Abstract

We performed the first growth, from a high temperature solution, of a 38.86 μm-periodicity PPKTP crystal of good optical quality over a thickness of more than 800 μm onto each of the two faces perpendicular to the c direction of a PPKTP substrate previously obtained by electric field poling. The quasi-phase matched second harmonic generation properties in the grown layer and substrate are similar and in accordance with calculation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [CrossRef]
  2. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
    [CrossRef]
  3. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
    [CrossRef]
  4. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
    [CrossRef]
  5. A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am B 24(8), 1916–1921 (2007).
  6. C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82(24), 4233–4235 (2003).
    [CrossRef]
  7. J. Hellström, V. Pasiskevicius, H. Karlsson, and F. Laurell, “High-power optical parametric oscillation in large-aperture periodically poled KTiOPO4.,” Opt. Lett. 25(3), 174–176 (2000).
    [CrossRef] [PubMed]
  8. M. V. Pack, D. J. Armstrong, and A. V. Smith, “Measurement of the χ (2) tensors of KTiOPO4, KTiOAsO4, RbTiOPO4, and RbTiOAsO4 crystals,” Appl. Opt. 43(16), 3319–3323 (2004).
    [CrossRef] [PubMed]
  9. M. Roth, N. Angert, and M. Tseitlin, “Growth-dependent properties of KTP crystals and PPKTP structures,” J. Mater. Sci. Mater. Electron. 12(8), 429–436 (2001).
    [CrossRef]
  10. V. Bermúdez, D. Callejo, and E. Diéguez, “On the cooling effect in the formation of periodic poled lithium niobate crystals grown by Cz technique,” J. Cryst. Growth 207(4), 303–307 (1999).
    [CrossRef]
  11. C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201-202 (3), 187–193 (1999).
    [CrossRef]
  12. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
    [CrossRef]
  13. G. D. Stucky, M. L. F. Phillips, and T. E. Gier, “The potassium titanyl phosphate structure field: a model for new nonlinear optical materials,” Chem. Mater. 1(5), 492–509 (1989).
    [CrossRef]
  14. P. A. Thomas, A. M. Glazer, and B. E. Watts, “Crystal structure and nonlinear optical properties of KSnOPO4 and their comparison with KTiOPO4,” Acta Crystallogr. B 46(3), 333–343 (1990).
    [CrossRef]
  15. V. K. Yanovskii and V. I. Voronkova, “Ferroelectric phase transitions and properties of crystals of the KTiOPO4 family,” Phys. Status Solidi A 93(2), 665–668 (1986).
    [CrossRef]
  16. M. Roth, N. Angert, M. Tseitlin, and A. Alexandrovski, “On the optical quality of KTP crystals for nonlinear optical and electro-optic applications,” Opt. Mater. 16(1–2), 131–136 (2001).
    [CrossRef]
  17. R. J. Bolt, M. H. van der Mooren, and H. de Haas, “Growth of KTiOPO4 (KTP) single crystals by means of phosphate and phosphate/sulfate fluxes out of a three-zone furnace,” J. Cryst. Growth 114(1–2), 141–152 (1991).
    [CrossRef]
  18. J. C. Jacco, G. M. Loiacono, M. Jaso, G. Mizell, and B. Greenberg, “Flux growth and properties of KTiOPO4,” J. Cryst. Growth 70(1–2), 484–488 (1984).
    [CrossRef]
  19. J. J. M. Rijpkema, H. J. F. Knops, P. Bennema, and J. P. van der Eerden, “Determination of the Ising critical temperature of F slices with an application to garnet,” J. Cryst. Growth 61(2), 295–306 (1983).
    [CrossRef]
  20. R. A. Laudise, R. J. Cava, and A. J. Caporaso, “Phase relations, solubility and growth of potassium titanyl phosphate, KTP,” J. Cryst. Growth 74(2), 275–280 (1986).
    [CrossRef]
  21. M. Tseitlin, E. Mojaev, and M. Roth, “Growth of KTP crystals with large {001} facets,” J. Cryst. Growth 312(8), 1055–1058 (2010).
    [CrossRef]
  22. P. J. Halfpenny, L. O’Neill, J. N. Sherwood, G. S. Simpson, A. Yokotani, A. Miyamoto, T. Sasaki, and S. Nakai, “X-ray topographic study of flux grown KTP crystals,” J. Cryst. Growth 113(3–4), 722–725 (1991).
    [CrossRef]
  23. G. M. Loiacono, T. F. McGee, and G. Kostecky, “Solubility and crystal growth of KTiOPO4 in polyphosphates solvents,” J. Cryst. Growth 104(2), 389–391 (1990).
    [CrossRef]
  24. G. Marnier, “Synthesis in flux of crystals and epitaxies from isotypic solid solution of KTiOPO4,” U.S. patent 4961819 (1990).
  25. P. F. Bordui, J. C. Jacco, G. M. Loiacono, and R. A. Stolzenberger, “Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system,” J. Cryst. Growth 84(3), 403–408 (1987).
    [CrossRef]
  26. M. Temkin, “Mixtures of fused salts as ionic solutions,” Acta Phys. Chim. URSS 20(4), 411–420 (1945).
  27. W. van Erk, “A solubility model for rare-earth iron garnets in a PbO/B2O3 solution,” J. Cryst. Growth 46(4), 539–550 (1979).
    [CrossRef]

