Abstract

Controlling the evanescent field within platform waveguide technologies underpins waveguide nanophotonics and is critical to optimising the interaction with integrated specialised materials or devices under test. Unfortunately, this interaction is often small since the evanescent field is a fraction of the total optical field. Here we propose and demonstrate, through simulation and experiment, how the waveguide evanescent field can be enhanced substantially by using high index interface layers, which draw out the optical field in the probe vicinity taking advantage of field localisation. This can be further enhanced by extended resonant and gallery modes within the channels of a structured cylindrical waveguide. Several orders of magnitude increased sensitivity with minimal added insertion loss is obtained using self-assembled layers of TiO2 (B) nanoparticles and porphyrin within a silica structured optical fibre. The combination of novel photonics with specialty material integration highlights the potential scope for physics, chemistry, sensing and materials research.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “Coated long-period fiber gratings as high-sensitivity optochemical sensors,” J. Lightwave Technol. 24(4), 1776–1786 (2006).
    [CrossRef]
  2. C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, “Evanescent-field spectroscopy using structured optical fibers: detection of charge-transfer at the porphyrin-silica interface,” J. Am. Chem. Soc. 131(8), 2925–2933 (2009).
    [CrossRef] [PubMed]
  3. P. C. Goodwin, “GFP biofluorescence: imaging gene expression and protein dynamics in living cells: design considerations for a fluorescence imaging laboratory,” Ch. 20 in Methods in Cell Biology58, 343–367 (1998).
  4. R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
    [CrossRef] [PubMed]
  5. P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
    [CrossRef] [PubMed]
  6. J. Canning, “New trends in structured optical fibres for telecommunications and sensing”, Proc. Joint 5th Int. Conf. on Optical Communications and Networks & 2nd Int. Symp. on Advances and Trends in Fiber Optics and Applications (ICOCN/ATFO 2006), (Invited paper) Chengdu, China, (2006).
  7. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [CrossRef] [PubMed]
  8. I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” Sensors (Basel Switzerland) 7, 28–35 (2007).
  9. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978).
    [CrossRef]
  10. J. Canning, “Diffraction-free mode generation and propagation in optical waveguides,” Opt. Commun. 207(1-6), 35–39 (2002).
    [CrossRef]
  11. J. Canning, “Fresnel optics inside optical fibres”, in Photonics Research Developments, Ch. 5 (Nova Science Publishers, United States, 2008).
  12. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, The Netherlands, 2003).
  13. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
    [CrossRef] [PubMed]
  14. D. Kácik, I. Turek, I. Martincek, J. Canning, and K. Lyytikainen, “The role of diffraction in determining the short wavelength losses edge of photonic crystal fibres”, Proc. Joint Bragg Gratings, Photosensitivity and Poling (BGPP 2005)/Australian Conf. on Optical Fibre Tech. (ACOFT 2005), Sydney, Australia, (2005)
  15. J. Canning, M. Kristensen, N. Skivesen, C. Martelli, A. Tetu, and L. H. Frandsen, “Spectrally narrow polarisation conversion in a slow-light photonic crystal waveguide,” J. European Opt. Soc. 4, 09019 (2009).
    [CrossRef]
  16. N. Skivesen, J. Canning, M. Kristensen, C. Martelli, A. Tetu, and L. H. Frandsen, “Photonic crystal waveguide biosensors”, (Invited) Con. On Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. (OFC/NFOEC 2008), San Diego, USA, paper OTuK2, 1–3, (2008).
  17. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
    [CrossRef] [PubMed]
