Abstract

We report on the photopolymerization kinetics and volume holographic recording characteristics of silica nanoparticle-polymer composites using thiol-ene monomers capable of step-growth polymerization. Real-time Fourier transform spectroscopy and photocalorimetry are used to characterize the visible light curing kinetics of a thiol-ene monomer system consisting of secondary dithiol with high self-life stability and low odor and triene with rigid structure and high electron density. It is shown that while the nanoparticle-(thiol-ene)polymer composites exhibit high transparency, their saturated refractive index modulation (Δnsat ) and material sensitivity (S) are as large as 1×10−2 and 1615 cm/J, respectively. The polymerization shrinkage is reduced as low as 0.4% as a result of the late gelation in conversion. These values meet the acceptable values for holographic data storage media (i.e., 5×10−3, 500 cm/J and 0.5% for Δnsat, S and shrinkage, respectively). It is also shown that because of the dispersion of inorganic silica nanoparticles and the use of the triene monomer having the rigid structure of the triazine functional group, the thermal stability of recorded holograms is much improved over our previously reported nanoparticle-polymer composites using organic nanoparticles and primary mercaptopropionate trithiol/allyl ether triene monomers [Opt. Lett. 35, 396 (2010)].

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L.L. Beecroft and C.K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997).
    [CrossRef]
  2. See, for example, M. Kaczmarek and Y. Tomita, eds., a special issue on Optics of Nanocomposite Materials, J. Opt. A: Pure Appl. Opt. 11, 020201–024023 (2009).
    [CrossRef]
  3. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
    [CrossRef]
  4. N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43, 2125–2129 (2004).
    [CrossRef] [PubMed]
  5. C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 5, 1623–1629 (2005).
    [CrossRef]
  6. W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87, 012106-1–012106-3 (2005).
    [CrossRef]
  7. Y. Tomita, K. Furushima, Y. Endoh, M. Hidaka, K. Ohmori, and K. Chikama, “Volume holographic recording in multi-component photopolymers with hyperbranched polymers as organic nanoparticles,” Proc. SPIE 6187, 618702-1–618702-10 (2006).
  8. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103-1–1071103-3 (2006).
    [CrossRef]
  9. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14, 12712–12719 (2006).
    [CrossRef] [PubMed]
  10. I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
  11. O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704-1–105704-7 (2007).
    [CrossRef]
  12. K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108-1–113108-6 (2008).
    [CrossRef]
  13. T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt. 11, 024010-1–024010-7 (2009).
    [CrossRef]
  14. E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide based photopolymer,” J. Opt. A: Pure Appl. Opt. 11, 024016-1–024016-9 (2009).
    [CrossRef]
  15. K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys. 107, 023107-1–023107-6 (2010).
  16. Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films,” Opt. Lett. 33, 1750–1752 (2008).
    [CrossRef] [PubMed]
  17. H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage (Springer, Berlin, 2000).
  18. E. Hata, S. Koda, K. Gotoh, and Y. Tomita, “Volume holographic recording in nanoparticle-polymer composites with reduced polymerization shrinkage,” Technical Digest of CLEO-Europe, June 15–19, 2009, CC2.2-THU, Munich, Germany, (2009).
  19. E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett. 35, 396–398 (2010).
    [CrossRef] [PubMed]
  20. Y. Tomita, E. Hata, K. Omura, and S. Yasui, “Low polymerization-shrinkage nanoparticle-polymer composite films based on thiol-ene photopolymerization for holographic data storage,” Proc. SPIE 7722, 772229-1–772229-7 (2010).
  21. G. Odian, Principles of Polymerization , 4th ed. (Wiley, New York, 1994), Chap.2, p.110.
  22. C.E. Hoyle, T.Y. Lee, and T. Roper, “Thiol-enes: Chemistry of the past with promise for the future,” J. Polym. Sci. part A:Polym. Chem. 42, 5301–5338 (2004).
    [CrossRef]
  23. H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005).
    [CrossRef] [PubMed]
  24. J. A. Carioscia, H. Lu, J. W. Stansbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater. 21,1137–1143 (2005).
    [CrossRef] [PubMed]
  25. J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Evaluation and control of thiol-ene/thiol-epoxy hybrid networks,” Polymer 48, 1526–1532 (2007).
    [CrossRef]
  26. D. A. Waldman, H.-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).
  27. Q. Li, H. Zhou, D. A. Wicks, and C. E. Hoyle, “Thiourethane-based thiol-ene high Tg networks: preparation, thermal, mechanical, and physical properties,” J. Polym. Sci. Part A: Polym. Chem. 45, 5103–5111 (2007).
    [CrossRef]
  28. T. J. White, L. V. Natarajan, V. P. Tondiglia, P. F. Lloyd, T. J. Bunning, and C. A. Guymon, “Holographic polymer dispersed liquid crystals (HPDLCs) containing triallyl isocyanurate monomer,” Polymer 48, 5979–5987 (2007).
    [CrossRef]
  29. Q. Li, H. Zhou, and C. E. Hoyle, “The effect of thiol and ene structures on thiol-ene networks: Photopolymerization, physical, mechanical and optical properties,” Polymer 50, 2237–2245 (2009).
    [CrossRef]
  30. N.B. Cramer and C.N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. Part A: Poly. Chem. 39, 3311–3319 (2001).
    [CrossRef]
  31. N.B. Cramer, T. Davies, A.K. O’Brien, and C.N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003).
    [CrossRef]
  32. L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
    [CrossRef]
  33. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947(1969).
  34. L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
    [CrossRef]
  35. J. A. Frantz, R. K. Kostuk, and D. A. Waldman, “Model of noise-grating selectivity in volume holographic recording materials by use of Monte Carlo simulations,” J. Opt. Soc. Am. A 21, 378–387 (2004).
    [CrossRef]
  36. N. Suzuki and Y. Tomita, “Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films,” Appl. Opt. 46, 6809–6814 (2007).
    [CrossRef] [PubMed]
  37. D. Sabol, M.R. Gleesen, S. Lin, and J.T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 0531131-1–0531131-8 (2010), and references therein.
    [CrossRef]
  38. J. Finter, M. Riediker, O. Rohde, and B. Rotzinger, “Photosensitive systems for microlithography based on organometallic photinitiators,” Makromol. Chem. Macromol. Symp. 24, 177–187 (1989).
    [CrossRef]
  39. B.-S. Chiou and S.A. Khan, “Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers,” Macromolecules 30, 7322–7328 (1997).
    [CrossRef]
  40. S. Nazarenko, D. Haderski, A. Hiltner, and E. Baer, “ Origin of the intermediate damping peak in microlayer composites,” Polym. Eng. Sci. 35, 1682–1687 (1995).
    [CrossRef]
  41. A.F. Senyurt, G. Warren, J.B. Whitehead, and C.E. Hoyle, “Matrix physical structure effect on the electro-optic characteristics of thiol-ene based H-PDLC films,” Polymer 47, 2741–2749 (2006).
    [CrossRef]
  42. Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett. 30, 839–841 (2005).
    [CrossRef] [PubMed]
  43. R. Caputo, A.V. Sukhov, N.V. Tabirian, C. Umeton, and R.F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerization in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
    [CrossRef]
  44. E. Hata and Y. Tomita, “Dependence of stoichiometric thiol-ene ratio on refractive index modulation and polymerization shrinkage in photopolymerizable nanoparticle-thiol-ene polymer composites,” unpublished.
  45. R. Magnusson and T. K. Gaylord, “Laser scattering induced in lithium niobate,” Appl. Opt. 13, 1545–1548 (1974).
    [CrossRef]
  46. M. Fally, M.A. Ellabban, R.A. Rupp, M. Fink, J. Wolfberger, and E. Tillmanns, “Characterization of parasitic gratings in LiNbO3,” Phys. Rev. B 61, 15778–15784 (2000).
    [CrossRef]
  47. J.M. Russo and R.K. Kostuk, “Temperature dependence properties of holographic gratings in phenanthren-quinone doped poly(methyl methacrylate) photopolymers,” Appl. Opt. 46, 7494–7499 (2007).
    [CrossRef] [PubMed]
  48. Y. Rao and T.N. Blanton, “Polymer nanocomposites with a low thermal expansion coefficient,” Macromolecules 41, 935–941 (2008).
    [CrossRef]
  49. S. Campbell, S.-H. Lin, X. Yi, and P. Yeh, “Absorption effects in photorefractive volume-holographic memory systems. II. Material heating,” J. Opt. Soc. Am. B 13, 2218–2228 (1996).
    [CrossRef]

