Abstract

We observed multi-zone light emission in a one-dimensional waveguide based on an individual pearl-like ZnO nanowire with hybrid structures, which was obtained through an electrical breakdown process. E2 (high) mode in Raman spectra revealed a blueshift while a redshift of UV near band edge emission was observed by focusing laser on the polycrystalline parts at room temperature. Strong light emission was observed from the polycrystalline parts except the end in the pearl-like ZnO nanowires as compared with columnar ones, which is associated with the light propagation in the waveguide determined by the different dielectric constants between single crystal and polycrystal.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics,” Adv. Mater. (Deerfield Beach Fla.) 22(36), 4059–4063 (2010).
    [CrossRef] [PubMed]
  2. Y. Lei, X. Q. Yan, N. Luo, Y. Song, and Y. Zhang, “ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange,” Colloids Surf. A Physicochem. Eng. Asp. 361(1-3), 169–173 (2010).
    [CrossRef]
  3. Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
    [CrossRef] [PubMed]
  4. Y. Zhang, J. Q. Xu, P. C. Xu, Y. H. Zhu, X. D. Chen, and W. J. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance,” Nanotechnology 21(28), 285501 (2010).
    [CrossRef] [PubMed]
  5. Y. H. Zheng, L. R. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng, and K. Wei, “Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis,” Inorg. Chem. 46(17), 6980–6986 (2007).
    [CrossRef] [PubMed]
  6. X. M. Zhang, M. Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN Thin Film,” Adv. Mater. (Deerfield Beach Fla.) 21(27), 2767–2770 (2009).
    [CrossRef]
  7. G. M. Ali and P. Chakrabarti, “Effect of thermal treatment on the performance of ZnO based metal-insulator-semiconductor ultraviolet photodetectors,” Appl. Phys. Lett. 97(3), 031116 (2010).
    [CrossRef]
  8. T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
    [CrossRef] [PubMed]
  9. H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
    [CrossRef]
  10. H. Y. Li, B. Jiang, R. Schaller, J. F. Wu, and J. Jiao, “Antireflective photoanode made of TiO2 nanobelts and a ZnO nanowire array,” J. Phys. Chem. C 114(26), 11375–11380 (2010).
    [CrossRef]
  11. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
    [CrossRef]
  12. J. Lee and M. Yoon, “Synthesis of visible light-sensitive ZnO nanostructures: subwavelength waveguides,” J. Phys. Chem. C 113(27), 11952–11958 (2009).
    [CrossRef]
  13. T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices,” Appl. Phys. Lett. 72(5), 519–521 (1998).
    [CrossRef]
  14. Q. Zhang, J. J. Qi, Y. Yang, Y. H. Huang, X. Li, and Y. Zhang, “Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure,” Appl. Phys. Lett. 96(25), 253112 (2010).
    [CrossRef]
  15. Y. H. Huang, Y. Zhang, X. M. Zhang, J. Liu, J. He, and Q. L. Liao, “Structures, growth mechanisms and properties of ZnO nanomaterials fabricated by zinc powder evaporation,” Nanoscience 11, 265–275 (2006).
  16. T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
    [CrossRef]
  17. S.-S. Lo and D. Huang, “Morphological variation and Raman spectroscopy of ZnO hollow microspheres prepared by a chemical colloidal process,” Langmuir 26, 6762–6766 (2010).
  18. C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in Wurtzite-type crystals,” Phys. Rev. 181(3), 1351–1363 (1969).
    [CrossRef]
  19. J. E. Smith, M. H. Brodsky, B. L. Crowder, M. L. Nathan, and A. Pinczuk, “Raman spectra of amorphous si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
    [CrossRef]
  20. H.-J. Egelhaaf and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO,” J. Cryst. Growth 161(1-4), 190–194 (1996).
    [CrossRef]
  21. C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen, and W.-F. Pong, “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Appl. Phys. Lett. 88(24), 241905 (2006).
    [CrossRef]
  22. Z. W. Liu, C. K. Ong, T. Yu, and Z. X. Shen, “Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties,” Appl. Phys. Lett. 88(5), 053110 (2006).
    [CrossRef]
  23. T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89(18), 182107 (2006).
    [CrossRef]
  24. Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
    [CrossRef]
  25. C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94(26), 261904 (2009).
    [CrossRef]
  26. X. Gu, K. Huo, G. Qian, J. Fu, and P. K. Chu, “Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate,” Appl. Phys. Lett. 93(20), 203117 (2008).
    [CrossRef]
  27. H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. (Deerfield Beach Fla.) 15(22), 1907–1911 (2003).
    [CrossRef]
  28. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
    [CrossRef]
  29. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
    [CrossRef] [PubMed]
  30. M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
    [CrossRef] [PubMed]
  31. H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
    [CrossRef]
  32. J. Zhang, H. P. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett. 97(11), 111105 (2010).
    [CrossRef]