  18. M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
    [CrossRef] [PubMed]
  19. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
    [CrossRef]
  20. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  21. Q. F. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
    [CrossRef] [PubMed]
  22. C. Martelli and J. Canning, “Fresnel fibers for sensing”, Proc. Optical Fiber Sensors (OFS 2006), Cancun, Mexico (2006). OSA Technical Digest (CD) (Optical Society of America 2006), post-deadline paper ThF5.
  23. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
    [CrossRef]
  24. Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, “Light confinement within nanoholes in nanostructured optical fibers,” Opt. Express 18(25), 26018–26026 (2010).
    [CrossRef] [PubMed]
  25. J. Canning, E. Buckley, and K. Lyytikainen, “Propagation in air by field superposition of scattered light within a Fresnel fiber,” Opt. Lett. 28(4), 230–232 (2003).
    [CrossRef] [PubMed]
  26. N. A. Issa and L. Poladian, “Vector wave expansion method for leaky modes of microstructured optical fibers,” J. Lightwave Technol. 21(4), 1005–1012 (2003).
    [CrossRef]
  27. C. Martelli, “COMSOL verification of ABCD Method for light localisation within nanometer holes”, Unpublished, (2010).
  28. C. M. Rollinson, S. T. Huntington, B. C. Gibson, and J. Canning, “Fractal fibre for enhanced throughput SNOM probes”, in Trends in Photonics Ch. 12 (Ed. J. Canning, Research Signpost, http://www.ressign.com/ , 2010).
  29. C. M. Rollinson, S. T. Huntington, B. C. Gibson, S. Rubanov, and J. Canning, “Characterization of nanoscale features in tapered fractal and photonic crystal fibers,” Opt. Express 19(3), 1860–1865 (2011).
    [CrossRef] [PubMed]
  30. P. Abgrall and N.-T. Nguyen, NanoFluidics (Artech House, United States, 2009).
  31. M. Jokinen, M. Pätsi, H. Rahiala, T. Peltola, M. Ritala, and J. B. Rosenholm, “Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method,” J. Biomed. Mater. Res. 42(2), 295–302 (1998).
    [CrossRef] [PubMed]
  32. J. Papachryssanthou, E. Bordes, A. Vejux, P. Courtine, R. Marchand, and M. Tournoux, “TiO2(B), a new support for V2O5 in the oxidation of O-xylene,” Catal. Today 1(1-2), 219–227 (1987).
    [CrossRef]
  33. G. Betz, H. Tributsch, and R. Marchand, “Hydrogen insertion (intercalation) and light induced proton exchange at TiO2(B) –electrodes,” J. Appl. Electrochem. 14(3), 315–322 (1984).
    [CrossRef]
  34. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
    [CrossRef]
  35. S. Blair and Y. Chen, “Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities,” Appl. Opt. 40(4), 570–582 (2001).
    [CrossRef] [PubMed]
  36. C. Martelli, J. Canning, B. C. Gibson, and S. T. Huntington, “Bend loss in structured optical fibres,” Opt. Express 15(26), 17639–17644 (2007).
    [CrossRef] [PubMed]
  37. S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, and W. I. Lee, “Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films,” Chem. Mater. 15(17), 3326–3331 (2003).
    [CrossRef]
  38. R. Marchand, L. Brohan, and M. Tournoux, “A new form of titanium dioxide and the potassium octatitanate K2Ti8O17,” Mater. Res. Bull. 15(8), 1129–1133 (1980).
    [CrossRef]
  39. R. Yoshida, Y. Suzuki, and S. Yoshikawa, “Syntheses of TiO2 nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments,” J. Solid State Chem. 178(7), 2179–2185 (2005).
    [CrossRef]
  40. A. Kathiravan and R. Renganathan, “Effect of anchoring group on the photosensitisation of colloidal TiO2 nanoparticles with porphyrins,” J. Colloid Interface Sci. 331(2), 401–407 (2009).
    [CrossRef] [PubMed]
  41. C. F. Lo, L. Luo, E. W. J. Diau, I. J. Chang, and C. Y. Lin, “Evidence for the assembly of carboxyphenylethynyl zinc porphyrins on nanocrystalline TiO2 surfaces,” Chem. Commun. (Camb.) (13), 1430–1432 (2006).
    [CrossRef] [PubMed]