2010 (4)

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys. 107, 023107-1–023107-6 (2010).

Y. Tomita, E. Hata, K. Omura, and S. Yasui, “Low polymerization-shrinkage nanoparticle-polymer composite films based on thiol-ene photopolymerization for holographic data storage,” Proc. SPIE 7722, 772229-1–772229-7 (2010).

D. Sabol, M.R. Gleesen, S. Lin, and J.T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 0531131-1–0531131-8 (2010), and references therein.
[CrossRef]

E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett. 35, 396–398 (2010).
[CrossRef] [PubMed]

2009 (4)

Q. Li, H. Zhou, and C. E. Hoyle, “The effect of thiol and ene structures on thiol-ene networks: Photopolymerization, physical, mechanical and optical properties,” Polymer 50, 2237–2245 (2009).
[CrossRef]

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt. 11, 024010-1–024010-7 (2009).
[CrossRef]

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide based photopolymer,” J. Opt. A: Pure Appl. Opt. 11, 024016-1–024016-9 (2009).
[CrossRef]

See, for example, M. Kaczmarek and Y. Tomita, eds., a special issue on Optics of Nanocomposite Materials, J. Opt. A: Pure Appl. Opt. 11, 020201–024023 (2009).
[CrossRef]

2008 (3)

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108-1–113108-6 (2008).
[CrossRef]

Y. Rao and T.N. Blanton, “Polymer nanocomposites with a low thermal expansion coefficient,” Macromolecules 41, 935–941 (2008).
[CrossRef]

Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films,” Opt. Lett. 33, 1750–1752 (2008).
[CrossRef] [PubMed]

2007 (6)

N. Suzuki and Y. Tomita, “Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films,” Appl. Opt. 46, 6809–6814 (2007).
[CrossRef] [PubMed]

J.M. Russo and R.K. Kostuk, “Temperature dependence properties of holographic gratings in phenanthren-quinone doped poly(methyl methacrylate) photopolymers,” Appl. Opt. 46, 7494–7499 (2007).
[CrossRef] [PubMed]

Q. Li, H. Zhou, D. A. Wicks, and C. E. Hoyle, “Thiourethane-based thiol-ene high Tg networks: preparation, thermal, mechanical, and physical properties,” J. Polym. Sci. Part A: Polym. Chem. 45, 5103–5111 (2007).
[CrossRef]

T. J. White, L. V. Natarajan, V. P. Tondiglia, P. F. Lloyd, T. J. Bunning, and C. A. Guymon, “Holographic polymer dispersed liquid crystals (HPDLCs) containing triallyl isocyanurate monomer,” Polymer 48, 5979–5987 (2007).
[CrossRef]

O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704-1–105704-7 (2007).
[CrossRef]

J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Evaluation and control of thiol-ene/thiol-epoxy hybrid networks,” Polymer 48, 1526–1532 (2007).
[CrossRef]

2006 (6)

Y. Tomita, K. Furushima, Y. Endoh, M. Hidaka, K. Ohmori, and K. Chikama, “Volume holographic recording in multi-component photopolymers with hyperbranched polymers as organic nanoparticles,” Proc. SPIE 6187, 618702-1–618702-10 (2006).

