. 102(2), 1631–1636 (2006).
[CrossRef]

Liu, Y.-M.

L. Chen, J. Zhu, Y.-M. Liu, Y. Cao, H.-X. Li, H.-Y. He, W.-L. Dai, and K.-N. Fan, “Photocatalytic activity of epoxide sol-gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying,” J. Mol. Catal. Chem. 255(1-2), 260–268 (2006).
[CrossRef]

Lowther, S. E.

M. H. Zhao, X. H. Gu, S. E. Lowther, C. Park, Y. C. Jean, and T. Nguyen, “Subsurface characterization of carbon nanotubes in polymer composites via quantitative electric force microscopy,” Nanotechnology 21(22), 225702 (2010).
[CrossRef] [PubMed]

Lu, C. L.

C. Guan, C. L. Lu, Y. F. Liu, and B. Yang, “Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites,” J. Appl. Polym. Sci. 102(2), 1631–1636 (2006).
[CrossRef]

Maksimova, N. E.

D. L. Rakhmankulov, N. E. Maksimova, R. A. Karakhanov, E. A. Kantor, M. Bartok, and S. S. Zlotskii, “Chemistry of 1,3-bifunctional systems. 20. synthesis and thiolysis of sulfur-containing 1,3-dioxacyclanes,” Acta Phys. Chem. 21, 177–180 (1975).

Martucci, A.

A. Antonello, M. Guglielmi, V. Bello, G. Mattei, A. Chiasera, M. Ferrari, and A. Martucci, “Titanate nanosheets as high refractive layer in vertical microcavity incorporating semiconductor quantum dots,” J. Phys. Chem. C 114(43), 18423–18428 (2010).
[CrossRef]

Mattei, G.

A. Antonello, M. Guglielmi, V. Bello, G. Mattei, A. Chiasera, M. Ferrari, and A. Martucci, “Titanate nanosheets as high refractive layer in vertical microcavity incorporating semiconductor quantum dots,” J. Phys. Chem. C 114(43), 18423–18428 (2010).
[CrossRef]

Maxwell, R. S.

T. F. Baumann, A. E. Gash, S. C. Chinn, A. M. Sawvel, R. S. Maxwell, and J. H. Satcher, “Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors,” Chem. Mater. 17(2), 395–401 (2005).
[CrossRef]

Mohammad, A.

A. Mohammad, D. P. N. Satchell, and R. S. Satchell, “Quantitative aspects of Lewis acidity. Part VIII. The validity of infrared carbonyl shifts as measures of Lewis acid strength. The interaction of Lewis acids and phenalen-1-one(perinaphthenone),” J. Chem. Soc. B 1967, 723–725 (1967).
[CrossRef]

Nguyen, T.

M. H. Zhao, X. H. Gu, S. E. Lowther, C. Park, Y. C. Jean, and T. Nguyen, “Subsurface characterization of carbon nanotubes in polymer composites via quantitative electric force microscopy,” Nanotechnology 21(22), 225702 (2010).
[CrossRef] [PubMed]

Park, C.

M. H. Zhao, X. H. Gu, S. E. Lowther, C. Park, Y. C. Jean, and T. Nguyen, “Subsurface characterization of carbon nanotubes in polymer composites via quantitative electric force microscopy,” Nanotechnology 21(22), 225702 (2010).
[CrossRef] [PubMed]

Parker, R. A.

R. A. Parker, “Static dielectric constant of rutile (TiO2), 1.6-1060°K,” Phys. Rev. 124(6), 1719–1722 (1961).
[CrossRef]

Poco, J. F.

R. A. Reibold, J. F. Poco, T. F. Baumann, R. L. Simpson, and J. H. Satcher, “Synthesis and characterization of a low-density urania (UO3) aerogel,” J. Non-Cryst. Solids 319(3), 241–246 (2003).
[CrossRef]

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater. 13(3), 999–1007 (2001).
[CrossRef]

Rakhmankulov, D. L.

D. L. Rakhmankulov, N. E. Maksimova, R. A. Karakhanov, E. A. Kantor, M. Bartok, and S. S. Zlotskii, “Chemistry of 1,3-bifunctional systems. 20. synthesis and thiolysis of sulfur-containing 1,3-dioxacyclanes,” Acta Phys. Chem. 21, 177–180 (1975).

Rawson, H.

C. J. R. Gonzalezoliver, P. F. James, and H. Rawson, “Silica and silica-titania glasses prepared by the sol-gel process,” J. Non-Cryst. Solids 48(1), 129–152 (1982).
[CrossRef]

Reibold, R. A.