2010

M. Tseitlin, E. Mojaev, and M. Roth, “Growth of KTP crystals with large {001} facets,” J. Cryst. Growth 312(8), 1055–1058 (2010).
[CrossRef]

2009

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

2007

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am B 24(8), 1916–1921 (2007).

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[CrossRef]

2004

2003

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82(24), 4233–4235 (2003).
[CrossRef]

2001

M. Roth, N. Angert, and M. Tseitlin, “Growth-dependent properties of KTP crystals and PPKTP structures,” J. Mater. Sci. Mater. Electron. 12(8), 429–436 (2001).
[CrossRef]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[CrossRef]

M. Roth, N. Angert, M. Tseitlin, and A. Alexandrovski, “On the optical quality of KTP crystals for nonlinear optical and electro-optic applications,” Opt. Mater. 16(1–2), 131–136 (2001).
[CrossRef]

2000

1999

V. Bermúdez, D. Callejo, and E. Diéguez, “On the cooling effect in the formation of periodic poled lithium niobate crystals grown by Cz technique,” J. Cryst. Growth 207(4), 303–307 (1999).
[CrossRef]

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201-202 (3), 187–193 (1999).
[CrossRef]

1998

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

1991

R. J. Bolt, M. H. van der Mooren, and H. de Haas, “Growth of KTiOPO4 (KTP) single crystals by means of phosphate and phosphate/sulfate fluxes out of a three-zone furnace,” J. Cryst. Growth 114(1–2), 141–152 (1991).
[CrossRef]

P. J. Halfpenny, L. O’Neill, J. N. Sherwood, G. S. Simpson, A. Yokotani, A. Miyamoto, T. Sasaki, and S. Nakai, “X-ray topographic study of flux grown KTP crystals,” J. Cryst. Growth 113(3–4), 722–725 (1991).
[CrossRef]

1990

G. M. Loiacono, T. F. McGee, and G. Kostecky, “Solubility and crystal growth of KTiOPO4 in polyphosphates solvents,” J. Cryst. Growth 104(2), 389–391 (1990).
[CrossRef]

P. A. Thomas, A. M. Glazer, and B. E. Watts, “Crystal structure and nonlinear optical properties of KSnOPO4 and their comparison with KTiOPO4,” Acta Crystallogr. B 46(3), 333–343 (1990).
[CrossRef]

1989

G. D. Stucky, M. L. F. Phillips, and T. E. Gier, “The potassium titanyl phosphate structure field: a model for new nonlinear optical materials,” Chem. Mater. 1(5), 492–509 (1989).
[CrossRef]