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103-1–1071103-3 (2006).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

A.F. Senyurt, G. Warren, J.B. Whitehead, and C.E. Hoyle, “Matrix physical structure effect on the electro-optic characteristics of thiol-ene based H-PDLC films,” Polymer 47, 2741–2749 (2006).
[CrossRef]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14, 12712–12719 (2006).
[CrossRef] [PubMed]

2005 (5)

Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett. 30, 839–841 (2005).
[CrossRef] [PubMed]

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 5, 1623–1629 (2005).
[CrossRef]

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87, 012106-1–012106-3 (2005).
[CrossRef]

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005).
[CrossRef] [PubMed]

J. A. Carioscia, H. Lu, J. W. Stansbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater. 21,1137–1143 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (1)

N.B. Cramer, T. Davies, A.K. O’Brien, and C.N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003).
[CrossRef]

2002 (1)

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[CrossRef]

2001 (2)

N.B. Cramer and C.N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. Part A: Poly. Chem. 39, 3311–3319 (2001).
[CrossRef]

R. Caputo, A.V. Sukhov, N.V. Tabirian, C. Umeton, and R.F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerization in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
[CrossRef]

2000 (1)

M. Fally, M.A. Ellabban, R.A. Rupp, M. Fink, J. Wolfberger, and E. Tillmanns, “Characterization of parasitic gratings in LiNbO3,” Phys. Rev. B 61, 15778–15784 (2000).
[CrossRef]

1998 (1)

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

1997 (3)

B.-S. Chiou and S.A. Khan, “Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers,” Macromolecules 30, 7322–7328 (1997).
[CrossRef]

L.L. Beecroft and C.K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997).
[CrossRef]

D. A. Waldman, H.-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

1996 (1)

1995 (1)

S. Nazarenko, D. Haderski, A. Hiltner, and E. Baer, “ Origin of the intermediate damping peak in microlayer composites,” Polym. Eng. Sci. 35, 1682–1687 (1995).
[CrossRef]

1989 (1)

J. Finter, M. Riediker, O. Rohde, and B. Rotzinger, “Photosensitive systems for microlithography based on organometallic photinitiators,” Makromol. Chem. Macromol. Symp. 24, 177–187 (1989).
[CrossRef]

1974 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947(1969).

Babeva, T.

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide based photopolymer,” J. Opt. A: Pure Appl. Opt. 11, 024016-1–024016-9 (2009).
[CrossRef]

Baer, E.

S. Nazarenko, D. Haderski, A. Hiltner, and E. Baer, “ Origin of the intermediate damping peak in microlayer composites,” Polym. Eng. Sci. 35, 1682–1687 (1995).
[CrossRef]

Bair, H.

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Bastiaansen, C.W.M.

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 5, 1623–1629 (2005).
[CrossRef]

Beecroft, L.L.

L.L. Beecroft and C.K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997).
[CrossRef]

Blanton, T.N.

Y. Rao and T.N. Blanton, “Polymer nanocomposites with a low thermal expansion coefficient,” Macromolecules 41, 935–941 (2008).
[CrossRef]

Bowman, C. N.

J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Evaluation and control of thiol-ene/thiol-epoxy hybrid networks,” Polymer 48, 1526–1532 (2007).
[CrossRef]

J. A. Carioscia, H. Lu, J. W. Stansbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater. 21,1137–1143 (2005).
[CrossRef] [PubMed]

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005).
[CrossRef] [PubMed]

Bowman, C.N.

N.B. Cramer, T. Davies, A.K. O’Brien, and C.N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003).
[CrossRef]

N.B. Cramer and C.N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. Part A: Poly. Chem. 39, 3311–3319 (2001).
[CrossRef]

Boyd, C.

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Broer, D.J.

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 5, 1623–1629 (2005).
[CrossRef]

Brown, D.P.

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Bunning, T. J.

T. J. White, L. V. Natarajan, V. P. Tondiglia, P. F. Lloyd, T. J. Bunning, and C. A. Guymon, “Holographic polymer dispersed liquid crystals (HPDLCs) containing triallyl isocyanurate monomer,” Polymer 48, 5979–5987 (2007).
[CrossRef]

Bunning, T.J.

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Campbell, S.

Caputo, R.

R. Caputo, A.V. Sukhov, N.V. Tabirian, C. Umeton, and R.F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerization in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
[CrossRef]

Carioscia, J. A.

J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Evaluation and control of thiol-ene/thiol-epoxy hybrid networks,” Polymer 48, 1526–1532 (2007).
[CrossRef]

J. A. Carioscia, H. Lu, J. W. Stansbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater. 21,1137–1143 (2005).
[CrossRef] [PubMed]

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005).
[CrossRef] [PubMed]

Chikama, K.

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108-1–113108-6 (2008).
[CrossRef]

Y. Tomita, K. Furushima, Y. Endoh, M. Hidaka, K. Ohmori, and K. Chikama, “Volume holographic recording in multi-component photopolymers with hyperbranched polymers as organic nanoparticles,” Proc. SPIE 6187, 618702-1–618702-10 (2006).

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103-1–1071103-3 (2006).
[CrossRef]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14, 12712–12719 (2006).
[CrossRef] [PubMed]

Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett. 30, 839–841 (2005).
[CrossRef] [PubMed]

Chiou, B.-S.

B.-S. Chiou and S.A. Khan, “Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers,” Macromolecules 30, 7322–7328 (1997).
[CrossRef]

Cramer, N.B.

N.B. Cramer, T. Davies, A.K. O’Brien, and C.N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003).
[CrossRef]

N.B. Cramer and C.N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. Part A: Poly. Chem. 39, 3311–3319 (2001).
[CrossRef]

Davies, T.

N.B. Cramer, T. Davies, A.K. O’Brien, and C.N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003).
[CrossRef]

Dhar, L.

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Ellabban, M.A.