2011

2010

2009

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, “Evanescent-field spectroscopy using structured optical fibers: detection of charge-transfer at the porphyrin-silica interface,” J. Am. Chem. Soc. 131(8), 2925–2933 (2009).
[CrossRef] [PubMed]

J. Canning, M. Kristensen, N. Skivesen, C. Martelli, A. Tetu, and L. H. Frandsen, “Spectrally narrow polarisation conversion in a slow-light photonic crystal waveguide,” J. European Opt. Soc. 4, 09019 (2009).
[CrossRef]

A. Kathiravan and R. Renganathan, “Effect of anchoring group on the photosensitisation of colloidal TiO2 nanoparticles with porphyrins,” J. Colloid Interface Sci. 331(2), 401–407 (2009).
[CrossRef] [PubMed]

2007

C. Martelli, J. Canning, B. C. Gibson, and S. T. Huntington, “Bend loss in structured optical fibres,” Opt. Express 15(26), 17639–17644 (2007).
[CrossRef] [PubMed]

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[CrossRef] [PubMed]

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[CrossRef] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” Sensors (Basel Switzerland) 7, 28–35 (2007).

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
[CrossRef] [PubMed]

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

2006

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “Coated long-period fiber gratings as high-sensitivity optochemical sensors,” J. Lightwave Technol. 24(4), 1776–1786 (2006).
[CrossRef]

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[CrossRef] [PubMed]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[CrossRef]

C. F. Lo, L. Luo, E. W. J. Diau, I. J. Chang, and C. Y. Lin, “Evidence for the assembly of carboxyphenylethynyl zinc porphyrins on nanocrystalline TiO2 surfaces,” Chem. Commun. (Camb.) (13), 1430–1432 (2006).
[CrossRef] [PubMed]

2005

R. Yoshida, Y. Suzuki, and S. Yoshikawa, “Syntheses of TiO2 nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments,” J. Solid State Chem. 178(7), 2179–2185 (2005).
[CrossRef]

2004

2003

2002

J. Canning, “Diffraction-free mode generation and propagation in optical waveguides,” Opt. Commun. 207(1-6), 35–39 (2002).
[CrossRef]

2001

2000

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[CrossRef]

1998

M. Jokinen, M. Pätsi, H. Rahiala, T. Peltola, M. Ritala, and J. B. Rosenholm, “Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method,” J. Biomed. Mater. Res. 42(2), 295–302 (1998).
[CrossRef] [PubMed]

1987

J. Papachryssanthou, E. Bordes, A. Vejux, P. Courtine, R. Marchand, and M. Tournoux, “TiO2(B), a new support for V2O5 in the oxidation of O-xylene,” Catal. Today 1(1-2), 219–227 (1987).
[CrossRef]

1984

G. Betz, H. Tributsch, and R. Marchand, “Hydrogen insertion (intercalation) and light induced proton exchange at TiO2(B) –electrodes,” J. Appl. Electrochem. 14(3), 315–322 (1984).
[CrossRef]

1980

R. Marchand, L. Brohan, and M. Tournoux, “A new form of titanium dioxide and the potassium octatitanate K2Ti8O17,” Mater. Res. Bull. 15(8), 1129–1133 (1980).
[CrossRef]

1978

Afshar, S.

Almeida, V. R.

Astruc, D.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[CrossRef] [PubMed]

Baets, R.

Barrios, C. A.

Bartolozzi, I.

Benabid, F.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Betz, G.

G. Betz, H. Tributsch, and R. Marchand, “Hydrogen insertion (intercalation) and light induced proton exchange at TiO2(B) –electrodes,” J. Appl. Electrochem. 14(3), 315–322 (1984).
[CrossRef]

Bienstman, P.

Blair, S.

Bordes, E.

J. Papachryssanthou, E. Bordes, A. Vejux, P. Courtine, R. Marchand, and M. Tournoux, “TiO2(B), a new support for V2O5 in the oxidation of O-xylene,” Catal. Today 1(1-2), 219–227 (1987).
[CrossRef]

Borel, P. I.

Brohan, L.

R. Marchand, L. Brohan, and M. Tournoux, “A new form of titanium dioxide and the potassium octatitanate K2Ti8O17,” Mater. Res. Bull. 15(8), 1129–1133 (1980).
[CrossRef]

Buckley, E.

Campopiano, S.

Canning, J.