1987

P. F. Bordui, J. C. Jacco, G. M. Loiacono, and R. A. Stolzenberger, “Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system,” J. Cryst. Growth 84(3), 403–408 (1987).
[CrossRef]

1986

V. K. Yanovskii and V. I. Voronkova, “Ferroelectric phase transitions and properties of crystals of the KTiOPO4 family,” Phys. Status Solidi A 93(2), 665–668 (1986).
[CrossRef]

R. A. Laudise, R. J. Cava, and A. J. Caporaso, “Phase relations, solubility and growth of potassium titanyl phosphate, KTP,” J. Cryst. Growth 74(2), 275–280 (1986).
[CrossRef]

1984

J. C. Jacco, G. M. Loiacono, M. Jaso, G. Mizell, and B. Greenberg, “Flux growth and properties of KTiOPO4,” J. Cryst. Growth 70(1–2), 484–488 (1984).
[CrossRef]

1983

J. J. M. Rijpkema, H. J. F. Knops, P. Bennema, and J. P. van der Eerden, “Determination of the Ising critical temperature of F slices with an application to garnet,” J. Cryst. Growth 61(2), 295–306 (1983).
[CrossRef]

1979

W. van Erk, “A solubility model for rare-earth iron garnets in a PbO/B2O3 solution,” J. Cryst. Growth 46(4), 539–550 (1979).
[CrossRef]

1945

M. Temkin, “Mixtures of fused salts as ionic solutions,” Acta Phys. Chim. URSS 20(4), 411–420 (1945).

Alexandrovski, A.

M. Roth, N. Angert, M. Tseitlin, and A. Alexandrovski, “On the optical quality of KTP crystals for nonlinear optical and electro-optic applications,” Opt. Mater. 16(1–2), 131–136 (2001).
[CrossRef]

Angert, N.

M. Roth, N. Angert, M. Tseitlin, and A. Alexandrovski, “On the optical quality of KTP crystals for nonlinear optical and electro-optic applications,” Opt. Mater. 16(1–2), 131–136 (2001).
[CrossRef]

M. Roth, N. Angert, and M. Tseitlin, “Growth-dependent properties of KTP crystals and PPKTP structures,” J. Mater. Sci. Mater. Electron. 12(8), 429–436 (2001).
[CrossRef]

Arie, A.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am B 24(8), 1916–1921 (2007).

Armstrong, D. J.

Bahabad, A.

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am B 24(8), 1916–1921 (2007).

Becouarn, L.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[CrossRef]

Bennema, P.

J. J. M. Rijpkema, H. J. F. Knops, P. Bennema, and J. P. van der Eerden, “Determination of the Ising critical temperature of F slices with an application to garnet,” J. Cryst. Growth 61(2), 295–306 (1983).
[CrossRef]

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[CrossRef]

Bermúdez, V.

V. Bermúdez, D. Callejo, and E. Diéguez, “On the cooling effect in the formation of periodic poled lithium niobate crystals grown by Cz technique,” J. Cryst. Growth 207(4), 303–307 (1999).
[CrossRef]

Bolt, R. J.

R. J. Bolt, M. H. van der Mooren, and H. de Haas, “Growth of KTiOPO4 (KTP) single crystals by means of phosphate and phosphate/sulfate fluxes out of a three-zone furnace,” J. Cryst. Growth 114(1–2), 141–152 (1991).
[CrossRef]

Bordui, P. F.

P. F. Bordui, J. C. Jacco, G. M. Loiacono, and R. A. Stolzenberger, “Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system,” J. Cryst. Growth 84(3), 403–408 (1987).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Callejo, D.

V. Bermúdez, D. Callejo, and E. Diéguez, “On the cooling effect in the formation of periodic poled lithium niobate crystals grown by Cz technique,” J. Cryst. Growth 207(4), 303–307 (1999).
[CrossRef]

Canalias, C.

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[CrossRef]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82(24), 4233–4235 (2003).
[CrossRef]

Caporaso, A. J.