R. A. Reibold, J. F. Poco, T. F. Baumann, R. L. Simpson, and J. H. Satcher, “Synthesis and characterization of a low-density urania (UO3) aerogel,” J. Non-Cryst. Solids 319(3), 241–246 (2003).
[CrossRef]

Riedel, C.

C. Riedel, R. Arinero, P. Tordjeman, G. Lévêque, G. A. Schwartz, A. Alegria, and J. Colmenero, “Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 010801 (2010).
[CrossRef] [PubMed]

Satchell, D. P. N.

A. Mohammad, D. P. N. Satchell, and R. S. Satchell, “Quantitative aspects of Lewis acidity. Part VIII. The validity of infrared carbonyl shifts as measures of Lewis acid strength. The interaction of Lewis acids and phenalen-1-one(perinaphthenone),” J. Chem. Soc. B 1967, 723–725 (1967).
[CrossRef]

Satchell, R. S.

A. Mohammad, D. P. N. Satchell, and R. S. Satchell, “Quantitative aspects of Lewis acidity. Part VIII. The validity of infrared carbonyl shifts as measures of Lewis acid strength. The interaction of Lewis acids and phenalen-1-one(perinaphthenone),” J. Chem. Soc. B 1967, 723–725 (1967).
[CrossRef]

Satcher, J. H.

T. F. Baumann, A. E. Gash, S. C. Chinn, A. M. Sawvel, R. S. Maxwell, and J. H. Satcher, “Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors,” Chem. Mater. 17(2), 395–401 (2005).
[CrossRef]

C. N. Chervin, B. J. Clapsaddle, H. W. Chiu, A. E. Gash, J. H. Satcher, and S. M. Kauzlarich, “Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route,” Chem. Mater. 17(13), 3345–3351 (2005).
[CrossRef]

R. A. Reibold, J. F. Poco, T. F. Baumann, R. L. Simpson, and J. H. Satcher, “Synthesis and characterization of a low-density urania (UO3) aerogel,” J. Non-Cryst. Solids 319(3), 241–246 (2003).
[CrossRef]

A. E. Gash, T. M. Tillotson, J. H. Satcher, L. W. Hrubesh, and R. L. Simpson, “New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors,” J. Non-Cryst. Solids 285(1-3), 22–28 (2001).
[CrossRef]

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater. 13(3), 999–1007 (2001).
[CrossRef]

Sawvel, A. M.

T. F. Baumann, A. E. Gash, S. C. Chinn, A. M. Sawvel, R. S. Maxwell, and J. H. Satcher, “Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors,” Chem. Mater. 17(2), 395–401 (2005).
[CrossRef]

Schwartz, G. A.

C. Riedel, R. Arinero, P. Tordjeman, G. Lévêque, G. A. Schwartz, A. Alegria, and J. Colmenero, “Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 010801 (2010).
[CrossRef] [PubMed]

Sillion, B.

B. Damin, J. Garapon, and B. Sillion, “A convenient synthesis of chlorohydrins using chloramine T,” Synthesis 1981(05), 362–363 (1981).
[CrossRef]

Simpson, R. L.

R. A. Reibold, J. F. Poco, T. F. Baumann, R. L. Simpson, and J. H. Satcher, “Synthesis and characterization of a low-density urania (UO3) aerogel,” J. Non-Cryst. Solids 319(3), 241–246 (2003).
[CrossRef]

A. E. Gash, T. M. Tillotson, J. H. Satcher, L. W. Hrubesh, and R. L. Simpson, “New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors,” J. Non-Cryst. Solids 285(1-3), 22–28 (2001).
[CrossRef]

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater. 13(3), 999–1007 (2001).
[CrossRef]

Stille, J. K.

R. Deschenaux and J. K. Stille, “Transition-metal-catalyzed asymmetric organic synthesis via polymer-attached optically active phosphine ligands. 13. Asymmetric hydrogenation with polymer catalysts containing primary and chiral secondary pendant alcohols,” J. Org. Chem. 50(13), 2299–2302 (1985).
[CrossRef]

Tillotson, T. M.

A. E. Gash, T. M. Tillotson, J. H. Satcher, L. W. Hrubesh, and R. L. Simpson, “New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors,” J. Non-Cryst. Solids 285(1-3), 22–28 (2001).
[CrossRef]

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater. 13(3), 999–1007 (2001).
[CrossRef]

Tordjeman, P.