C. M. Rollinson, S. T. Huntington, B. C. Gibson, S. Rubanov, and J. Canning, “Characterization of nanoscale features in tapered fractal and photonic crystal fibers,” Opt. Express 19(3), 1860–1865 (2011).
[CrossRef] [PubMed]

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, “Evanescent-field spectroscopy using structured optical fibers: detection of charge-transfer at the porphyrin-silica interface,” J. Am. Chem. Soc. 131(8), 2925–2933 (2009).
[CrossRef] [PubMed]

J. Canning, M. Kristensen, N. Skivesen, C. Martelli, A. Tetu, and L. H. Frandsen, “Spectrally narrow polarisation conversion in a slow-light photonic crystal waveguide,” J. European Opt. Soc. 4, 09019 (2009).
[CrossRef]

C. Martelli, J. Canning, B. C. Gibson, and S. T. Huntington, “Bend loss in structured optical fibres,” Opt. Express 15(26), 17639–17644 (2007).
[CrossRef] [PubMed]

J. Canning, E. Buckley, and K. Lyytikainen, “Propagation in air by field superposition of scattered light within a Fresnel fiber,” Opt. Lett. 28(4), 230–232 (2003).
[CrossRef] [PubMed]

J. Canning, “Diffraction-free mode generation and propagation in optical waveguides,” Opt. Commun. 207(1-6), 35–39 (2002).
[CrossRef]

Chae, S. Y.

S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, and W. I. Lee, “Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films,” Chem. Mater. 15(17), 3326–3331 (2003).
[CrossRef]

Chang, I. J.

C. F. Lo, L. Luo, E. W. J. Diau, I. J. Chang, and C. Y. Lin, “Evidence for the assembly of carboxyphenylethynyl zinc porphyrins on nanocrystalline TiO2 surfaces,” Chem. Commun. (Camb.) (13), 1430–1432 (2006).
[CrossRef] [PubMed]

Chen, Y.

Contessa, L.

Cordeiro, C. M. B.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Couny, F.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Courtine, P.

J. Papachryssanthou, E. Bordes, A. Vejux, P. Courtine, R. Marchand, and M. Tournoux, “TiO2(B), a new support for V2O5 in the oxidation of O-xylene,” Catal. Today 1(1-2), 219–227 (1987).
[CrossRef]

Crossley, M. J.

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, “Evanescent-field spectroscopy using structured optical fibers: detection of charge-transfer at the porphyrin-silica interface,” J. Am. Chem. Soc. 131(8), 2925–2933 (2009).
[CrossRef] [PubMed]

Cruz, C. H. B.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Cusano, A.

Cutolo, A.

Daniel, M. C.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[CrossRef] [PubMed]

De Vos, K.

Dhonukshe, P. B.

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[CrossRef] [PubMed]

Diau, E. W. J.

C. F. Lo, L. Luo, E. W. J. Diau, I. J. Chang, and C. Y. Lin, “Evidence for the assembly of carboxyphenylethynyl zinc porphyrins on nanocrystalline TiO2 surfaces,” Chem. Commun. (Camb.) (13), 1430–1432 (2006).
[CrossRef] [PubMed]

Dittrich, P. S.

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[CrossRef] [PubMed]

Ebendorff-Heidepriem, H.

Fan, X.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” Sensors (Basel Switzerland) 7, 28–35 (2007).

Fassi Fehri, M.

Fragnito, H. L.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Frandsen, L. H.

J. Canning, M. Kristensen, N. Skivesen, C. Martelli, A. Tetu, and L. H. Frandsen, “Spectrally narrow polarisation conversion in a slow-light photonic crystal waveguide,” J. European Opt. Soc. 4, 09019 (2009).
[CrossRef]

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[CrossRef] [PubMed]

Gadella, T. W. J.

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[CrossRef] [PubMed]

Gauvreau, B.

Gibson, B. C.

Giordano, M.

Guerra, G.

Hanumegowda, N. M.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” Sensors (Basel Switzerland) 7, 28–35 (2007).

Hassani, A.

Hoebe, R. A.

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[CrossRef] [PubMed]

Huntington, S. T.

Iadicicco, A.

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[CrossRef]

Issa, N. A.

Jokinen, M.

M. Jokinen, M. Pätsi, H. Rahiala, T. Peltola, M. Ritala, and J. B. Rosenholm, “Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method,” J. Biomed. Mater. Res. 42(2), 295–302 (1998).
[CrossRef] [PubMed]

Kabashin, A.

Kathiravan, A.

A. Kathiravan and R. Renganathan, “Effect of anchoring group on the photosensitisation of colloidal TiO2 nanoparticles with porphyrins,” J. Colloid Interface Sci. 331(2), 401–407 (2009).
[CrossRef] [PubMed]

Khoury, T.