R. A. Laudise, R. J. Cava, and A. J. Caporaso, “Phase relations, solubility and growth of potassium titanyl phosphate, KTP,” J. Cryst. Growth 74(2), 275–280 (1986).
[CrossRef]

Cava, R. J.

R. A. Laudise, R. J. Cava, and A. J. Caporaso, “Phase relations, solubility and growth of potassium titanyl phosphate, KTP,” J. Cryst. Growth 74(2), 275–280 (1986).
[CrossRef]

Clemens, R.

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82(24), 4233–4235 (2003).
[CrossRef]

de Haas, H.

R. J. Bolt, M. H. van der Mooren, and H. de Haas, “Growth of KTiOPO4 (KTP) single crystals by means of phosphate and phosphate/sulfate fluxes out of a three-zone furnace,” J. Cryst. Growth 114(1–2), 141–152 (1991).
[CrossRef]

Diéguez, E.

V. Bermúdez, D. Callejo, and E. Diéguez, “On the cooling effect in the formation of periodic poled lithium niobate crystals grown by Cz technique,” J. Cryst. Growth 207(4), 303–307 (1999).
[CrossRef]

Ebert, C. B.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[CrossRef]

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201-202 (3), 187–193 (1999).
[CrossRef]

Ellenbogen, T.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

Eyres, L. A.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[CrossRef]

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201-202 (3), 187–193 (1999).
[CrossRef]

Fejer, M. M.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[CrossRef]

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201-202 (3), 187–193 (1999).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Ganany-Padowicz, A.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

Gerard, B.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[CrossRef]

Gier, T. E.

G. D. Stucky, M. L. F. Phillips, and T. E. Gier, “The potassium titanyl phosphate structure field: a model for new nonlinear optical materials,” Chem. Mater. 1(5), 492–509 (1989).
[CrossRef]

Glazer, A. M.

P. A. Thomas, A. M. Glazer, and B. E. Watts, “Crystal structure and nonlinear optical properties of KSnOPO4 and their comparison with KTiOPO4,” Acta Crystallogr. B 46(3), 333–343 (1990).
[CrossRef]

Greenberg, B.

J. C. Jacco, G. M. Loiacono, M. Jaso, G. Mizell, and B. Greenberg, “Flux growth and properties of KTiOPO4,” J. Cryst. Growth 70(1–2), 484–488 (1984).
[CrossRef]

Halfpenny, P. J.

P. J. Halfpenny, L. O’Neill, J. N. Sherwood, G. S. Simpson, A. Yokotani, A. Miyamoto, T. Sasaki, and S. Nakai, “X-ray topographic study of flux grown KTP crystals,” J. Cryst. Growth 113(3–4), 722–725 (1991).
[CrossRef]

Harris, J. S.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[CrossRef]

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201-202 (3), 187–193 (1999).
[CrossRef]

Hellström, J.

Jacco, J. C.

P. F. Bordui, J. C. Jacco, G. M. Loiacono, and R. A. Stolzenberger, “Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system,” J. Cryst. Growth 84(3), 403–408 (1987).
[CrossRef]

J. C. Jacco, G. M. Loiacono, M. Jaso, G. Mizell, and B. Greenberg, “Flux growth and properties of KTiOPO4,” J. Cryst. Growth 70(1–2), 484–488 (1984).
[CrossRef]

Jaso, M.

J. C. Jacco, G. M. Loiacono, M. Jaso, G. Mizell, and B. Greenberg, “Flux growth and properties of KTiOPO4,” J. Cryst. Growth 70(1–2), 484–488 (1984).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Karlsson, H.

Knops, H. J. F.

J. J. M. Rijpkema, H. J. F. Knops, P. Bennema, and J. P. van der Eerden, “Determination of the Ising critical temperature of F slices with an application to garnet,” J. Cryst. Growth 61(2), 295–306 (1983).
[CrossRef]

Kostecky, G.

