Abstract

We describe a modified fabrication process to reduce spectral attenuation in highly nonlinear photonic crystal fibers (PCF) by reducing the effect of OH- content in the silica glass. In particular we show outstanding results for small core sizes of 2μm diameter including an attenuation of 10dB/km at the OH- peak wavelength of 1384nm, by annealing the preform prior to the fiber draw.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO(2)-doped-core photonic crystal fibers,” Opt. Lett. 34(23), 3631–3633 (2009).
    [CrossRef] [PubMed]
  2. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “Toward visible cw-pumped supercontinua,” Opt. Lett. 33(18), 2122–2124 (2008).
    [CrossRef] [PubMed]
  3. J. C. Travers, R. E. Kennedy, S. V. Popov, J. R. Taylor, H. Sabert, and B. Mangan, “Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber,” Opt. Lett. 30(15), 1938–1940 (2005).
    [CrossRef] [PubMed]
  4. C. Guo, S. Ruan, P. Yan, E. Pan, and H. Wei, “Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser,” Opt. Express 18(11), 11046–11051 (2010).
    [CrossRef] [PubMed]
  5. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
    [CrossRef] [PubMed]
  6. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008).
    [CrossRef] [PubMed]
  7. S. A. Dekker, R. Pant, A. C. Judge, C. Martijn de Sterke, B. J. Eggleton, I. Gris-Sánchez, and J. C. Knight, “Highly-Efficient, Octave Spanning Soliton Self Frequency Shift Using a Photonic Crystal Fiber with Low OH Loss,” in Frontiers in Optics, OSA Technical Digest (CD)(Optical Society of America, 2010), PDPB6. http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2010-PDPB6
  8. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28(22), 2225–2227 (2003).
    [CrossRef] [PubMed]
  9. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
    [CrossRef]
  10. J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982).
    [CrossRef]
  11. M. Nielsen, C. Jacobsen, N. Mortensen, J. Folkenberg, and H. Simonsen, “Low-loss photonic crystal fibers for transmission systems and their dispersion properties,” Opt. Express 12(7), 1372–1376 (2004).
    [CrossRef] [PubMed]
  12. M. Nielsen, N. Mortensen, M. Albertsen, J. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic crystal fibers,” Opt. Express 12(8), 1775–1779 (2004).
    [CrossRef] [PubMed]
  13. K. Tajima, “Low loss PCF by reduction of hole surface imperfection,” Eur. Conf. Optical Commun. (ECOC) (2007) Paper PD2.1.
  14. R. T. Bise and D. J. Trevor, “Surface absorption in microstructured optical fibers,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper WI4, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2004-WI4
  15. K. Kurokawa, K. Nakajima, K. Tsujikawa, T. Yamamoto, and K. Tajima, “Ultra-wideband transmission over low loss pcf,” J. Lightwave Technol. 27(11), 1653–1662 (2009).
    [CrossRef]
  16. M.-C. Phan-Huy, J.-M. Moison, J. A. Levenson, S. Richard, G. Mélin, M. Douay, and Y. Quiquempois, “Surface Roughness and Light Scattering in a Small Effective Area Microstructured Fiber,” J. Lightwave Technol. 27(11), 1597–1604 (2009).
    [CrossRef]
  17. P. Roberts, F. Couny, H. Sabert, B. Mangan, T. Birks, J. Knight, and P. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13(20), 7779–7793 (2005).
    [CrossRef] [PubMed]
  18. P. Kaiser, “Drawing-induced coloration in vitreous silica fibers,” J. Opt. Soc. Am. 64(4), 475–481 (1974).
    [CrossRef]
  19. Y. Hayashi, Y. Okuda, H. Mitera, and K. Kato, “Formation of Drawing or Radiation-Induced Defects in Germanium Doped Silica Core Optical Fiber,” Jpn. J. Appl. Phys. 33(Part 2, No. 2B), L233–L234 (1994).
    [CrossRef]
  20. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  21. A. Monteville, D. Landais, O. Le Goffic, D. Tregoat, N. J. Traynor, T. Nguyen, S. Lobo, T. Chartier, and J. Simon, “Low Loss, Low OH, Highly Non-linear Holey Fiber for Raman Amplification,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMC1, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2006-CMC1
  22. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultralow Loss and Long Length Photonic Crystal Fiber,” J. Lightwave Technol. 22(1), 7–10 (2004).
    [CrossRef]
  23. K. Tajima, J. Zhou, K. Kurokawa, and K. Nakajima, “Low water peak photonic crystal fibers,” 29th European conference on optical communication ECOC'03 (Rimini, Italy), pp. 42–43 (2003).
  24. I. Gris-Sánchez, B. J. Mangan, and J. C. Knight, “Reducing Spectral Attenuation in Solid-Core Photonic Crystal Fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWK1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OWK1
  25. Heraeus, “High purity rods”. http://heraeus-quarzglas.com/media/webmedia_local/downloads/broschren_sf/2009_sf/PCF.pdf
  26. Heraeus, “Quartz glass for optics data and properties” http://www.heraeus-quarzglas.com/media/webmedia_local/downloads/broschren_mo/SO_Data_and_properties_ EN.pdf.
  27. L. Nuccio, S. Agnello, and R. Boscaino, “Intrinsic generation of OH groups in dry silicon dioxide upon thermal treatments,” Appl. Phys. Lett. 93(15), 151906 (2008).
    [CrossRef]
  28. L. Nuccio, S. Agnello, and R. Boscaino, “Annealing of radiation induced oxygen deficient point defects in amorphous silicon dioxide: evidence for a distribution of the reaction activation energies,” J. Phys. Condens. Matter 20(38), 385215 (2008).
    [CrossRef]
  29. R. K. Iler, The Chemistry of Silica (John Wiley and Sons, New York, 1979), Chap 6.
  30. R. H. Doremus, Glass Science, (John Wiley and Sons, New York, 1973), Chap 7.
  31. E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28(9), 516–518 (1976).
    [CrossRef]
  32. Y. Hibino and H. Hanafusa, “Defect structure and formation mechanisms of drawing-induced absorption at 630nm in silica optical fibers,” J. Appl. Phys. 60(5), 1797–1801 (1986).
    [CrossRef]
  33. H. Mehrer, Diffusion in Solids (Springer-Verlag Berlin Heidelberg, 2007), Chap 6.