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, “Evanescent-field spectroscopy using structured optical fibers: detection of charge-transfer at the porphyrin-silica interface,” J. Am. Chem. Soc. 131(8), 2925–2933 (2009).
[CrossRef] [PubMed]

Kim, S. K.

S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, and W. I. Lee, “Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films,” Chem. Mater. 15(17), 3326–3331 (2003).
[CrossRef]

Kim, T. Y.

S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, and W. I. Lee, “Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films,” Chem. Mater. 15(17), 3326–3331 (2003).
[CrossRef]

Kjems, J.

Knight, J. C.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Knoll, W.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[CrossRef]

Kristensen, M.

J. Canning, M. Kristensen, N. Skivesen, C. Martelli, A. Tetu, and L. H. Frandsen, “Spectrally narrow polarisation conversion in a slow-light photonic crystal waveguide,” J. European Opt. Soc. 4, 09019 (2009).
[CrossRef]

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[CrossRef] [PubMed]

Lee, S. K.

S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, and W. I. Lee, “Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films,” Chem. Mater. 15(17), 3326–3331 (2003).
[CrossRef]

Lee, W. I.

S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, and W. I. Lee, “Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films,” Chem. Mater. 15(17), 3326–3331 (2003).
[CrossRef]

Liebermann, T.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[CrossRef]

Lin, C. Y.

C. F. Lo, L. Luo, E. W. J. Diau, I. J. Chang, and C. Y. Lin, “Evidence for the assembly of carboxyphenylethynyl zinc porphyrins on nanocrystalline TiO2 surfaces,” Chem. Commun. (Camb.) (13), 1430–1432 (2006).
[CrossRef] [PubMed]

Lipson, M.

Lo, C. F.

C. F. Lo, L. Luo, E. W. J. Diau, I. J. Chang, and C. Y. Lin, “Evidence for the assembly of carboxyphenylethynyl zinc porphyrins on nanocrystalline TiO2 surfaces,” Chem. Commun. (Camb.) (13), 1430–1432 (2006).
[CrossRef] [PubMed]

Luo, L.

C. F. Lo, L. Luo, E. W. J. Diau, I. J. Chang, and C. Y. Lin, “Evidence for the assembly of carboxyphenylethynyl zinc porphyrins on nanocrystalline TiO2 surfaces,” Chem. Commun. (Camb.) (13), 1430–1432 (2006).
[CrossRef] [PubMed]

Lyytikainen, K.

Maier, S. A.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Manders, E. M.

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[CrossRef] [PubMed]

Manz, A.

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[CrossRef] [PubMed]

Marchand, R.

J. Papachryssanthou, E. Bordes, A. Vejux, P. Courtine, R. Marchand, and M. Tournoux, “TiO2(B), a new support for V2O5 in the oxidation of O-xylene,” Catal. Today 1(1-2), 219–227 (1987).
[CrossRef]

G. Betz, H. Tributsch, and R. Marchand, “Hydrogen insertion (intercalation) and light induced proton exchange at TiO2(B) –electrodes,” J. Appl. Electrochem. 14(3), 315–322 (1984).
[CrossRef]

R. Marchand, L. Brohan, and M. Tournoux, “A new form of titanium dioxide and the potassium octatitanate K2Ti8O17,” Mater. Res. Bull. 15(8), 1129–1133 (1980).
[CrossRef]

Marom, E.

Martelli, C.

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, “Evanescent-field spectroscopy using structured optical fibers: detection of charge-transfer at the porphyrin-silica interface,” J. Am. Chem. Soc. 131(8), 2925–2933 (2009).
[CrossRef] [PubMed]

J. Canning, M. Kristensen, N. Skivesen, C. Martelli, A. Tetu, and L. H. Frandsen, “Spectrally narrow polarisation conversion in a slow-light photonic crystal waveguide,” J. European Opt. Soc. 4, 09019 (2009).
[CrossRef]

C. Martelli, J. Canning, B. C. Gibson, and S. T. Huntington, “Bend loss in structured optical fibres,” Opt. Express 15(26), 17639–17644 (2007).
[CrossRef] [PubMed]

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[CrossRef]

Monro, T. M.

Oveys, H.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” Sensors (Basel Switzerland) 7, 28–35 (2007).

Panepucci, R. R.