2010 (10)

A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics,” Adv. Mater. (Deerfield Beach Fla.) 22(36), 4059–4063 (2010).
[CrossRef] [PubMed]

Y. Lei, X. Q. Yan, N. Luo, Y. Song, and Y. Zhang, “ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange,” Colloids Surf. A Physicochem. Eng. Asp. 361(1-3), 169–173 (2010).
[CrossRef]

Y. Zhang, J. Q. Xu, P. C. Xu, Y. H. Zhu, X. D. Chen, and W. J. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance,” Nanotechnology 21(28), 285501 (2010).
[CrossRef] [PubMed]

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
[CrossRef]

H. Y. Li, B. Jiang, R. Schaller, J. F. Wu, and J. Jiao, “Antireflective photoanode made of TiO2 nanobelts and a ZnO nanowire array,” J. Phys. Chem. C 114(26), 11375–11380 (2010).
[CrossRef]

G. M. Ali and P. Chakrabarti, “Effect of thermal treatment on the performance of ZnO based metal-insulator-semiconductor ultraviolet photodetectors,” Appl. Phys. Lett. 97(3), 031116 (2010).
[CrossRef]

Q. Zhang, J. J. Qi, Y. Yang, Y. H. Huang, X. Li, and Y. Zhang, “Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure,” Appl. Phys. Lett. 96(25), 253112 (2010).
[CrossRef]

S.-S. Lo and D. Huang, “Morphological variation and Raman spectroscopy of ZnO hollow microspheres prepared by a chemical colloidal process,” Langmuir 26, 6762–6766 (2010).

H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[CrossRef]

J. Zhang, H. P. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett. 97(11), 111105 (2010).
[CrossRef]

2009 (5)

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94(26), 261904 (2009).
[CrossRef]

X. M. Zhang, M. Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN Thin Film,” Adv. Mater. (Deerfield Beach Fla.) 21(27), 2767–2770 (2009).
[CrossRef]

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

J. Lee and M. Yoon, “Synthesis of visible light-sensitive ZnO nanostructures: subwavelength waveguides,” J. Phys. Chem. C 113(27), 11952–11958 (2009).
[CrossRef]

2008 (1)

X. Gu, K. Huo, G. Qian, J. Fu, and P. K. Chu, “Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate,” Appl. Phys. Lett. 93(20), 203117 (2008).
[CrossRef]

2007 (2)

Y. H. Zheng, L. R. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng, and K. Wei, “Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis,” Inorg. Chem. 46(17), 6980–6986 (2007).
[CrossRef] [PubMed]

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[CrossRef] [PubMed]

2006 (5)

Y. H. Huang, Y. Zhang, X. M. Zhang, J. Liu, J. He, and Q. L. Liao, “Structures, growth mechanisms and properties of ZnO nanomaterials fabricated by zinc powder evaporation,” Nanoscience 11, 265–275 (2006).

Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[CrossRef] [PubMed]

C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen, and W.-F. Pong, “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Appl. Phys. Lett. 88(24), 241905 (2006).
[CrossRef]

Z. W. Liu, C. K. Ong, T. Yu, and Z. X. Shen, “Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties,” Appl. Phys. Lett. 88(5), 053110 (2006).
[CrossRef]

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89(18), 182107 (2006).
[CrossRef]

2003 (2)

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. (Deerfield Beach Fla.) 15(22), 1907–1911 (2003).
[CrossRef]

2002 (1)

M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

1998 (2)

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices,” Appl. Phys. Lett. 72(5), 519–521 (1998).
[CrossRef]

1996 (1)

H.-J. Egelhaaf and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO,” J. Cryst. Growth 161(1-4), 190–194 (1996).
[CrossRef]

1971 (1)

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. L. Nathan, and A. Pinczuk, “Raman spectra of amorphous si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
[CrossRef]

1969 (1)

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in Wurtzite-type crystals,” Phys. Rev. 181(3), 1351–1363 (1969).
[CrossRef]

1966 (1)

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
[CrossRef]

Ahn, C. H.

C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94(26), 261904 (2009).
[CrossRef]

Ali, G. M.

G. M. Ali and P. Chakrabarti, “Effect of thermal treatment on the performance of ZnO based metal-insulator-semiconductor ultraviolet photodetectors,” Appl. Phys. Lett. 97(3), 031116 (2010).
[CrossRef]

Arguello, C. A.

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in Wurtzite-type crystals,” Phys. Rev. 181(3), 1351–1363 (1969).
[CrossRef]

Baets, R.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

Bakin, A.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89(18), 182107 (2006).
[CrossRef]

Bekeny, C.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89(18), 182107 (2006).
[CrossRef]

Borner, S.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89(18), 182107 (2006).
[CrossRef]

Brodsky, M. H.

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. L. Nathan, and A. Pinczuk, “Raman spectra of amorphous si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
[CrossRef]

Cao, H.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Chakrabarti, P.

G. M. Ali and P. Chakrabarti, “Effect of thermal treatment on the performance of ZnO based metal-insulator-semiconductor ultraviolet photodetectors,” Appl. Phys. Lett. 97(3), 031116 (2010).
[CrossRef]

Chang, R. P. H.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Chen, C.-W.

C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen, and W.-F. Pong, “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Appl. Phys. Lett. 88(24), 241905 (2006).
[CrossRef]

Chen, K.-H.

C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen, and W.-F. Pong, “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Appl. Phys. Lett. 88(24), 241905 (2006).
[CrossRef]

Chen, L.-C.

C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen, and W.-F. Pong, “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Appl. Phys. Lett. 88(24), 241905 (2006).
[CrossRef]

Chen, L.-J.

A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics,” Adv. Mater. (Deerfield Beach Fla.) 22(36), 4059–4063 (2010).
[CrossRef] [PubMed]

X. M. Zhang, M. Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN Thin Film,” Adv. Mater. (Deerfield Beach Fla.) 21(27), 2767–2770 (2009).
[CrossRef]

Chen, X. D.

Y. Zhang, J. Q. Xu, P. C. Xu, Y. H. Zhu, X. D. Chen, and W. J. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance,” Nanotechnology 21(28), 285501 (2010).
[CrossRef] [PubMed]

Cho, H. K.

C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94(26), 261904 (2009).
[CrossRef]

Chu, P. K.

X. Gu, K. Huo, G. Qian, J. Fu, and P. K. Chu, “Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate,” Appl. Phys. Lett. 93(20), 203117 (2008).
[CrossRef]

Crowder, B. L.

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. L. Nathan, and A. Pinczuk, “Raman spectra of amorphous si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
[CrossRef]

Dai, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Damen, T. C.

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
[CrossRef]

De Vlaminck, I.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

Egelhaaf, H.-J.

H.-J. Egelhaaf and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO,” J. Cryst. Growth 161(1-4), 190–194 (1996).
[CrossRef]

Fu, J.

X. Gu, K. Huo, G. Qian, J. Fu, and P. K. Chu, “Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate,” Appl. Phys. Lett. 93(20), 203117 (2008).
[CrossRef]

Gafsi, H.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89(18), 182107 (2006).
[CrossRef]

Ganguly, A.

