Abstract

Spectroscopic features of Er:YAG at cryogenic temperatures are studied in detail. We report that the major absorption line at ~1532.3 nm is much narrower and much stronger than previously measured. Spectroscopic analysis suggests that its impact on the laser performance is limited because of the strong pump saturation effect. It is shown that the high efficiency of the laser is, in fact, achieved due to absorption in the wing of this line, which is comprised of a few other transitions. It is also shown that pumping into the relatively weak 1534 nm absorption line provides practically the same laser efficiency (~75%) as pumping into the major 1532 nm absorption line. This is explained by a numerical laser model which takes into account saturation effects of pump and laser intensities. The model is validated by experimental data.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, “Cryogenically cooled Er:YAG laser.” in CLEO/Europe and IQEC 2007 conference Digest, (OSA 2007), paper CA6–5.
  2. N. Ter-Gabrielyan, M. Dubinskii, G. A. Newburgh, A. Michael, and L. D. Merkle, “Temperature dependence of a diode-pumped cryogenic Er:YAG laser,” Opt. Express 17(9), 7159–7169 (2009).
    [CrossRef] [PubMed]
  3. S. D. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).
  4. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YALO3, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
    [CrossRef]
  5. V. Fromzel, N. Ter-Gabrielyan, M. Dubinskii, G. Venus, I. Divliansky, L. Glebov, O. Mokhun, and V. Smirnov, “Cryo-cooled Er:YAG laser resonantly pumped by a fiber coupled ultra-spectrally-narrowed diode source,” presented at Solid State and Diode Laser Technology Review, 15–18 June 2010, Broomfield, Colorado.
  6. N. E. Ter-Gabrielyan, L. D. Merkle, V.Fromzel, J.O.White, J. McElhenny and A. Michael, “Cryogenic Er:YAG lasers: aspects of diode pumping,” Solid State and Diode Laser Technology Review, Technical Digest, pp. 110–113, 15–18 June 2010, Broomfield, Colorado.
  7. K. Spariosu and M. Birnbaum, “Intracavity 1549-um pumped 1634-mm Er:YAG lasers at 300 K,” IEEE J. Quantum Electron. 30(4), 1044–1049 (1994).
    [CrossRef]
  8. M. G. Beghi, C. E. Bottani, and V. Russo, “Debye temperature of erbium-doped yttrium aluminum garnet from luminescence and Brillouin scattering data,” J. Appl. Phys. 87(4), 1769–1774 (2000).
    [CrossRef]
  9. Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
    [CrossRef]
  10. J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, “Influence of energy-transfer-upconversion on threshold pump power in quasi-three-level solid-state lasers,” Opt. Express 17(14), 11935–11943 (2009).
    [CrossRef] [PubMed]
  11. J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 um Er3+ lasers,” J. Opt. Soc. Am. B 24(9), 2454–2460 (2007).
    [CrossRef]
  12. M. O. Iskandarov, A. A. Nikitichev, and A. I. Stepanov, “Quasi-two-level Er3+:Y3Al5O12 laser for 1.6 µm range,” J. Opt. Technol. 68(12), 885–888 (2001).
    [CrossRef]

2010 (1)

S. D. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).

2009 (2)

2007 (1)

2005 (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YALO3, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

2004 (1)

Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
[CrossRef]

2001 (1)

2000 (1)

M. G. Beghi, C. E. Bottani, and V. Russo, “Debye temperature of erbium-doped yttrium aluminum garnet from luminescence and Brillouin scattering data,” J. Appl. Phys. 87(4), 1769–1774 (2000).
[CrossRef]

1994 (1)

K. Spariosu and M. Birnbaum, “Intracavity 1549-um pumped 1634-mm Er:YAG lasers at 300 K,” IEEE J. Quantum Electron. 30(4), 1044–1049 (1994).
[CrossRef]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YALO3, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Beattie, J. A.

S. D. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).

Beghi, M. G.