G. M. Loiacono, T. F. McGee, and G. Kostecky, “Solubility and crystal growth of KTiOPO4 in polyphosphates solvents,” J. Cryst. Growth 104(2), 389–391 (1990).
[CrossRef]

Lallier, E.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[CrossRef]

Laudise, R. A.

R. A. Laudise, R. J. Cava, and A. J. Caporaso, “Phase relations, solubility and growth of potassium titanyl phosphate, KTP,” J. Cryst. Growth 74(2), 275–280 (1986).
[CrossRef]

Laurell, F.

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82(24), 4233–4235 (2003).
[CrossRef]

J. Hellström, V. Pasiskevicius, H. Karlsson, and F. Laurell, “High-power optical parametric oscillation in large-aperture periodically poled KTiOPO4.,” Opt. Lett. 25(3), 174–176 (2000).
[CrossRef] [PubMed]

Lifshitz, R.

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am B 24(8), 1916–1921 (2007).

Loiacono, G. M.

G. M. Loiacono, T. F. McGee, and G. Kostecky, “Solubility and crystal growth of KTiOPO4 in polyphosphates solvents,” J. Cryst. Growth 104(2), 389–391 (1990).
[CrossRef]

P. F. Bordui, J. C. Jacco, G. M. Loiacono, and R. A. Stolzenberger, “Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system,” J. Cryst. Growth 84(3), 403–408 (1987).
[CrossRef]

J. C. Jacco, G. M. Loiacono, M. Jaso, G. Mizell, and B. Greenberg, “Flux growth and properties of KTiOPO4,” J. Cryst. Growth 70(1–2), 484–488 (1984).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

McGee, T. F.

G. M. Loiacono, T. F. McGee, and G. Kostecky, “Solubility and crystal growth of KTiOPO4 in polyphosphates solvents,” J. Cryst. Growth 104(2), 389–391 (1990).
[CrossRef]

Miyamoto, A.

P. J. Halfpenny, L. O’Neill, J. N. Sherwood, G. S. Simpson, A. Yokotani, A. Miyamoto, T. Sasaki, and S. Nakai, “X-ray topographic study of flux grown KTP crystals,” J. Cryst. Growth 113(3–4), 722–725 (1991).
[CrossRef]

Mizell, G.

J. C. Jacco, G. M. Loiacono, M. Jaso, G. Mizell, and B. Greenberg, “Flux growth and properties of KTiOPO4,” J. Cryst. Growth 70(1–2), 484–488 (1984).
[CrossRef]

Mojaev, E.

M. Tseitlin, E. Mojaev, and M. Roth, “Growth of KTP crystals with large {001} facets,” J. Cryst. Growth 312(8), 1055–1058 (2010).
[CrossRef]

Nakai, S.

P. J. Halfpenny, L. O’Neill, J. N. Sherwood, G. S. Simpson, A. Yokotani, A. Miyamoto, T. Sasaki, and S. Nakai, “X-ray topographic study of flux grown KTP crystals,” J. Cryst. Growth 113(3–4), 722–725 (1991).
[CrossRef]

O’Neill, L.

P. J. Halfpenny, L. O’Neill, J. N. Sherwood, G. S. Simpson, A. Yokotani, A. Miyamoto, T. Sasaki, and S. Nakai, “X-ray topographic study of flux grown KTP crystals,” J. Cryst. Growth 113(3–4), 722–725 (1991).
[CrossRef]

Pack, M. V.

Pasiskevicius, V.

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[CrossRef]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82(24), 4233–4235 (2003).
[CrossRef]

J. Hellström, V. Pasiskevicius, H. Karlsson, and F. Laurell, “High-power optical parametric oscillation in large-aperture periodically poled KTiOPO4.,” Opt. Lett. 25(3), 174–176 (2000).
[CrossRef] [PubMed]

Phillips, M. L. F.

G. D. Stucky, M. L. F. Phillips, and T. E. Gier, “The potassium titanyl phosphate structure field: a model for new nonlinear optical materials,” Chem. Mater. 1(5), 492–509 (1989).
[CrossRef]

Pinguet, T. J.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[CrossRef]

Rijpkema, J. J. M.