C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen, and W.-F. Pong, “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Appl. Phys. Lett. 88(24), 241905 (2006).
[CrossRef]

Gargas, D.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Gu, X.

X. Gu, K. Huo, G. Qian, J. Fu, and P. K. Chu, “Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate,” Appl. Phys. Lett. 93(20), 203117 (2008).
[CrossRef]

Gudiksen, M. S.

M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

He, J.

Y. H. Huang, Y. Zhang, X. M. Zhang, J. Liu, J. He, and Q. L. Liao, “Structures, growth mechanisms and properties of ZnO nanomaterials fabricated by zinc powder evaporation,” Nanoscience 11, 265–275 (2006).

He, R. R.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. (Deerfield Beach Fla.) 15(22), 1907–1911 (2003).
[CrossRef]

Hebner, T. R.

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices,” Appl. Phys. Lett. 72(5), 519–521 (1998).
[CrossRef]

Ho, S. T.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Huang, D.

S.-S. Lo and D. Huang, “Morphological variation and Raman spectroscopy of ZnO hollow microspheres prepared by a chemical colloidal process,” Langmuir 26, 6762–6766 (2010).

Huang, Y. H.

Q. Zhang, J. J. Qi, Y. Yang, Y. H. Huang, X. Li, and Y. Zhang, “Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure,” Appl. Phys. Lett. 96(25), 253112 (2010).
[CrossRef]

Y. H. Huang, Y. Zhang, X. M. Zhang, J. Liu, J. He, and Q. L. Liao, “Structures, growth mechanisms and properties of ZnO nanomaterials fabricated by zinc powder evaporation,” Nanoscience 11, 265–275 (2006).

Huo, K.

X. Gu, K. Huo, G. Qian, J. Fu, and P. K. Chu, “Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate,” Appl. Phys. Lett. 93(20), 203117 (2008).
[CrossRef]

Jiang, B.

H. Y. Li, B. Jiang, R. Schaller, J. F. Wu, and J. Jiao, “Antireflective photoanode made of TiO2 nanobelts and a ZnO nanowire array,” J. Phys. Chem. C 114(26), 11375–11380 (2010).
[CrossRef]

Jiao, J.

H. Y. Li, B. Jiang, R. Schaller, J. F. Wu, and J. Jiao, “Antireflective photoanode made of TiO2 nanobelts and a ZnO nanowire array,” J. Phys. Chem. C 114(26), 11375–11380 (2010).
[CrossRef]

Johnson, J.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. (Deerfield Beach Fla.) 15(22), 1907–1911 (2003).
[CrossRef]

Knutsen, K.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. (Deerfield Beach Fla.) 15(22), 1907–1911 (2003).
[CrossRef]

Konjhodzic, D.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[CrossRef] [PubMed]

Lagae, L.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

Lauhon, L. J.

M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Law, M.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. (Deerfield Beach Fla.) 15(22), 1907–1911 (2003).
[CrossRef]

Lee, J.

J. Lee and M. Yoon, “Synthesis of visible light-sensitive ZnO nanostructures: subwavelength waveguides,” J. Phys. Chem. C 113(27), 11952–11958 (2009).
[CrossRef]

Lee, N. E.

C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94(26), 261904 (2009).
[CrossRef]

Lei, Y.

Y. Lei, X. Q. Yan, N. Luo, Y. Song, and Y. Zhang, “ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange,” Colloids Surf. A Physicochem. Eng. Asp. 361(1-3), 169–173 (2010).
[CrossRef]

Li, H. Y.

H. Y. Li, B. Jiang, R. Schaller, J. F. Wu, and J. Jiao, “Antireflective photoanode made of TiO2 nanobelts and a ZnO nanowire array,” J. Phys. Chem. C 114(26), 11375–11380 (2010).
[CrossRef]

Li, X.