M. G. Beghi, C. E. Bottani, and V. Russo, “Debye temperature of erbium-doped yttrium aluminum garnet from luminescence and Brillouin scattering data,” J. Appl. Phys. 87(4), 1769–1774 (2000).
[CrossRef]

Birnbaum, M.

K. Spariosu and M. Birnbaum, “Intracavity 1549-um pumped 1634-mm Er:YAG lasers at 300 K,” IEEE J. Quantum Electron. 30(4), 1044–1049 (1994).
[CrossRef]

Bottani, C. E.

M. G. Beghi, C. E. Bottani, and V. Russo, “Debye temperature of erbium-doped yttrium aluminum garnet from luminescence and Brillouin scattering data,” J. Appl. Phys. 87(4), 1769–1774 (2000).
[CrossRef]

Chicklis, E. P.

S. D. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).

Clarkson, W. A.

Dinndorf, K. M.

S. D. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).

Dubinskii, M.

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YALO3, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Garbuzov, D.

Iskandarov, M. O.

Kim, J. W.

Kudryashov, I.

Kukla, M. J.

S. D. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).

Mackenzie, J. I.

Merkle, L. D.

Michael, A.

Newburgh, G. A.

Nikitichev, A. A.

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YALO3, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YALO3, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Russo, V.

M. G. Beghi, C. E. Bottani, and V. Russo, “Debye temperature of erbium-doped yttrium aluminum garnet from luminescence and Brillouin scattering data,” J. Appl. Phys. 87(4), 1769–1774 (2000).
[CrossRef]

Sato, Y.

Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
[CrossRef]

Setzler, S. D.

S. D. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).

Shaw, M. J.

S. D. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).

Spariosu, K.

K. Spariosu and M. Birnbaum, “Intracavity 1549-um pumped 1634-mm Er:YAG lasers at 300 K,” IEEE J. Quantum Electron. 30(4), 1044–1049 (1994).
[CrossRef]

Stepanov, A. I.

Taira, T.

Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
[CrossRef]

Ter-Gabrielyan, N.

Unternahrer, J. R.

S. D. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).

White, J. O.

IEEE J. Quantum Electron. (2)

K. Spariosu and M. Birnbaum, “Intracavity 1549-um pumped 1634-mm Er:YAG lasers at 300 K,” IEEE J. Quantum Electron. 30(4), 1044–1049 (1994).
[CrossRef]

Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
[CrossRef]

J. Appl. Phys. (2)

M. G. Beghi, C. E. Bottani, and V. Russo, “Debye temperature of erbium-doped yttrium aluminum garnet from luminescence and Brillouin scattering data,” J. Appl. Phys. 87(4), 1769–1774 (2000).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YALO3, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Technol. (1)

Opt. Express (2)

Proc. SPIE (1)

S. D. Setzler, M. J. Shaw, M. J. Kukla, J. R. Unternahrer, K. M. Dinndorf, J. A. Beattie, and E. P. Chicklis, “A 400 W cryogenic Er:YAG slab laser at 1645 nm,” Proc. SPIE 7686, 76860C (2010).

Other (3)

V. Fromzel, N. Ter-Gabrielyan, M. Dubinskii, G. Venus, I. Divliansky, L. Glebov, O. Mokhun, and V. Smirnov, “Cryo-cooled Er:YAG laser resonantly pumped by a fiber coupled ultra-spectrally-narrowed diode source,” presented at Solid State and Diode Laser Technology Review, 15–18 June 2010, Broomfield, Colorado.

N. E. Ter-Gabrielyan, L. D. Merkle, V.Fromzel, J.O.White, J. McElhenny and A. Michael, “Cryogenic Er:YAG lasers: aspects of diode pumping,” Solid State and Diode Laser Technology Review, Technical Digest, pp. 110–113, 15–18 June 2010, Broomfield, Colorado.

M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, “Cryogenically cooled Er:YAG laser.” in CLEO/Europe and IQEC 2007 conference Digest, (OSA 2007), paper CA6–5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a. The energy level diagram with major pump and laser transitions. b. Absorption spectrum of Er(0.5%):YAG at 77K taken with Cary 6000i spectrophotometer (0.05 nm resolution).