J. J. M. Rijpkema, H. J. F. Knops, P. Bennema, and J. P. van der Eerden, “Determination of the Ising critical temperature of F slices with an application to garnet,” J. Cryst. Growth 61(2), 295–306 (1983).
[CrossRef]

Roth, M.

M. Tseitlin, E. Mojaev, and M. Roth, “Growth of KTP crystals with large {001} facets,” J. Cryst. Growth 312(8), 1055–1058 (2010).
[CrossRef]

M. Roth, N. Angert, M. Tseitlin, and A. Alexandrovski, “On the optical quality of KTP crystals for nonlinear optical and electro-optic applications,” Opt. Mater. 16(1–2), 131–136 (2001).
[CrossRef]

M. Roth, N. Angert, and M. Tseitlin, “Growth-dependent properties of KTP crystals and PPKTP structures,” J. Mater. Sci. Mater. Electron. 12(8), 429–436 (2001).
[CrossRef]

Sasaki, T.

P. J. Halfpenny, L. O’Neill, J. N. Sherwood, G. S. Simpson, A. Yokotani, A. Miyamoto, T. Sasaki, and S. Nakai, “X-ray topographic study of flux grown KTP crystals,” J. Cryst. Growth 113(3–4), 722–725 (1991).
[CrossRef]

Sherwood, J. N.

P. J. Halfpenny, L. O’Neill, J. N. Sherwood, G. S. Simpson, A. Yokotani, A. Miyamoto, T. Sasaki, and S. Nakai, “X-ray topographic study of flux grown KTP crystals,” J. Cryst. Growth 113(3–4), 722–725 (1991).
[CrossRef]

Simpson, G. S.

P. J. Halfpenny, L. O’Neill, J. N. Sherwood, G. S. Simpson, A. Yokotani, A. Miyamoto, T. Sasaki, and S. Nakai, “X-ray topographic study of flux grown KTP crystals,” J. Cryst. Growth 113(3–4), 722–725 (1991).
[CrossRef]

Smith, A. V.

Stolzenberger, R. A.

P. F. Bordui, J. C. Jacco, G. M. Loiacono, and R. A. Stolzenberger, “Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system,” J. Cryst. Growth 84(3), 403–408 (1987).
[CrossRef]

Stucky, G. D.

G. D. Stucky, M. L. F. Phillips, and T. E. Gier, “The potassium titanyl phosphate structure field: a model for new nonlinear optical materials,” Chem. Mater. 1(5), 492–509 (1989).
[CrossRef]

Temkin, M.

M. Temkin, “Mixtures of fused salts as ionic solutions,” Acta Phys. Chim. URSS 20(4), 411–420 (1945).

Thomas, P. A.

P. A. Thomas, A. M. Glazer, and B. E. Watts, “Crystal structure and nonlinear optical properties of KSnOPO4 and their comparison with KTiOPO4,” Acta Crystallogr. B 46(3), 333–343 (1990).
[CrossRef]

Tourreau, P. J.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[CrossRef]

Tseitlin, M.

M. Tseitlin, E. Mojaev, and M. Roth, “Growth of KTP crystals with large {001} facets,” J. Cryst. Growth 312(8), 1055–1058 (2010).
[CrossRef]

M. Roth, N. Angert, M. Tseitlin, and A. Alexandrovski, “On the optical quality of KTP crystals for nonlinear optical and electro-optic applications,” Opt. Mater. 16(1–2), 131–136 (2001).
[CrossRef]

M. Roth, N. Angert, and M. Tseitlin, “Growth-dependent properties of KTP crystals and PPKTP structures,” J. Mater. Sci. Mater. Electron. 12(8), 429–436 (2001).
[CrossRef]

van der Eerden, J. P.

J. J. M. Rijpkema, H. J. F. Knops, P. Bennema, and J. P. van der Eerden, “Determination of the Ising critical temperature of F slices with an application to garnet,” J. Cryst. Growth 61(2), 295–306 (1983).
[CrossRef]

van der Mooren, M. H.