Q. Zhang, J. J. Qi, Y. Yang, Y. H. Huang, X. Li, and Y. Zhang, “Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure,” Appl. Phys. Lett. 96(25), 253112 (2010).
[CrossRef]

Liang, H. K.

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
[CrossRef]

Liao, Q. L.

Y. H. Huang, Y. Zhang, X. M. Zhang, J. Liu, J. He, and Q. L. Liao, “Structures, growth mechanisms and properties of ZnO nanomaterials fabricated by zinc powder evaporation,” Nanoscience 11, 265–275 (2006).

Lieber, C. M.

M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Lin, X. Y.

Y. H. Zheng, L. R. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng, and K. Wei, “Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis,” Inorg. Chem. 46(17), 6980–6986 (2007).
[CrossRef] [PubMed]

Liu, J.

Y. H. Huang, Y. Zhang, X. M. Zhang, J. Liu, J. He, and Q. L. Liao, “Structures, growth mechanisms and properties of ZnO nanomaterials fabricated by zinc powder evaporation,” Nanoscience 11, 265–275 (2006).

Liu, Z. W.

Z. W. Liu, C. K. Ong, T. Yu, and Z. X. Shen, “Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties,” Appl. Phys. Lett. 88(5), 053110 (2006).
[CrossRef]

Lo, S.-S.

S.-S. Lo and D. Huang, “Morphological variation and Raman spectroscopy of ZnO hollow microspheres prepared by a chemical colloidal process,” Langmuir 26, 6762–6766 (2010).

Lu, M. H.

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices,” Appl. Phys. Lett. 72(5), 519–521 (1998).
[CrossRef]

Lu, M. Y.

X. M. Zhang, M. Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN Thin Film,” Adv. Mater. (Deerfield Beach Fla.) 21(27), 2767–2770 (2009).
[CrossRef]

Lu, M.-Y.

A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics,” Adv. Mater. (Deerfield Beach Fla.) 22(36), 4059–4063 (2010).
[CrossRef] [PubMed]

Luo, N.

Y. Lei, X. Q. Yan, N. Luo, Y. Song, and Y. Zhang, “ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange,” Colloids Surf. A Physicochem. Eng. Asp. 361(1-3), 169–173 (2010).
[CrossRef]

Maes, B.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

Manekkathodi, A.

A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics,” Adv. Mater. (Deerfield Beach Fla.) 22(36), 4059–4063 (2010).
[CrossRef] [PubMed]

Marcy, D.

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices,” Appl. Phys. Lett. 72(5), 519–521 (1998).
[CrossRef]

Marlow, F.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[CrossRef] [PubMed]

Mazur, E.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[CrossRef] [PubMed]

McKinney, J. R.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. (Deerfield Beach Fla.) 15(22), 1907–1911 (2003).
[CrossRef]

Mofor, A. C.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89(18), 182107 (2006).
[CrossRef]

Mohanta, S. K.

C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94(26), 261904 (2009).
[CrossRef]

Müller, S.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[CrossRef] [PubMed]

Nathan, M. L.

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. L. Nathan, and A. Pinczuk, “Raman spectra of amorphous si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
[CrossRef]

Oelkrug, D.

H.-J. Egelhaaf and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO,” J. Cryst. Growth 161(1-4), 190–194 (1996).
[CrossRef]

Ong, C. K.

Z. W. Liu, C. K. Ong, T. Yu, and Z. X. Shen, “Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties,” Appl. Phys. Lett. 88(5), 053110 (2006).
[CrossRef]

Ong, H. C.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Pham, J.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. (Deerfield Beach Fla.) 15(22), 1907–1911 (2003).
[CrossRef]

Pinczuk, A.

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. L. Nathan, and A. Pinczuk, “Raman spectra of amorphous si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
[CrossRef]

Pong, W.-F.

C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen, and W.-F. Pong, “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Appl. Phys. Lett. 88(24), 241905 (2006).
[CrossRef]

Porto, S. P. S.

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in Wurtzite-type crystals,” Phys. Rev. 181(3), 1351–1363 (1969).
[CrossRef]

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
[CrossRef]

Qi, J. J.