2010 (1)

2009 (3)

2008 (4)

L. Nuccio, S. Agnello, and R. Boscaino, “Intrinsic generation of OH groups in dry silicon dioxide upon thermal treatments,” Appl. Phys. Lett. 93(15), 151906 (2008).
[CrossRef]

L. Nuccio, S. Agnello, and R. Boscaino, “Annealing of radiation induced oxygen deficient point defects in amorphous silicon dioxide: evidence for a distribution of the reaction activation energies,” J. Phys. Condens. Matter 20(38), 385215 (2008).
[CrossRef]

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008).
[CrossRef] [PubMed]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “Toward visible cw-pumped supercontinua,” Opt. Lett. 33(18), 2122–2124 (2008).
[CrossRef] [PubMed]

2005 (2)

2004 (4)

2003 (1)

1996 (2)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

1994 (1)

Y. Hayashi, Y. Okuda, H. Mitera, and K. Kato, “Formation of Drawing or Radiation-Induced Defects in Germanium Doped Silica Core Optical Fiber,” Jpn. J. Appl. Phys. 33(Part 2, No. 2B), L233–L234 (1994).
[CrossRef]

1986 (1)

Y. Hibino and H. Hanafusa, “Defect structure and formation mechanisms of drawing-induced absorption at 630nm in silica optical fibers,” J. Appl. Phys. 60(5), 1797–1801 (1986).
[CrossRef]

1982 (1)

J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982).
[CrossRef]

1976 (1)

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28(9), 516–518 (1976).
[CrossRef]

1974 (1)

Agnello, S.

L. Nuccio, S. Agnello, and R. Boscaino, “Intrinsic generation of OH groups in dry silicon dioxide upon thermal treatments,” Appl. Phys. Lett. 93(15), 151906 (2008).
[CrossRef]

L. Nuccio, S. Agnello, and R. Boscaino, “Annealing of radiation induced oxygen deficient point defects in amorphous silicon dioxide: evidence for a distribution of the reaction activation energies,” J. Phys. Condens. Matter 20(38), 385215 (2008).
[CrossRef]

Albertsen, M.

Atkin, D. M.

Biancalana, F.

Bigot, L.

Birks, T.

Birks, T. A.

Bjarklev, A.

Bonacinni, D.

Boscaino, R.