R. J. Bolt, M. H. van der Mooren, and H. de Haas, “Growth of KTiOPO4 (KTP) single crystals by means of phosphate and phosphate/sulfate fluxes out of a three-zone furnace,” J. Cryst. Growth 114(1–2), 141–152 (1991).
[CrossRef]

van Erk, W.

W. van Erk, “A solubility model for rare-earth iron garnets in a PbO/B2O3 solution,” J. Cryst. Growth 46(4), 539–550 (1979).
[CrossRef]

Voloch, N.

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am B 24(8), 1916–1921 (2007).

Voloch-Bloch, N.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

Voronkova, V. I.

V. K. Yanovskii and V. I. Voronkova, “Ferroelectric phase transitions and properties of crystals of the KTiOPO4 family,” Phys. Status Solidi A 93(2), 665–668 (1986).
[CrossRef]

Watts, B. E.

P. A. Thomas, A. M. Glazer, and B. E. Watts, “Crystal structure and nonlinear optical properties of KSnOPO4 and their comparison with KTiOPO4,” Acta Crystallogr. B 46(3), 333–343 (1990).
[CrossRef]

Yanovskii, V. K.

V. K. Yanovskii and V. I. Voronkova, “Ferroelectric phase transitions and properties of crystals of the KTiOPO4 family,” Phys. Status Solidi A 93(2), 665–668 (1986).
[CrossRef]

Yokotani, A.

P. J. Halfpenny, L. O’Neill, J. N. Sherwood, G. S. Simpson, A. Yokotani, A. Miyamoto, T. Sasaki, and S. Nakai, “X-ray topographic study of flux grown KTP crystals,” J. Cryst. Growth 113(3–4), 722–725 (1991).
[CrossRef]

Acta Crystallogr. B

P. A. Thomas, A. M. Glazer, and B. E. Watts, “Crystal structure and nonlinear optical properties of KSnOPO4 and their comparison with KTiOPO4,” Acta Crystallogr. B 46(3), 333–343 (1990).
[CrossRef]

Acta Phys. Chim. URSS

M. Temkin, “Mixtures of fused salts as ionic solutions,” Acta Phys. Chim. URSS 20(4), 411–420 (1945).

Appl. Opt.

Appl. Phys. Lett.

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82(24), 4233–4235 (2003).
[CrossRef]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[CrossRef]

Chem. Mater.

G. D. Stucky, M. L. F. Phillips, and T. E. Gier, “The potassium titanyl phosphate structure field: a model for new nonlinear optical materials,” Chem. Mater. 1(5), 492–509 (1989).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

J. Cryst. Growth

V. Bermúdez, D. Callejo, and E. Diéguez, “On the cooling effect in the formation of periodic poled lithium niobate crystals grown by Cz technique,” J. Cryst. Growth 207(4), 303–307 (1999).
[CrossRef]

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201-202 (3), 187–193 (1999).
[CrossRef]

W. van Erk, “A solubility model for rare-earth iron garnets in a PbO/B2O3 solution,” J. Cryst. Growth 46(4), 539–550 (1979).
[CrossRef]

P. F. Bordui, J. C. Jacco, G. M. Loiacono, and R. A. Stolzenberger, “Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system,” J. Cryst. Growth 84(3), 403–408 (1987).
[CrossRef]

R. J. Bolt, M. H. van der Mooren, and H. de Haas, “Growth of KTiOPO4 (KTP) single crystals by means of phosphate and phosphate/sulfate fluxes out of a three-zone furnace,” J. Cryst. Growth 114(1–2), 141–152 (1991).
[CrossRef]

J. C. Jacco, G. M. Loiacono, M. Jaso, G. Mizell, and B. Greenberg, “Flux growth and properties of KTiOPO4,” J. Cryst. Growth 70(1–2), 484–488 (1984).
[CrossRef]