Q. Zhang, J. J. Qi, Y. Yang, Y. H. Huang, X. Li, and Y. Zhang, “Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure,” Appl. Phys. Lett. 96(25), 253112 (2010).
[CrossRef]

Qian, G.

X. Gu, K. Huo, G. Qian, J. Fu, and P. K. Chu, “Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate,” Appl. Phys. Lett. 93(20), 203117 (2008).
[CrossRef]

Roels, J.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

Ronning, C.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[CrossRef] [PubMed]

Rousseau, D. L.

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in Wurtzite-type crystals,” Phys. Rev. 181(3), 1351–1363 (1969).
[CrossRef]

Saykally, R.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. (Deerfield Beach Fla.) 15(22), 1907–1911 (2003).
[CrossRef]

Schade, W.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89(18), 182107 (2006).
[CrossRef]

Schaller, R.

H. Y. Li, B. Jiang, R. Schaller, J. F. Wu, and J. Jiao, “Antireflective photoanode made of TiO2 nanobelts and a ZnO nanowire array,” J. Phys. Chem. C 114(26), 11375–11380 (2010).
[CrossRef]

Shen, C.-H.

C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen, and W.-F. Pong, “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Appl. Phys. Lett. 88(24), 241905 (2006).
[CrossRef]

Shen, Z. X.

Z. W. Liu, C. K. Ong, T. Yu, and Z. X. Shen, “Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties,” Appl. Phys. Lett. 88(5), 053110 (2006).
[CrossRef]

Smith, D. C.

M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Smith, J. E.

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. L. Nathan, and A. Pinczuk, “Raman spectra of amorphous si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
[CrossRef]

Song, J. H.

Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[CrossRef] [PubMed]

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Song, Y.

Y. Lei, X. Q. Yan, N. Luo, Y. Song, and Y. Zhang, “ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange,” Colloids Surf. A Physicochem. Eng. Asp. 361(1-3), 169–173 (2010).
[CrossRef]

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Sturm, J. C.

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices,” Appl. Phys. Lett. 72(5), 519–521 (1998).
[CrossRef]

Svacha, G. T.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[CrossRef] [PubMed]

Tansu, N.

J. Zhang, H. P. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett. 97(11), 111105 (2010).
[CrossRef]

H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[CrossRef]

Tell, B.

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
[CrossRef]

Van Thourhout, D.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

Voss, T.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[CrossRef] [PubMed]

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89(18), 182107 (2006).
[CrossRef]

Waag, A.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89(18), 182107 (2006).
[CrossRef]

Wang, C. W.

A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics,” Adv. Mater. (Deerfield Beach Fla.) 22(36), 4059–4063 (2010).
[CrossRef] [PubMed]

Wang, J. F.

M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Wang, R. M.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Wang, Z. L.

X. M. Zhang, M. Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN Thin Film,” Adv. Mater. (Deerfield Beach Fla.) 21(27), 2767–2770 (2009).
[CrossRef]

Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[CrossRef] [PubMed]

Wei, K.

Y. H. Zheng, L. R. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng, and K. Wei, “Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis,” Inorg. Chem. 46(17), 6980–6986 (2007).
[CrossRef] [PubMed]

Wen, H.-I.

C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen, and W.-F. Pong, “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Appl. Phys. Lett. 88(24), 241905 (2006).
[CrossRef]

Wischmeier, L.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89(18), 182107 (2006).
[CrossRef]

Wu, C. C.

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices,” Appl. Phys. Lett. 72(5), 519–521 (1998).
[CrossRef]

Wu, J. F.

H. Y. Li, B. Jiang, R. Schaller, J. F. Wu, and J. Jiao, “Antireflective photoanode made of TiO2 nanobelts and a ZnO nanowire array,” J. Phys. Chem. C 114(26), 11375–11380 (2010).
[CrossRef]

Wu, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Wu, J.-J.