M. Fally, M.A. Ellabban, R.A. Rupp, M. Fink, J. Wolfberger, and E. Tillmanns, “Characterization of parasitic gratings in LiNbO3,” Phys. Rev. B 61, 15778–15784 (2000).
[CrossRef]

Endoh, Y.

Y. Tomita, K. Furushima, Y. Endoh, M. Hidaka, K. Ohmori, and K. Chikama, “Volume holographic recording in multi-component photopolymers with hyperbranched polymers as organic nanoparticles,” Proc. SPIE 6187, 618702-1–618702-10 (2006).

Escuti, M.J.

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 5, 1623–1629 (2005).
[CrossRef]

Fally, M.

M. Fally, M.A. Ellabban, R.A. Rupp, M. Fink, J. Wolfberger, and E. Tillmanns, “Characterization of parasitic gratings in LiNbO3,” Phys. Rev. B 61, 15778–15784 (2000).
[CrossRef]

Fink, M.

M. Fally, M.A. Ellabban, R.A. Rupp, M. Fink, J. Wolfberger, and E. Tillmanns, “Characterization of parasitic gratings in LiNbO3,” Phys. Rev. B 61, 15778–15784 (2000).
[CrossRef]

Finter, J.

J. Finter, M. Riediker, O. Rohde, and B. Rotzinger, “Photosensitive systems for microlithography based on organometallic photinitiators,” Makromol. Chem. Macromol. Symp. 24, 177–187 (1989).
[CrossRef]

Frantz, J. A.

Furushima, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103-1–1071103-3 (2006).
[CrossRef]

Y. Tomita, K. Furushima, Y. Endoh, M. Hidaka, K. Ohmori, and K. Chikama, “Volume holographic recording in multi-component photopolymers with hyperbranched polymers as organic nanoparticles,” Proc. SPIE 6187, 618702-1–618702-10 (2006).

Gaylord, T. K.

Gleesen, M.R.

D. Sabol, M.R. Gleesen, S. Lin, and J.T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 0531131-1–0531131-8 (2010), and references therein.
[CrossRef]

Goldenberg, L.M.

O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704-1–105704-7 (2007).
[CrossRef]

Guymon, C. A.

T. J. White, L. V. Natarajan, V. P. Tondiglia, P. F. Lloyd, T. J. Bunning, and C. A. Guymon, “Holographic polymer dispersed liquid crystals (HPDLCs) containing triallyl isocyanurate monomer,” Polymer 48, 5979–5987 (2007).
[CrossRef]

Haderski, D.

S. Nazarenko, D. Haderski, A. Hiltner, and E. Baer, “ Origin of the intermediate damping peak in microlayer composites,” Polym. Eng. Sci. 35, 1682–1687 (1995).
[CrossRef]

Hata, E.

E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett. 35, 396–398 (2010).
[CrossRef] [PubMed]

Y. Tomita, E. Hata, K. Omura, and S. Yasui, “Low polymerization-shrinkage nanoparticle-polymer composite films based on thiol-ene photopolymerization for holographic data storage,” Proc. SPIE 7722, 772229-1–772229-7 (2010).

Hidaka, M.

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14, 12712–12719 (2006).
[CrossRef] [PubMed]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103-1–1071103-3 (2006).
[CrossRef]

Y. Tomita, K. Furushima, Y. Endoh, M. Hidaka, K. Ohmori, and K. Chikama, “Volume holographic recording in multi-component photopolymers with hyperbranched polymers as organic nanoparticles,” Proc. SPIE 6187, 618702-1–618702-10 (2006).

Hidaka, T.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt. 11, 024010-1–024010-7 (2009).
[CrossRef]

Hiltner, A.

S. Nazarenko, D. Haderski, A. Hiltner, and E. Baer, “ Origin of the intermediate damping peak in microlayer composites,” Polym. Eng. Sci. 35, 1682–1687 (1995).
[CrossRef]

Horner, M. G.

D. A. Waldman, H.-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Hoyle, C. E.

Q. Li, H. Zhou, and C. E. Hoyle, “The effect of thiol and ene structures on thiol-ene networks: Photopolymerization, physical, mechanical and optical properties,” Polymer 50, 2237–2245 (2009).
[CrossRef]

Q. Li, H. Zhou, D. A. Wicks, and C. E. Hoyle, “Thiourethane-based thiol-ene high Tg networks: preparation, thermal, mechanical, and physical properties,” J. Polym. Sci. Part A: Polym. Chem. 45, 5103–5111 (2007).
[CrossRef]

Hoyle, C.E.

A.F. Senyurt, G. Warren, J.B. Whitehead, and C.E. Hoyle, “Matrix physical structure effect on the electro-optic characteristics of thiol-ene based H-PDLC films,” Polymer 47, 2741–2749 (2006).
[CrossRef]

C.E. Hoyle, T.Y. Lee, and T. Roper, “Thiol-enes: Chemistry of the past with promise for the future,” J. Polym. Sci. part A:Polym. Chem. 42, 5301–5338 (2004).
[CrossRef]

Ishizu, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103-1–1071103-3 (2006).
[CrossRef]

Jeong, Y. -C.

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87, 012106-1–012106-3 (2005).
[CrossRef]

Khan, S.A.

B.-S. Chiou and S.A. Khan, “Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers,” Macromolecules 30, 7322–7328 (1997).
[CrossRef]

Kim, W. S.

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87, 012106-1–012106-3 (2005).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947(1969).

Kojima, T.

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[CrossRef]

Kostuk, R. K.

Kostuk, R.K.

Lee, T.Y.

C.E. Hoyle, T.Y. Lee, and T. Roper, “Thiol-enes: Chemistry of the past with promise for the future,” J. Polym. Sci. part A:Polym. Chem. 42, 5301–5338 (2004).
[CrossRef]

Leite, E.

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide based photopolymer,” J. Opt. A: Pure Appl. Opt. 11, 024016-1–024016-9 (2009).
[CrossRef]

Li, H.-Y. S.