J. J. M. Rijpkema, H. J. F. Knops, P. Bennema, and J. P. van der Eerden, “Determination of the Ising critical temperature of F slices with an application to garnet,” J. Cryst. Growth 61(2), 295–306 (1983).
[CrossRef]

R. A. Laudise, R. J. Cava, and A. J. Caporaso, “Phase relations, solubility and growth of potassium titanyl phosphate, KTP,” J. Cryst. Growth 74(2), 275–280 (1986).
[CrossRef]

M. Tseitlin, E. Mojaev, and M. Roth, “Growth of KTP crystals with large {001} facets,” J. Cryst. Growth 312(8), 1055–1058 (2010).
[CrossRef]

P. J. Halfpenny, L. O’Neill, J. N. Sherwood, G. S. Simpson, A. Yokotani, A. Miyamoto, T. Sasaki, and S. Nakai, “X-ray topographic study of flux grown KTP crystals,” J. Cryst. Growth 113(3–4), 722–725 (1991).
[CrossRef]

G. M. Loiacono, T. F. McGee, and G. Kostecky, “Solubility and crystal growth of KTiOPO4 in polyphosphates solvents,” J. Cryst. Growth 104(2), 389–391 (1990).
[CrossRef]

J. Mater. Sci. Mater. Electron.

M. Roth, N. Angert, and M. Tseitlin, “Growth-dependent properties of KTP crystals and PPKTP structures,” J. Mater. Sci. Mater. Electron. 12(8), 429–436 (2001).
[CrossRef]

J. Opt. Soc. Am B

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am B 24(8), 1916–1921 (2007).

Nat. Photonics

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[CrossRef]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

Opt. Lett.

Opt. Mater.

M. Roth, N. Angert, M. Tseitlin, and A. Alexandrovski, “On the optical quality of KTP crystals for nonlinear optical and electro-optic applications,” Opt. Mater. 16(1–2), 131–136 (2001).
[CrossRef]

Phys. Rev. Lett.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[CrossRef]

Phys. Status Solidi A

V. K. Yanovskii and V. I. Voronkova, “Ferroelectric phase transitions and properties of crystals of the KTiOPO4 family,” Phys. Status Solidi A 93(2), 665–668 (1986).
[CrossRef]

Other

G. Marnier, “Synthesis in flux of crystals and epitaxies from isotypic solid solution of KTiOPO4,” U.S. patent 4961819 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scheme of the process showing the different steps to obtain large size PPKTP crystals. Step I corresponds to the fabrication of a PPKTP sample from a single domain KTP plate by electric field poling. Step II corresponds to the growth of a large size PPKTP crystal from the PPKTP seed by the flux method.

Fig. 2
Fig. 2

(a) Standard morphology of KTP crystals. (b) The morphology of KTP exhibiting (001) and (00) faces. (c) Roughening temperatures, TR (K), of different {hkl} faces.

Fig. 3
Fig. 3

The pseudo-binary phase diagram of KTiOPO4 (KTP) using K6P4O13 and 4KPO3: 2KF solvents. Tsat is the saturation temperature of KTP below which the crystallization can occur; X is the molar fraction defined by [K6P4O13]/{[KTP] + [K6P4O13]} or [4KPO3: 2KF]/{[KTP] + [4KPO3: 2KF]} according to the considered solvent.

Fig. 4
Fig. 4

Periodically domain-structured-KTP films grown on a PPKTP in a flux with the composition 0.1 KTP – 0.6 KPO3 – 0.3 KF. a) Picture of a PPKTP crystal and the corresponding orientation used for the growth. b) SEM image along the b axis of the grown layer and seed. c) SEM image along the c axis of the grown layer at 225 µm far from the surface of one side of the seed.

Fig. 5
Fig. 5

Comparison between the quasi-phase matched second harmonic generation (QPM SHG) properties of the seed and one side of the grown layer at room temperature. QPM SHG measurements performed at two different depths, 275 µm in the seed (s) and 225 µm in the epitaxial layer (l) measured from the interface (dashed line) in a sample with a grating periodicity Λ = 38.86 µm.

Metrics