C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen, and W.-F. Pong, “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Appl. Phys. Lett. 88(24), 241905 (2006).
[CrossRef]

Xi, Z. H.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Xing, Y. J.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Xu, J.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Xu, J. Q.

Y. Zhang, J. Q. Xu, P. C. Xu, Y. H. Zhu, X. D. Chen, and W. J. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance,” Nanotechnology 21(28), 285501 (2010).
[CrossRef] [PubMed]

Xu, P. C.

Y. Zhang, J. Q. Xu, P. C. Xu, Y. H. Zhu, X. D. Chen, and W. J. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance,” Nanotechnology 21(28), 285501 (2010).
[CrossRef] [PubMed]

Xue, Z. Q.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Yan, H. Q.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. (Deerfield Beach Fla.) 15(22), 1907–1911 (2003).
[CrossRef]

Yan, R. X.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Yan, X. Q.

Y. Lei, X. Q. Yan, N. Luo, Y. Song, and Y. Zhang, “ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange,” Colloids Surf. A Physicochem. Eng. Asp. 361(1-3), 169–173 (2010).
[CrossRef]

Yang, H. Y.

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
[CrossRef]

Yang, P. D.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. (Deerfield Beach Fla.) 15(22), 1907–1911 (2003).
[CrossRef]

Yang, Y.

Q. Zhang, J. J. Qi, Y. Yang, Y. H. Huang, X. Li, and Y. Zhang, “Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure,” Appl. Phys. Lett. 96(25), 253112 (2010).
[CrossRef]

Yoon, M.

J. Lee and M. Yoon, “Synthesis of visible light-sensitive ZnO nanostructures: subwavelength waveguides,” J. Phys. Chem. C 113(27), 11952–11958 (2009).
[CrossRef]

Yu, D. P.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Yu, S. F.

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
[CrossRef]

Yu, T.

Z. W. Liu, C. K. Ong, T. Yu, and Z. X. Shen, “Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties,” Appl. Phys. Lett. 88(5), 053110 (2006).
[CrossRef]

Yu, W. J.

Y. Zhang, J. Q. Xu, P. C. Xu, Y. H. Zhu, X. D. Chen, and W. J. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance,” Nanotechnology 21(28), 285501 (2010).
[CrossRef] [PubMed]

Zhan, Y. Y.

Y. H. Zheng, L. R. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng, and K. Wei, “Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis,” Inorg. Chem. 46(17), 6980–6986 (2007).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, H. P. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett. 97(11), 111105 (2010).
[CrossRef]

Zhang, Q.

Q. Zhang, J. J. Qi, Y. Yang, Y. H. Huang, X. Li, and Y. Zhang, “Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure,” Appl. Phys. Lett. 96(25), 253112 (2010).
[CrossRef]

Zhang, S. L.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Zhang, X. D.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Zhang, X. M.

X. M. Zhang, M. Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN Thin Film,” Adv. Mater. (Deerfield Beach Fla.) 21(27), 2767–2770 (2009).
[CrossRef]

Y. H. Huang, Y. Zhang, X. M. Zhang, J. Liu, J. He, and Q. L. Liao, “Structures, growth mechanisms and properties of ZnO nanomaterials fabricated by zinc powder evaporation,” Nanoscience 11, 265–275 (2006).

Zhang, Y.

Q. Zhang, J. J. Qi, Y. Yang, Y. H. Huang, X. Li, and Y. Zhang, “Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure,” Appl. Phys. Lett. 96(25), 253112 (2010).
[CrossRef]

Y. Zhang, J. Q. Xu, P. C. Xu, Y. H. Zhu, X. D. Chen, and W. J. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance,” Nanotechnology 21(28), 285501 (2010).
[CrossRef] [PubMed]

Y. Lei, X. Q. Yan, N. Luo, Y. Song, and Y. Zhang, “ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange,” Colloids Surf. A Physicochem. Eng. Asp. 361(1-3), 169–173 (2010).
[CrossRef]

X. M. Zhang, M. Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN Thin Film,” Adv. Mater. (Deerfield Beach Fla.) 21(27), 2767–2770 (2009).
[CrossRef]

Y. H. Huang, Y. Zhang, X. M. Zhang, J. Liu, J. He, and Q. L. Liao, “Structures, growth mechanisms and properties of ZnO nanomaterials fabricated by zinc powder evaporation,” Nanoscience 11, 265–275 (2006).