D. A. Waldman, H.-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Li, Q.

Q. Li, H. Zhou, and C. E. Hoyle, “The effect of thiol and ene structures on thiol-ene networks: Photopolymerization, physical, mechanical and optical properties,” Polymer 50, 2237–2245 (2009).
[CrossRef]

Q. Li, H. Zhou, D. A. Wicks, and C. E. Hoyle, “Thiourethane-based thiol-ene high Tg networks: preparation, thermal, mechanical, and physical properties,” J. Polym. Sci. Part A: Polym. Chem. 45, 5103–5111 (2007).
[CrossRef]

Lin, S.

D. Sabol, M.R. Gleesen, S. Lin, and J.T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 0531131-1–0531131-8 (2010), and references therein.
[CrossRef]

Lin, S.-H.

Lloyd, P. F.

T. J. White, L. V. Natarajan, V. P. Tondiglia, P. F. Lloyd, T. J. Bunning, and C. A. Guymon, “Holographic polymer dispersed liquid crystals (HPDLCs) containing triallyl isocyanurate monomer,” Polymer 48, 5979–5987 (2007).
[CrossRef]

Lloyd, P.F.

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Loos, J.

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 5, 1623–1629 (2005).
[CrossRef]

Lu, H.

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005).
[CrossRef] [PubMed]

J. A. Carioscia, H. Lu, J. W. Stansbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater. 21,1137–1143 (2005).
[CrossRef] [PubMed]

Magnusson, R.

Majano, G.

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide based photopolymer,” J. Opt. A: Pure Appl. Opt. 11, 024016-1–024016-9 (2009).
[CrossRef]

Martin, S.

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).

Mastubara, K.

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108-1–113108-6 (2008).
[CrossRef]

Mintova, S.

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide based photopolymer,” J. Opt. A: Pure Appl. Opt. 11, 024016-1–024016-9 (2009).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).

Nakamura, T.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt. 11, 024010-1–024010-7 (2009).
[CrossRef]

Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films,” Opt. Lett. 33, 1750–1752 (2008).
[CrossRef] [PubMed]

Natarajan, L. V.

T. J. White, L. V. Natarajan, V. P. Tondiglia, P. F. Lloyd, T. J. Bunning, and C. A. Guymon, “Holographic polymer dispersed liquid crystals (HPDLCs) containing triallyl isocyanurate monomer,” Polymer 48, 5979–5987 (2007).
[CrossRef]

Natarajan, L.V.

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Naydenova, I.

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide based photopolymer,” J. Opt. A: Pure Appl. Opt. 11, 024016-1–024016-9 (2009).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).

Nazarenko, S.

S. Nazarenko, D. Haderski, A. Hiltner, and E. Baer, “ Origin of the intermediate damping peak in microlayer composites,” Polym. Eng. Sci. 35, 1682–1687 (1995).
[CrossRef]

Nozaki, J.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt. 11, 024010-1–024010-7 (2009).
[CrossRef]

Nussbaumer, R.

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 5, 1623–1629 (2005).
[CrossRef]

O’Brien, A.K.

N.B. Cramer, T. Davies, A.K. O’Brien, and C.N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003).
[CrossRef]

Ober, C.K.

L.L. Beecroft and C.K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997).
[CrossRef]

Ochi, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103-1–1071103-3 (2006).
[CrossRef]

Odian, G.

G. Odian, Principles of Polymerization , 4th ed. (Wiley, New York, 1994), Chap.2, p.110.

Ohmori, K.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt. 11, 024010-1–024010-7 (2009).
[CrossRef]

Y. Tomita, K. Furushima, Y. Endoh, M. Hidaka, K. Ohmori, and K. Chikama, “Volume holographic recording in multi-component photopolymers with hyperbranched polymers as organic nanoparticles,” Proc. SPIE 6187, 618702-1–618702-10 (2006).

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14, 12712–12719 (2006).
[CrossRef] [PubMed]

Omura, K.

Y. Tomita, E. Hata, K. Omura, and S. Yasui, “Low polymerization-shrinkage nanoparticle-polymer composite films based on thiol-ene photopolymerization for holographic data storage,” Proc. SPIE 7722, 772229-1–772229-7 (2010).

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys. 107, 023107-1–023107-6 (2010).

Oyama, S.

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108-1–113108-6 (2008).
[CrossRef]

Ozawa, M

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103-1–1071103-3 (2006).
[CrossRef]

Pandey, N.

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide based photopolymer,” J. Opt. A: Pure Appl. Opt. 11, 024016-1–024016-9 (2009).
[CrossRef]

Park, J. -K.

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87, 012106-1–012106-3 (2005).
[CrossRef]

Rao, Y.

Y. Rao and T.N. Blanton, “Polymer nanocomposites with a low thermal expansion coefficient,” Macromolecules 41, 935–941 (2008).
[CrossRef]

Riediker, M.

J. Finter, M. Riediker, O. Rohde, and B. Rotzinger, “Photosensitive systems for microlithography based on organometallic photinitiators,” Makromol. Chem. Macromol. Symp. 24, 177–187 (1989).
[CrossRef]

Rohde, O.

J. Finter, M. Riediker, O. Rohde, and B. Rotzinger, “Photosensitive systems for microlithography based on organometallic photinitiators,” Makromol. Chem. Macromol. Symp. 24, 177–187 (1989).
[CrossRef]

Roper, T.

C.E. Hoyle, T.Y. Lee, and T. Roper, “Thiol-enes: Chemistry of the past with promise for the future,” J. Polym. Sci. part A:Polym. Chem. 42, 5301–5338 (2004).
[CrossRef]

Rotzinger, B.

J. Finter, M. Riediker, O. Rohde, and B. Rotzinger, “Photosensitive systems for microlithography based on organometallic photinitiators,” Makromol. Chem. Macromol. Symp. 24, 177–187 (1989).
[CrossRef]

Rupp, R.A.