L. Nuccio, S. Agnello, and R. Boscaino, “Annealing of radiation induced oxygen deficient point defects in amorphous silicon dioxide: evidence for a distribution of the reaction activation energies,” J. Phys. Condens. Matter 20(38), 385215 (2008).
[CrossRef]

L. Nuccio, S. Agnello, and R. Boscaino, “Intrinsic generation of OH groups in dry silicon dioxide upon thermal treatments,” Appl. Phys. Lett. 93(15), 151906 (2008).
[CrossRef]

Bouwmans, G.

Coen, S.

Couny, F.

Cumberland, B. A.

Douay, M.

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Folkenberg, J.

Friebele, E. J.

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28(9), 516–518 (1976).
[CrossRef]

Griscom, D. L.

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28(9), 516–518 (1976).
[CrossRef]

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Guo, C.

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Hanafusa, H.

Y. Hibino and H. Hanafusa, “Defect structure and formation mechanisms of drawing-induced absorption at 630nm in silica optical fibers,” J. Appl. Phys. 60(5), 1797–1801 (1986).
[CrossRef]

Harvey, J. D.

Hayashi, Y.

Y. Hayashi, Y. Okuda, H. Mitera, and K. Kato, “Formation of Drawing or Radiation-Induced Defects in Germanium Doped Silica Core Optical Fiber,” Jpn. J. Appl. Phys. 33(Part 2, No. 2B), L233–L234 (1994).
[CrossRef]

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Hibino, Y.

Y. Hibino and H. Hanafusa, “Defect structure and formation mechanisms of drawing-induced absorption at 630nm in silica optical fibers,” J. Appl. Phys. 60(5), 1797–1801 (1986).
[CrossRef]

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Jacobsen, C.

Joly, N.

Kaiser, P.

Kato, K.

Y. Hayashi, Y. Okuda, H. Mitera, and K. Kato, “Formation of Drawing or Radiation-Induced Defects in Germanium Doped Silica Core Optical Fiber,” Jpn. J. Appl. Phys. 33(Part 2, No. 2B), L233–L234 (1994).
[CrossRef]

Kennedy, R. E.

Knight, J.

Knight, J. C.

Kudlinski, A.

Kurokawa, K.

Le Rouge, A.

Leonhardt, R.

Levenson, J. A.

Mangan, B.

Mélin, G.

Mitera, H.

Y. Hayashi, Y. Okuda, H. Mitera, and K. Kato, “Formation of Drawing or Radiation-Induced Defects in Germanium Doped Silica Core Optical Fiber,” Jpn. J. Appl. Phys. 33(Part 2, No. 2B), L233–L234 (1994).
[CrossRef]

Moison, J.-M.

Mortensen, N.

Mussot, A.

Nakajima, K.

Nielsen, M.

Nuccio, L.

L. Nuccio, S. Agnello, and R. Boscaino, “Intrinsic generation of OH groups in dry silicon dioxide upon thermal treatments,” Appl. Phys. Lett. 93(15), 151906 (2008).
[CrossRef]

L. Nuccio, S. Agnello, and R. Boscaino, “Annealing of radiation induced oxygen deficient point defects in amorphous silicon dioxide: evidence for a distribution of the reaction activation energies,” J. Phys. Condens. Matter 20(38), 385215 (2008).
[CrossRef]

Okuda, Y.

Y. Hayashi, Y. Okuda, H. Mitera, and K. Kato, “Formation of Drawing or Radiation-Induced Defects in Germanium Doped Silica Core Optical Fiber,” Jpn. J. Appl. Phys. 33(Part 2, No. 2B), L233–L234 (1994).
[CrossRef]

Pan, E.

Phan-Huy, M.-C.

Popov, S. V.

Quiquempois, Y.

Richard, S.

Roberts, P.

Ruan, S.

Russell, P.

Russell, P. St. J.

Sabert, H.

Sato, K.

Sigel, G. H.

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28(9), 516–518 (1976).
[CrossRef]

Simonsen, H.

St.J. Russell, P.

Stone, J.

J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982).
[CrossRef]

Stone, J. M.

Tajima, K.

Taylor, J. R.

Travers, J. C.

Tsujikawa, K.

Vanvincq, O.

Wadsworth, W.

Wadsworth, W. J.

Walrafen, G. E.

J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982).
[CrossRef]

Wei, H.

Wong, G. K. L.

Yamamoto, T.

Yan, P.

Zhou, J.