C. Riedel, R. Arinero, P. Tordjeman, G. Lévêque, G. A. Schwartz, A. Alegria, and J. Colmenero, “Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 010801 (2010).
[CrossRef] [PubMed]

Trapalis, C.

P. Chrysicopoulou, D. Davazoglou, C. Trapalis, and G. Kordas, “Optical properties of SiO2-TiO2 sol-gel thin films,” J. Mater. Sci. 39(8), 2835–2839 (2004).
[CrossRef]

Wang, Z. C.

Z. C. Wang, U. Helmersson, and P. O. Kall, “Optical properties of anatase TiO2 thin films prepared by aqueous sol-gel process at low temperature,” Thin Solid Films 405(1-2), 50–54 (2002).
[CrossRef]

Yang, B.

C. Guan, C. L. Lu, Y. F. Liu, and B. Yang, “Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites,” J. Appl. Polym. Sci. 102(2), 1631–1636 (2006).
[CrossRef]

Zhao, M. H.

M. H. Zhao, X. H. Gu, S. E. Lowther, C. Park, Y. C. Jean, and T. Nguyen, “Subsurface characterization of carbon nanotubes in polymer composites via quantitative electric force microscopy,” Nanotechnology 21(22), 225702 (2010).
[CrossRef] [PubMed]

Zhu, J.

L. Chen, J. Zhu, Y.-M. Liu, Y. Cao, H.-X. Li, H.-Y. He, W.-L. Dai, and K.-N. Fan, “Photocatalytic activity of epoxide sol-gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying,” J. Mol. Catal. Chem. 255(1-2), 260–268 (2006).
[CrossRef]

Zlotskii, S. S.

D. L. Rakhmankulov, N. E. Maksimova, R. A. Karakhanov, E. A. Kantor, M. Bartok, and S. S. Zlotskii, “Chemistry of 1,3-bifunctional systems. 20. synthesis and thiolysis of sulfur-containing 1,3-dioxacyclanes,” Acta Phys. Chem. 21, 177–180 (1975).

Acta Phys. Chem.

D. L. Rakhmankulov, N. E. Maksimova, R. A. Karakhanov, E. A. Kantor, M. Bartok, and S. S. Zlotskii, “Chemistry of 1,3-bifunctional systems. 20. synthesis and thiolysis of sulfur-containing 1,3-dioxacyclanes,” Acta Phys. Chem. 21, 177–180 (1975).

Chem. Mater.

T. F. Baumann, A. E. Gash, S. C. Chinn, A. M. Sawvel, R. S. Maxwell, and J. H. Satcher, “Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors,” Chem. Mater. 17(2), 395–401 (2005).
[CrossRef]

C. N. Chervin, B. J. Clapsaddle, H. W. Chiu, A. E. Gash, J. H. Satcher, and S. M. Kauzlarich, “Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route,” Chem. Mater. 17(13), 3345–3351 (2005).
[CrossRef]

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater. 13(3), 999–1007 (2001).
[CrossRef]

J. Appl. Polym. Sci.

C. Guan, C. L. Lu, Y. F. Liu, and B. Yang, “Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites,” J. Appl. Polym. Sci. 102(2), 1631–1636 (2006).
[CrossRef]

J. Chem. Soc. B

A. Mohammad, D. P. N. Satchell, and R. S. Satchell, “Quantitative aspects of Lewis acidity. Part VIII. The validity of infrared carbonyl shifts as measures of Lewis acid strength. The interaction of Lewis acids and phenalen-1-one(perinaphthenone),” J. Chem. Soc. B 1967, 723–725 (1967).
[CrossRef]

J. Mater. Sci.

P. Chrysicopoulou, D. Davazoglou, C. Trapalis, and G. Kordas, “Optical properties of SiO2-TiO2 sol-gel thin films,” J. Mater. Sci. 39(8), 2835–2839 (2004).
[CrossRef]

J. Mol. Catal. Chem.

L. Chen, J. Zhu, Y.-M. Liu, Y. Cao, H.-X. Li, H.-Y. He, W.-L. Dai, and K.-N. Fan, “Photocatalytic activity of epoxide sol-gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying,” J. Mol. Catal. Chem. 255(1-2), 260–268 (2006).
[CrossRef]

J. Non-Cryst. Solids

C. J. R. Gonzalezoliver, P. F. James, and H. Rawson, “Silica and silica-titania glasses prepared by the sol-gel process,” J. Non-Cryst. Solids 48(1), 129–152 (1982).
[CrossRef]