M. Fally, M.A. Ellabban, R.A. Rupp, M. Fink, J. Wolfberger, and E. Tillmanns, “Characterization of parasitic gratings in LiNbO3,” Phys. Rev. B 61, 15778–15784 (2000).
[CrossRef]

Russo, J.M.

Sabol, D.

D. Sabol, M.R. Gleesen, S. Lin, and J.T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 0531131-1–0531131-8 (2010), and references therein.
[CrossRef]

Sakhno, O.V.

O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704-1–105704-7 (2007).
[CrossRef]

Sánchez, C.

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 5, 1623–1629 (2005).
[CrossRef]

Schilling, M.

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Schones, M.G.

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Senyurt, A.F.

A.F. Senyurt, G. Warren, J.B. Whitehead, and C.E. Hoyle, “Matrix physical structure effect on the electro-optic characteristics of thiol-ene based H-PDLC films,” Polymer 47, 2741–2749 (2006).
[CrossRef]

Sheridan, J.T.

D. Sabol, M.R. Gleesen, S. Lin, and J.T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 0531131-1–0531131-8 (2010), and references therein.
[CrossRef]

Sherif, H.

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).

Smironova, T.N.

O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704-1–105704-7 (2007).
[CrossRef]

Stansbury, J. W.

J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Evaluation and control of thiol-ene/thiol-epoxy hybrid networks,” Polymer 48, 1526–1532 (2007).
[CrossRef]

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005).
[CrossRef] [PubMed]

J. A. Carioscia, H. Lu, J. W. Stansbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater. 21,1137–1143 (2005).
[CrossRef] [PubMed]

Stumpe, J.

O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704-1–105704-7 (2007).
[CrossRef]

Sukhov, A.V.

R. Caputo, A.V. Sukhov, N.V. Tabirian, C. Umeton, and R.F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerization in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
[CrossRef]

Sutherland, R.L.

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Suzuki, N.

Tabirian, N.V.

R. Caputo, A.V. Sukhov, N.V. Tabirian, C. Umeton, and R.F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerization in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
[CrossRef]

Tago, A.

Tanaka, A.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103-1–1071103-3 (2006).
[CrossRef]

Tillmanns, E.

M. Fally, M.A. Ellabban, R.A. Rupp, M. Fink, J. Wolfberger, and E. Tillmanns, “Characterization of parasitic gratings in LiNbO3,” Phys. Rev. B 61, 15778–15784 (2000).
[CrossRef]

Toal, V.

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide based photopolymer,” J. Opt. A: Pure Appl. Opt. 11, 024016-1–024016-9 (2009).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).

Tomita, Y.

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys. 107, 023107-1–023107-6 (2010).

E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett. 35, 396–398 (2010).
[CrossRef] [PubMed]

Y. Tomita, E. Hata, K. Omura, and S. Yasui, “Low polymerization-shrinkage nanoparticle-polymer composite films based on thiol-ene photopolymerization for holographic data storage,” Proc. SPIE 7722, 772229-1–772229-7 (2010).

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt. 11, 024010-1–024010-7 (2009).
[CrossRef]

Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films,” Opt. Lett. 33, 1750–1752 (2008).
[CrossRef] [PubMed]

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108-1–113108-6 (2008).
[CrossRef]

N. Suzuki and Y. Tomita, “Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films,” Appl. Opt. 46, 6809–6814 (2007).
[CrossRef] [PubMed]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103-1–1071103-3 (2006).
[CrossRef]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14, 12712–12719 (2006).
[CrossRef] [PubMed]

Y. Tomita, K. Furushima, Y. Endoh, M. Hidaka, K. Ohmori, and K. Chikama, “Volume holographic recording in multi-component photopolymers with hyperbranched polymers as organic nanoparticles,” Proc. SPIE 6187, 618702-1–618702-10 (2006).

Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett. 30, 839–841 (2005).
[CrossRef] [PubMed]

N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43, 2125–2129 (2004).
[CrossRef] [PubMed]

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[CrossRef]

Tondiglia, V. P.

T. J. White, L. V. Natarajan, V. P. Tondiglia, P. F. Lloyd, T. J. Bunning, and C. A. Guymon, “Holographic polymer dispersed liquid crystals (HPDLCs) containing triallyl isocyanurate monomer,” Polymer 48, 5979–5987 (2007).
[CrossRef]

Tondiglia, V.P.

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Umeton, C.

R. Caputo, A.V. Sukhov, N.V. Tabirian, C. Umeton, and R.F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerization in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
[CrossRef]

Ushakov, R.F.

R. Caputo, A.V. Sukhov, N.V. Tabirian, C. Umeton, and R.F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerization in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
[CrossRef]

van Heesch, C.

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 5, 1623–1629 (2005).
[CrossRef]

Waldman, D. A.

J. A. Frantz, R. K. Kostuk, and D. A. Waldman, “Model of noise-grating selectivity in volume holographic recording materials by use of Monte Carlo simulations,” J. Opt. Soc. Am. A 21, 378–387 (2004).
[CrossRef]

D. A. Waldman, H.-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Warren, G.

A.F. Senyurt, G. Warren, J.B. Whitehead, and C.E. Hoyle, “Matrix physical structure effect on the electro-optic characteristics of thiol-ene based H-PDLC films,” Polymer 47, 2741–2749 (2006).
[CrossRef]

White, T. J.

T. J. White, L. V. Natarajan, V. P. Tondiglia, P. F. Lloyd, T. J. Bunning, and C. A. Guymon, “Holographic polymer dispersed liquid crystals (HPDLCs) containing triallyl isocyanurate monomer,” Polymer 48, 5979–5987 (2007).
[CrossRef]

Whitehead, J.B.

A.F. Senyurt, G. Warren, J.B. Whitehead, and C.E. Hoyle, “Matrix physical structure effect on the electro-optic characteristics of thiol-ene based H-PDLC films,” Polymer 47, 2741–2749 (2006).
[CrossRef]

Wicks, D. A.