Fig. 2
Fig. 2

a. Fragment of the 4I15/24I13/2 absorption cross section spectrum of Er3+:YAG crystal at 77K taken with the 1 pm spectral resolution; b. Close-up of the Lorentzian fit simulation of the 1532 nm absorption band at 77 K.

Fig. 3
Fig. 3

Temperature behavior of the 1532.3 and 1534 nm (inset) absorption bands.

Fig. 4
Fig. 4

Experimental setup. HRM - high-reflecting mirror, OC - output coupler. LN2 - liquid nitrogen.

Fig. 5
Fig. 5

CW laser output vs. incident (a, c) and absorbed (b, d) pump power for the cryo-cooled Er:YAG laser with the la = 5 mm (a,b) and la = 10mm (c,d) long crystals pumped into one of the absorption bands: 1534-, 1546- or 1532 nm. Dots - experimental data; Solid lines - simulation results.

Fig. 6
Fig. 6

Performance of the cryo-cooled Er:YAG laser with 5-mm long crystal pumped by Er- fiber laser in QCW mode.

Tables (1)

Tables Icon

Table 1 Components of the 1532 nm absorption band simulated with Lorentzian fit.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I p ( λ , z ) σ p ( λ ) λ p h c [ N 0 f Z i N 2 ( λ , z ) ( f Z i + f Y j ) ] = N 2 ( λ , z ) τ + I l a s σ l a s λ l a s h c [ N 2 ( λ , z ) ( f Y 2 + f Z 5 ) ] N 0 f Z 5 ]
I p ( λ , z ) = 8 P p ( z ) G p ( λ ) π d p 2
I l a s = 8 P l a s π d l a s 2
Δ λ p u m p G ( λ ) d λ = 1
α ( λ , z ) = 1 + ( 1 f Y j f Z 5 f Z i f Y 2 ) I l a s I S l a s 1 + ( 1 + f Z 5 f Y 2 ) I l a s I S l a s + ( 1 + f Y j f Z i ) I p ( λ , z ) I S P ( λ ) α 0 ( λ )
α 0 ( λ ) = σ p ( λ ) N 0 f Z i
[ 1 + I p ( λ , z + d z ) ( 1 + f Y j f Z i ) I S P ( λ ) ] ln [ I p ( λ , z + d z ) I p ( λ , z ) ] = α 0 ( λ ) d z
N 2 ( P p ) = λ , z N 2 ( λ , z ) d λ d z = τ 2 l a h ν p Δ λ a b s , z [ I p 0 ( λ ) I p ( λ , z ) ] d λ d z
P a b s ( P p ) = π d p 2 8 z , Δ λ a b s [ I p 0 ( λ ) I p ( λ , z ) ] d λ d z
α g ( P p ) = σ g [ N 2 ( P p ) f Y 2 ( N 0 N 2 ( P p ) ) f Z 5 ]
α g ( P p ) = α l o s s = ln ( R o u t R H R ) 1 + L 2 l a
P o u t , 1 = ln ( R 1 ) 1 ln ( R 1 ) 1 + L λ p λ g ( P p P t h ) K a b s ( P t h )
α a b s . l a s = 1 + ( 1 f 2 j f 1 m f 1 i f 2 k ) I l a s I S l a s 1 + ( 1 + f 1 i f 2 k ) I l a s I S l a s + ( k 0 α a b s 1 ) k 0
I l a s = P o u t , 1 8 π d l a s 2 ( 1 + R 1 ) ( 1 R 1 )
α a b s = ln ( 1 K a b s ) 1 l a
k 0 = ln ( 1 K a b s ( P p , min ) ) 1 l a
P o u t = ln ( R o u t ) 1 ln ( R o u t ) 1 + L λ p λ g ( P p P t h ) [ 1 exp ( α a b s . l a s l a ) ]
τ e f f 1 = τ 1 + w u p N 2 ( P t h )

Metrics