A. E. Gash, T. M. Tillotson, J. H. Satcher, L. W. Hrubesh, and R. L. Simpson, “New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors,” J. Non-Cryst. Solids 285(1-3), 22–28 (2001).
[CrossRef]

R. A. Reibold, J. F. Poco, T. F. Baumann, R. L. Simpson, and J. H. Satcher, “Synthesis and characterization of a low-density urania (UO3) aerogel,” J. Non-Cryst. Solids 319(3), 241–246 (2003).
[CrossRef]

J. Org. Chem.

R. Deschenaux and J. K. Stille, “Transition-metal-catalyzed asymmetric organic synthesis via polymer-attached optically active phosphine ligands. 13. Asymmetric hydrogenation with polymer catalysts containing primary and chiral secondary pendant alcohols,” J. Org. Chem. 50(13), 2299–2302 (1985).
[CrossRef]

J. Phys. Chem. C

A. Antonello, M. Guglielmi, V. Bello, G. Mattei, A. Chiasera, M. Ferrari, and A. Martucci, “Titanate nanosheets as high refractive layer in vertical microcavity incorporating semiconductor quantum dots,” J. Phys. Chem. C 114(43), 18423–18428 (2010).
[CrossRef]

Nanotechnology

M. H. Zhao, X. H. Gu, S. E. Lowther, C. Park, Y. C. Jean, and T. Nguyen, “Subsurface characterization of carbon nanotubes in polymer composites via quantitative electric force microscopy,” Nanotechnology 21(22), 225702 (2010).
[CrossRef] [PubMed]

Phys. Rev.

R. A. Parker, “Static dielectric constant of rutile (TiO2), 1.6-1060°K,” Phys. Rev. 124(6), 1719–1722 (1961).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

C. Riedel, R. Arinero, P. Tordjeman, G. Lévêque, G. A. Schwartz, A. Alegria, and J. Colmenero, “Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 010801 (2010).
[CrossRef] [PubMed]

Synthesis

B. Damin, J. Garapon, and B. Sillion, “A convenient synthesis of chlorohydrins using chloramine T,” Synthesis 1981(05), 362–363 (1981).
[CrossRef]

Thin Solid Films

Z. C. Wang, U. Helmersson, and P. O. Kall, “Optical properties of anatase TiO2 thin films prepared by aqueous sol-gel process at low temperature,” Thin Solid Films 405(1-2), 50–54 (2002).
[CrossRef]

Other

R. H. Lindquist, “Dispersion-hardened metals and metal alloys,” U.S. Patent 3458306 (19690729, 1969).

J. G. Erickson, “Glycidyl ester,” U.S. Patent 2567842 (19510911, 1951).

Advanced Chemistry Development (ACD/Labs) Software 1994–2010.

SDBSWeb: http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, September 16, 2010).

J. Brandup and E. H. Immergut, eds., Polymer Handbook (Wiley, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the ring opening reaction of GLYME and one particle as it might be present in the annealed film (left and above) and a typical dynamic light scatter data plot for determining the size distribution of particles in a sol synthesized with 75% GLYME and 25% PO (lower right).

Fig. 2
Fig. 2

XPS survey spectra of a material made only with PO and of one only made with GLYME. Peak assignments are shown in the graph. Note that the C 1s peak in the black curve is not visible at this magnification due to its small size.

Fig. 3
Fig. 3

Inset: The carbon content of the films changes linearly with the amount of GLYME used in the synthesis. Main graph: The squares represent data from sols synthesized with mixtures of GLYME and PO. The concentration of epoxy groups, water and TiCl4 was kept constant for all the materials. The circles represent the films obtained from mixtures of two sols, synthesized separately with either PO or GLYME. The error bars show the standard error of the mean. Every data point represents at least 4 samples.

Fig. 4
Fig. 4

Surface profile scan over a 300µm wide structure. The image in the middle shows a microscope picture of the sample.

Fig. 5
Fig. 5

AFM and EFM images of a titanium oxide - organic composite thin film with ~46 wt% of titanium oxide; upper left: height image, rms roughness 0.6 nm, upper right: AFM phase, scale 40°, lower left: EFM phase, scale 40°, lower right: Near bimodal distribution of relative dielectric constants computed from EFM image. In the lower right of the AFM and EFM phase image a zoomed on section is shown. The yellow line represents 100nm.

Metrics