Q. Li, H. Zhou, D. A. Wicks, and C. E. Hoyle, “Thiourethane-based thiol-ene high Tg networks: preparation, thermal, mechanical, and physical properties,” J. Polym. Sci. Part A: Polym. Chem. 45, 5103–5111 (2007).
[CrossRef]

Wofford, J.M.

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Wolfberger, J.

M. Fally, M.A. Ellabban, R.A. Rupp, M. Fink, J. Wolfberger, and E. Tillmanns, “Characterization of parasitic gratings in LiNbO3,” Phys. Rev. B 61, 15778–15784 (2000).
[CrossRef]

Wysocki, T.L.

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Yasui, S.

Y. Tomita, E. Hata, K. Omura, and S. Yasui, “Low polymerization-shrinkage nanoparticle-polymer composite films based on thiol-ene photopolymerization for holographic data storage,” Proc. SPIE 7722, 772229-1–772229-7 (2010).

Yeh, P.

Yi, X.

Zhou, H.

Q. Li, H. Zhou, and C. E. Hoyle, “The effect of thiol and ene structures on thiol-ene networks: Photopolymerization, physical, mechanical and optical properties,” Polymer 50, 2237–2245 (2009).
[CrossRef]

Q. Li, H. Zhou, D. A. Wicks, and C. E. Hoyle, “Thiourethane-based thiol-ene high Tg networks: preparation, thermal, mechanical, and physical properties,” J. Polym. Sci. Part A: Polym. Chem. 45, 5103–5111 (2007).
[CrossRef]

Adv. Funct. Mater. (1)

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 5, 1623–1629 (2005).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (4)

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[CrossRef]

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87, 012106-1–012106-3 (2005).
[CrossRef]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103-1–1071103-3 (2006).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947(1969).

Chem. Mater. (1)

L.L. Beecroft and C.K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997).
[CrossRef]

Chem. Phys. (1)

R. Caputo, A.V. Sukhov, N.V. Tabirian, C. Umeton, and R.F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerization in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
[CrossRef]

Dent. Mater. (2)

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005).
[CrossRef] [PubMed]

J. A. Carioscia, H. Lu, J. W. Stansbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater. 21,1137–1143 (2005).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

D. Sabol, M.R. Gleesen, S. Lin, and J.T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 0531131-1–0531131-8 (2010), and references therein.
[CrossRef]

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108-1–113108-6 (2008).
[CrossRef]

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys. 107, 023107-1–023107-6 (2010).

J. Imaging Sci. Technol. (1)

D. A. Waldman, H.-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

J. Opt. A: Pure Appl. Opt. (2)

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide based photopolymer,” J. Opt. A: Pure Appl. Opt. 11, 024016-1–024016-9 (2009).
[CrossRef]

See, for example, M. Kaczmarek and Y. Tomita, eds., a special issue on Optics of Nanocomposite Materials, J. Opt. A: Pure Appl. Opt. 11, 020201–024023 (2009).
[CrossRef]

J. Opt. A:Pure Appl. Opt. (1)

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt. 11, 024010-1–024010-7 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Polym. Sci. Part A: Poly. Chem. (1)

N.B. Cramer and C.N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. Part A: Poly. Chem. 39, 3311–3319 (2001).
[CrossRef]

J. Polym. Sci. Part A: Polym. Chem. (1)

Q. Li, H. Zhou, D. A. Wicks, and C. E. Hoyle, “Thiourethane-based thiol-ene high Tg networks: preparation, thermal, mechanical, and physical properties,” J. Polym. Sci. Part A: Polym. Chem. 45, 5103–5111 (2007).
[CrossRef]

J. Polym. Sci. part A:Polym. Chem. (1)

C.E. Hoyle, T.Y. Lee, and T. Roper, “Thiol-enes: Chemistry of the past with promise for the future,” J. Polym. Sci. part A:Polym. Chem. 42, 5301–5338 (2004).
[CrossRef]

Macromolecules (3)

N.B. Cramer, T. Davies, A.K. O’Brien, and C.N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003).
[CrossRef]

B.-S. Chiou and S.A. Khan, “Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers,” Macromolecules 30, 7322–7328 (1997).
[CrossRef]

Y. Rao and T.N. Blanton, “Polymer nanocomposites with a low thermal expansion coefficient,” Macromolecules 41, 935–941 (2008).
[CrossRef]

Makromol. Chem. Macromol. Symp. (1)

J. Finter, M. Riediker, O. Rohde, and B. Rotzinger, “Photosensitive systems for microlithography based on organometallic photinitiators,” Makromol. Chem. Macromol. Symp. 24, 177–187 (1989).
[CrossRef]

Nanotechnology (1)

O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704-1–105704-7 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (1)

M. Fally, M.A. Ellabban, R.A. Rupp, M. Fink, J. Wolfberger, and E. Tillmanns, “Characterization of parasitic gratings in LiNbO3,” Phys. Rev. B 61, 15778–15784 (2000).
[CrossRef]

Polym. Eng. Sci. (1)

S. Nazarenko, D. Haderski, A. Hiltner, and E. Baer, “ Origin of the intermediate damping peak in microlayer composites,” Polym. Eng. Sci. 35, 1682–1687 (1995).
[CrossRef]

Polymer (5)

A.F. Senyurt, G. Warren, J.B. Whitehead, and C.E. Hoyle, “Matrix physical structure effect on the electro-optic characteristics of thiol-ene based H-PDLC films,” Polymer 47, 2741–2749 (2006).
[CrossRef]

J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Evaluation and control of thiol-ene/thiol-epoxy hybrid networks,” Polymer 48, 1526–1532 (2007).
[CrossRef]

T. J. White, L. V. Natarajan, V. P. Tondiglia, P. F. Lloyd, T. J. Bunning, and C. A. Guymon, “Holographic polymer dispersed liquid crystals (HPDLCs) containing triallyl isocyanurate monomer,” Polymer 48, 5979–5987 (2007).
[CrossRef]

Q. Li, H. Zhou, and C. E. Hoyle, “The effect of thiol and ene structures on thiol-ene networks: Photopolymerization, physical, mechanical and optical properties,” Polymer 50, 2237–2245 (2009).
[CrossRef]

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Proc. SPIE (3)

Y. Tomita, E. Hata, K. Omura, and S. Yasui, “Low polymerization-shrinkage nanoparticle-polymer composite films based on thiol-ene photopolymerization for holographic data storage,” Proc. SPIE 7722, 772229-1–772229-7 (2010).