Papachryssanthou, J.

J. Papachryssanthou, E. Bordes, A. Vejux, P. Courtine, R. Marchand, and M. Tournoux, “TiO2(B), a new support for V2O5 in the oxidation of O-xylene,” Catal. Today 1(1-2), 219–227 (1987).
[CrossRef]

Park, M. K.

S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, and W. I. Lee, “Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films,” Chem. Mater. 15(17), 3326–3331 (2003).
[CrossRef]

Pätsi, M.

M. Jokinen, M. Pätsi, H. Rahiala, T. Peltola, M. Ritala, and J. B. Rosenholm, “Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method,” J. Biomed. Mater. Res. 42(2), 295–302 (1998).
[CrossRef] [PubMed]

Peltola, T.

M. Jokinen, M. Pätsi, H. Rahiala, T. Peltola, M. Ritala, and J. B. Rosenholm, “Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method,” J. Biomed. Mater. Res. 42(2), 295–302 (1998).
[CrossRef] [PubMed]

Pilla, P.

Poladian, L.

Rahiala, H.

M. Jokinen, M. Pätsi, H. Rahiala, T. Peltola, M. Ritala, and J. B. Rosenholm, “Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method,” J. Biomed. Mater. Res. 42(2), 295–302 (1998).
[CrossRef] [PubMed]

Reimers, J. R.

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, “Evanescent-field spectroscopy using structured optical fibers: detection of charge-transfer at the porphyrin-silica interface,” J. Am. Chem. Soc. 131(8), 2925–2933 (2009).
[CrossRef] [PubMed]

Renganathan, R.

A. Kathiravan and R. Renganathan, “Effect of anchoring group on the photosensitisation of colloidal TiO2 nanoparticles with porphyrins,” J. Colloid Interface Sci. 331(2), 401–407 (2009).
[CrossRef] [PubMed]

Ritala, M.

M. Jokinen, M. Pätsi, H. Rahiala, T. Peltola, M. Ritala, and J. B. Rosenholm, “Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method,” J. Biomed. Mater. Res. 42(2), 295–302 (1998).
[CrossRef] [PubMed]

Rollinson, C. M.

Rosenholm, J. B.

M. Jokinen, M. Pätsi, H. Rahiala, T. Peltola, M. Ritala, and J. B. Rosenholm, “Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method,” J. Biomed. Mater. Res. 42(2), 295–302 (1998).
[CrossRef] [PubMed]

Ruan, Y.

Rubanov, S.

Schacht, E.

Sintic, M.

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, “Evanescent-field spectroscopy using structured optical fibers: detection of charge-transfer at the porphyrin-silica interface,” J. Am. Chem. Soc. 131(8), 2925–2933 (2009).
[CrossRef] [PubMed]

Skivesen, N.

J. Canning, M. Kristensen, N. Skivesen, C. Martelli, A. Tetu, and L. H. Frandsen, “Spectrally narrow polarisation conversion in a slow-light photonic crystal waveguide,” J. European Opt. Soc. 4, 09019 (2009).
[CrossRef]

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[CrossRef] [PubMed]

Skorobogatiy, M. A.

Stocks, D.

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, “Evanescent-field spectroscopy using structured optical fibers: detection of charge-transfer at the porphyrin-silica interface,” J. Am. Chem. Soc. 131(8), 2925–2933 (2009).
[CrossRef] [PubMed]

Suter, J. D.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” Sensors (Basel Switzerland) 7, 28–35 (2007).

Suzuki, Y.

R. Yoshida, Y. Suzuki, and S. Yoshikawa, “Syntheses of TiO2 nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments,” J. Solid State Chem. 178(7), 2179–2185 (2005).
[CrossRef]

Tetu, A.

J. Canning, M. Kristensen, N. Skivesen, C. Martelli, A. Tetu, and L. H. Frandsen, “Spectrally narrow polarisation conversion in a slow-light photonic crystal waveguide,” J. European Opt. Soc. 4, 09019 (2009).
[CrossRef]

Têtu, A.

Tournoux, M.