Appl. Phys. Lett. (2)

L. Nuccio, S. Agnello, and R. Boscaino, “Intrinsic generation of OH groups in dry silicon dioxide upon thermal treatments,” Appl. Phys. Lett. 93(15), 151906 (2008).
[CrossRef]

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28(9), 516–518 (1976).
[CrossRef]

J. Appl. Phys. (1)

Y. Hibino and H. Hanafusa, “Defect structure and formation mechanisms of drawing-induced absorption at 630nm in silica optical fibers,” J. Appl. Phys. 60(5), 1797–1801 (1986).
[CrossRef]

J. Chem. Phys. (1)

J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982).
[CrossRef]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Condens. Matter (1)

L. Nuccio, S. Agnello, and R. Boscaino, “Annealing of radiation induced oxygen deficient point defects in amorphous silicon dioxide: evidence for a distribution of the reaction activation energies,” J. Phys. Condens. Matter 20(38), 385215 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Hayashi, Y. Okuda, H. Mitera, and K. Kato, “Formation of Drawing or Radiation-Induced Defects in Germanium Doped Silica Core Optical Fiber,” Jpn. J. Appl. Phys. 33(Part 2, No. 2B), L233–L234 (1994).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Other (11)

A. Monteville, D. Landais, O. Le Goffic, D. Tregoat, N. J. Traynor, T. Nguyen, S. Lobo, T. Chartier, and J. Simon, “Low Loss, Low OH, Highly Non-linear Holey Fiber for Raman Amplification,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMC1, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2006-CMC1

S. A. Dekker, R. Pant, A. C. Judge, C. Martijn de Sterke, B. J. Eggleton, I. Gris-Sánchez, and J. C. Knight, “Highly-Efficient, Octave Spanning Soliton Self Frequency Shift Using a Photonic Crystal Fiber with Low OH Loss,” in Frontiers in Optics, OSA Technical Digest (CD)(Optical Society of America, 2010), PDPB6. http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2010-PDPB6

H. Mehrer, Diffusion in Solids (Springer-Verlag Berlin Heidelberg, 2007), Chap 6.

R. K. Iler, The Chemistry of Silica (John Wiley and Sons, New York, 1979), Chap 6.

R. H. Doremus, Glass Science, (John Wiley and Sons, New York, 1973), Chap 7.

K. Tajima, “Low loss PCF by reduction of hole surface imperfection,” Eur. Conf. Optical Commun. (ECOC) (2007) Paper PD2.1.

R. T. Bise and D. J. Trevor, “Surface absorption in microstructured optical fibers,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper WI4, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2004-WI4

K. Tajima, J. Zhou, K. Kurokawa, and K. Nakajima, “Low water peak photonic crystal fibers,” 29th European conference on optical communication ECOC'03 (Rimini, Italy), pp. 42–43 (2003).

I. Gris-Sánchez, B. J. Mangan, and J. C. Knight, “Reducing Spectral Attenuation in Solid-Core Photonic Crystal Fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWK1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OWK1

Heraeus, “High purity rods”. http://heraeus-quarzglas.com/media/webmedia_local/downloads/broschren_sf/2009_sf/PCF.pdf

Heraeus, “Quartz glass for optics data and properties” http://www.heraeus-quarzglas.com/media/webmedia_local/downloads/broschren_mo/SO_Data_and_properties_ EN.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectral attenuation for three different fibers drawn after different delays. Bottom to top: 3 hours, 18 hours (gray line) and 7 days. With longer delays, attenuation increases at short wavelengths (<600nm), 630nm, 1384nm, and a broadband peak at 900nm appears [18]. Inset: SEM of a 5μm core fiber as used in experiments.

Fig. 2
Fig. 2

a) Spectral attenuation of two fibers with a core of 2μm. Black curve: spectral attenuation of a solid core PCF obtained after the annealing process. Gray curve: spectral attenuation obtained from an identical fiber without the treatment. Inset: SEM of a 2μm core fiber as used in experiments. b) Comparison of the spectral attenuation for solid core PCF with different core sizes using an annealed preform. From top to bottom: 1.2, 1.4, 1.5, 2 and 6μm core diameter.

Fig. 3
Fig. 3

The measured attenuation at the OH- peak wavelength of 1384nm increases dramatically for core sizes below 2um. The background loss component due to scattering also increase for small core sizes.

Fig. 4
Fig. 4

The ratio (represented by Pratio) between the power of the fundamental mode contained within a diffusion ring starting at the core surface and the total power. Each line is calculated for diffusion lengths ranging from 0.1μm to 0.8μm and plotted for core diameters from 1μm to 6μm. Curves do not go to unity because some of the total power resides outside the core.

Metrics