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).

Y. Tomita, K. Furushima, Y. Endoh, M. Hidaka, K. Ohmori, and K. Chikama, “Volume holographic recording in multi-component photopolymers with hyperbranched polymers as organic nanoparticles,” Proc. SPIE 6187, 618702-1–618702-10 (2006).

Other (4)

H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage (Springer, Berlin, 2000).

E. Hata, S. Koda, K. Gotoh, and Y. Tomita, “Volume holographic recording in nanoparticle-polymer composites with reduced polymerization shrinkage,” Technical Digest of CLEO-Europe, June 15–19, 2009, CC2.2-THU, Munich, Germany, (2009).

G. Odian, Principles of Polymerization , 4th ed. (Wiley, New York, 1994), Chap.2, p.110.

E. Hata and Y. Tomita, “Dependence of stoichiometric thiol-ene ratio on refractive index modulation and polymerization shrinkage in photopolymerizable nanoparticle-thiol-ene polymer composites,” unpublished.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Chemical structures of thiol-ene monomers used in this study. (a) dithiol, (b) triene TATATO, (c) trithiol, and (d) triallyl ether ene.

Fig. 2
Fig. 2

Spectral dependences of absorption coefficients for samples I and II before and after curing under green LED (HDA-TG3, MeCan Imaging Inc.) illumination.

Fig. 3
Fig. 3

(a) Parametric dependences of thiol and ene functional group conversions for sample I (●) and sample II (○) without nanoparticle dispersion. (b) Parametric dependences of thiol and ene functional group conversions for sample I dispersed with silica nanoparticles at different concentrations of 0 (●), 10 (○), 20 (□), and 30 (△) vol.%. The grey solid lines shown in Figs.3 (a) and (b) correspond to stoichiometric functional group conversion.

Fig. 4
Fig. 4

Polymerization rates versus conversions for sample I (solid curve) and sample II (dotted curve) without nanoparticle dispersion.

Fig. 5
Fig. 5

Polymerization rate versus conversions for sample I with 0 vol.% (a), 10 vol.% (b), 20 vol.% (c), 30 vol.% (d) silica nanoparticles.

Fig. 6
Fig. 6

Buildup dynamics of Δn at I 0= 1 (a), 5 (b), 10 (c), 50 (d) and 100 (e) mW/cm2 for sample I with 25 vol.% silica nanoparticle dispersion.

Fig. 7
Fig. 7

Measured angular selectivity of ηsat from a recorded hologram at a 1 μm grating spacing for sample I with 25 vol.% silica nanoparticle dispersion. Bragg angle detuning was evaluated in a glass substrate. The solid red curve corresponds to the least-squares-fit of the data to Kogelnik’s formula for an unslanted transmission grating with Δnsat and as fitting parameters. Extracted values for Δnsat and were 1.0×10−2 and 14.3 μm, respectively.

Fig. 8
Fig. 8

Grating-spacing dependence of Δnsat for sample I with 25 vol.% silica nanoparticle dispersion.

Fig. 9
Fig. 9

Nanoparticle concentration versus (a)Δnsat and (b)S for samples I (●) and II (○).

Fig. 10
Fig. 10

Nanoparticle concentration vs. σ for samples I (●), II (○) and a (meth)acrylate-based sample (□).

Fig. 11
Fig. 11

Incident-angle dependences of transmittance T at a wavelength of 532 nm for a thick film sample I with 25 vol.% silica nanoparticles (solid curve) and a (meth)acrylate-based thick film sample with 35 vol.% zirconia nanoparticles (dotted curve) after coherent uniform exposure.

Fig. 12
Fig. 12

Thermo-optic coefficients dn/dT at 25 °C and at a wavelength of 546 nm as a function of nanoparticle concentration for uniformly cured film samples I (●), II (○) and a silica nanoparticle-[(meth)acrylate]polymer composite film sample (□).

Fig. 13
Fig. 13

Linear coefficients of thermal expansion αL as a function of nanoparticle concentration for uniformly cured film samples I (●), II (○) and a silica nanoparticle-[(meth)acrylate]polymer composite film sample (□).

Fig. 14
Fig. 14

Temperature dependence of out-of-plane thickness change measured in percent for sample I (●), sample II (○) and a silica nanoparticle-[(meth)acrylate]polymer composite sample (□). The colored band corresponds to the thickness change within ±0.5 %. Note that the thermally induced small thickness change results in a change in the diffraction efficiency as twice as the percent thickness change for each hologram having low diffraction efficiency in hologram multiplexing.

Fig. 15
Fig. 15

Holographic recording of a 2D digital data page pattern using sample I with 25 vol.% silica nanoparticle dispersion: (a) an input image through the optical system and (b) a reconstructed image.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

RS + R CH = CH 2 R C H - CH 2 - SR ( Propagation ) R C H - CH 2 - SR + RSH R CH 2 - CH 2 - SR + RS ( Chain transfer )
α ( t ) = Δ H ( t ) Δ H ( ) α ( ) ,
α ( ) = f thiol m thiol α thiol + f ene m ene α ene f thiol m thiol + f ene m ene ,
R p = dH dt α ( ) Δ H ( ) .
x c = 1 r ( f thiol 1 ) ( f ene 1 ) ,

Metrics