J. Papachryssanthou, E. Bordes, A. Vejux, P. Courtine, R. Marchand, and M. Tournoux, “TiO2(B), a new support for V2O5 in the oxidation of O-xylene,” Catal. Today 1(1-2), 219–227 (1987).
[CrossRef]

R. Marchand, L. Brohan, and M. Tournoux, “A new form of titanium dioxide and the potassium octatitanate K2Ti8O17,” Mater. Res. Bull. 15(8), 1129–1133 (1980).
[CrossRef]

Tributsch, H.

G. Betz, H. Tributsch, and R. Marchand, “Hydrogen insertion (intercalation) and light induced proton exchange at TiO2(B) –electrodes,” J. Appl. Electrochem. 14(3), 315–322 (1984).
[CrossRef]

Van Noorden, C. J.

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[CrossRef] [PubMed]

Van Oven, C. H.

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[CrossRef] [PubMed]

Vejux, A.

J. Papachryssanthou, E. Bordes, A. Vejux, P. Courtine, R. Marchand, and M. Tournoux, “TiO2(B), a new support for V2O5 in the oxidation of O-xylene,” Catal. Today 1(1-2), 219–227 (1987).
[CrossRef]

White, I. M.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” Sensors (Basel Switzerland) 7, 28–35 (2007).

Wiederhecker, G. S.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Xu, Q. F.

Yariv, A.

Yeh, P.

Yoshida, R.

R. Yoshida, Y. Suzuki, and S. Yoshikawa, “Syntheses of TiO2 nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments,” J. Solid State Chem. 178(7), 2179–2185 (2005).
[CrossRef]

Yoshikawa, S.

R. Yoshida, Y. Suzuki, and S. Yoshikawa, “Syntheses of TiO2 nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments,” J. Solid State Chem. 178(7), 2179–2185 (2005).
[CrossRef]

Zhu, H.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” Sensors (Basel Switzerland) 7, 28–35 (2007).

Zourob, M.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” Sensors (Basel Switzerland) 7, 28–35 (2007).

Appl. Opt.

Catal. Today

J. Papachryssanthou, E. Bordes, A. Vejux, P. Courtine, R. Marchand, and M. Tournoux, “TiO2(B), a new support for V2O5 in the oxidation of O-xylene,” Catal. Today 1(1-2), 219–227 (1987).
[CrossRef]

Chem. Commun. (Camb.)

C. F. Lo, L. Luo, E. W. J. Diau, I. J. Chang, and C. Y. Lin, “Evidence for the assembly of carboxyphenylethynyl zinc porphyrins on nanocrystalline TiO2 surfaces,” Chem. Commun. (Camb.) (13), 1430–1432 (2006).
[CrossRef] [PubMed]

Chem. Mater.

S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, and W. I. Lee, “Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films,” Chem. Mater. 15(17), 3326–3331 (2003).
[CrossRef]

Chem. Rev.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[CrossRef] [PubMed]

Colloids Surf. A Physicochem. Eng. Asp.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[CrossRef]

J. Am. Chem. Soc.

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, “Evanescent-field spectroscopy using structured optical fibers: detection of charge-transfer at the porphyrin-silica interface,” J. Am. Chem. Soc. 131(8), 2925–2933 (2009).
[CrossRef] [PubMed]

J. Appl. Electrochem.

G. Betz, H. Tributsch, and R. Marchand, “Hydrogen insertion (intercalation) and light induced proton exchange at TiO2(B) –electrodes,” J. Appl. Electrochem. 14(3), 315–322 (1984).
[CrossRef]

J. Biomed. Mater. Res.

M. Jokinen, M. Pätsi, H. Rahiala, T. Peltola, M. Ritala, and J. B. Rosenholm, “Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method,” J. Biomed. Mater. Res. 42(2), 295–302 (1998).
[CrossRef] [PubMed]

J. Colloid Interface Sci.

A. Kathiravan and R. Renganathan, “Effect of anchoring group on the photosensitisation of colloidal TiO2 nanoparticles with porphyrins,” J. Colloid Interface Sci. 331(2), 401–407 (2009).
[CrossRef] [PubMed]

J. European Opt. Soc.

J. Canning, M. Kristensen, N. Skivesen, C. Martelli, A. Tetu, and L. H. Frandsen, “Spectrally narrow polarisation conversion in a slow-light photonic crystal waveguide,” J. European Opt. Soc. 4, 09019 (2009).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

J. Solid State Chem.

R. Yoshida, Y. Suzuki, and S. Yoshikawa, “Syntheses of TiO2 nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments,” J. Solid State Chem. 178(7), 2179–2185 (2005).
[CrossRef]

Mater. Res. Bull.

R. Marchand, L. Brohan, and M. Tournoux, “A new form of titanium dioxide and the potassium octatitanate K2Ti8O17,” Mater. Res. Bull. 15(8), 1129–1133 (1980).
[CrossRef]

Nat. Biotechnol.

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[CrossRef] [PubMed]

Nat. Photonics

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Nat. Rev. Drug Discov.

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[CrossRef] [PubMed]

Opt. Commun.

J. Canning, “Diffraction-free mode generation and propagation in optical waveguides,” Opt. Commun. 207(1-6), 35–39 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Sensors (Basel Switzerland)

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” Sensors (Basel Switzerland) 7, 28–35 (2007).

Other

C. Martelli and J. Canning, “Fresnel fibers for sensing”, Proc. Optical Fiber Sensors (OFS 2006), Cancun, Mexico (2006). OSA Technical Digest (CD) (Optical Society of America 2006), post-deadline paper ThF5.

C. Martelli, “COMSOL verification of ABCD Method for light localisation within nanometer holes”, Unpublished, (2010).

C. M. Rollinson, S. T. Huntington, B. C. Gibson, and J. Canning, “Fractal fibre for enhanced throughput SNOM probes”, in Trends in Photonics Ch. 12 (Ed. J. Canning, Research Signpost, http://www.ressign.com/ , 2010).

P. Abgrall and N.-T. Nguyen, NanoFluidics (Artech House, United States, 2009).

J. Canning, “Fresnel optics inside optical fibres”, in Photonics Research Developments, Ch. 5 (Nova Science Publishers, United States, 2008).

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, The Netherlands, 2003).

D. Kácik, I. Turek, I. Martincek, J. Canning, and K. Lyytikainen, “The role of diffraction in determining the short wavelength losses edge of photonic crystal fibres”, Proc. Joint Bragg Gratings, Photosensitivity and Poling (BGPP 2005)/Australian Conf. on Optical Fibre Tech. (ACOFT 2005), Sydney, Australia, (2005)

J. Canning, “New trends in structured optical fibres for telecommunications and sensing”, Proc. Joint 5th Int. Conf. on Optical Communications and Networks & 2nd Int. Symp. on Advances and Trends in Fiber Optics and Applications (ICOCN/ATFO 2006), (Invited paper) Chengdu, China, (2006).

P. C. Goodwin, “GFP biofluorescence: imaging gene expression and protein dynamics in living cells: design considerations for a fluorescence imaging laboratory,” Ch. 20 in Methods in Cell Biology58, 343–367 (1998).

N. Skivesen, J. Canning, M. Kristensen, C. Martelli, A. Tetu, and L. H. Frandsen, “Photonic crystal waveguide biosensors”, (Invited) Con. On Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. (OFC/NFOEC 2008), San Diego, USA, paper OTuK2, 1–3, (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulation of field confinement within (a) a simple 2-ring structured optical fibre; (b) the same fibre with a 155 nm layer of refractive index n = 2.6; and (c) cross-section of simulations showing enhanced optical localisation of light particularly near the high index surfaces (orange dashed).

Fig. 2
Fig. 2

SEM image of the core cross-section of a structured optical fibre with 3 rings of holes. Optical guidance is dominated by the two inner rings.

Fig. 3
Fig. 3

TEM images of (a) crystal of TiO2 showing evidence of a monoclinic unit cell and (b) similar crystal coated with TCPP.

Fig. 4
Fig. 4

UV-VIS spectra of TCPP porphyrin and TCPP porphyrin coated TiO2 particles in ethanol.

Fig. 5
Fig. 5

Schematic of the optical interrogation setup. The spectrum within the sample fibre under test is collected using a broadband Hg-Xe white light source and optical spectrum analyser (OSA).

Fig. 6
Fig. 6

Transmission spectrum of 3 structured fibre samples referenced to pristine sample: (black) – with TCPP only; (purple) – with TCPP mixed with TiO2 nanoparticles; and (green) with TiO2 layer and TCPP. Details in the text.

Metrics