Zhao, H. P.

J. Zhang, H. P. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett. 97(11), 111105 (2010).
[CrossRef]

H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[CrossRef]

Zhao, Y. G.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Zheng, L. R.

Y. H. Zheng, L. R. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng, and K. Wei, “Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis,” Inorg. Chem. 46(17), 6980–6986 (2007).
[CrossRef] [PubMed]

Zheng, Q.

Y. H. Zheng, L. R. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng, and K. Wei, “Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis,” Inorg. Chem. 46(17), 6980–6986 (2007).
[CrossRef] [PubMed]

Zheng, Y. H.

Y. H. Zheng, L. R. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng, and K. Wei, “Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis,” Inorg. Chem. 46(17), 6980–6986 (2007).
[CrossRef] [PubMed]

Zhu, Y. H.

Y. Zhang, J. Q. Xu, P. C. Xu, Y. H. Zhu, X. D. Chen, and W. J. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance,” Nanotechnology 21(28), 285501 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (3)

A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics,” Adv. Mater. (Deerfield Beach Fla.) 22(36), 4059–4063 (2010).
[CrossRef] [PubMed]

X. M. Zhang, M. Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN Thin Film,” Adv. Mater. (Deerfield Beach Fla.) 21(27), 2767–2770 (2009).
[CrossRef]

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. (Deerfield Beach Fla.) 15(22), 1907–1911 (2003).
[CrossRef]

Appl. Phys. Lett. (12)

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen, and W.-F. Pong, “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Appl. Phys. Lett. 88(24), 241905 (2006).
[CrossRef]

Z. W. Liu, C. K. Ong, T. Yu, and Z. X. Shen, “Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties,” Appl. Phys. Lett. 88(5), 053110 (2006).
[CrossRef]

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89(18), 182107 (2006).
[CrossRef]

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94(26), 261904 (2009).
[CrossRef]

X. Gu, K. Huo, G. Qian, J. Fu, and P. K. Chu, “Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate,” Appl. Phys. Lett. 93(20), 203117 (2008).
[CrossRef]

J. Zhang, H. P. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett. 97(11), 111105 (2010).
[CrossRef]

G. M. Ali and P. Chakrabarti, “Effect of thermal treatment on the performance of ZnO based metal-insulator-semiconductor ultraviolet photodetectors,” Appl. Phys. Lett. 97(3), 031116 (2010).
[CrossRef]

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
[CrossRef]

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices,” Appl. Phys. Lett. 72(5), 519–521 (1998).
[CrossRef]

Q. Zhang, J. J. Qi, Y. Yang, Y. H. Huang, X. Li, and Y. Zhang, “Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure,” Appl. Phys. Lett. 96(25), 253112 (2010).
[CrossRef]

Colloids Surf. A Physicochem. Eng. Asp. (1)

Y. Lei, X. Q. Yan, N. Luo, Y. Song, and Y. Zhang, “ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange,” Colloids Surf. A Physicochem. Eng. Asp. 361(1-3), 169–173 (2010).
[CrossRef]

Inorg. Chem. (1)

Y. H. Zheng, L. R. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng, and K. Wei, “Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis,” Inorg. Chem. 46(17), 6980–6986 (2007).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[CrossRef]

J. Cryst. Growth (1)

H.-J. Egelhaaf and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO,” J. Cryst. Growth 161(1-4), 190–194 (1996).
[CrossRef]

J. Phys. Chem. C (2)

J. Lee and M. Yoon, “Synthesis of visible light-sensitive ZnO nanostructures: subwavelength waveguides,” J. Phys. Chem. C 113(27), 11952–11958 (2009).
[CrossRef]

H. Y. Li, B. Jiang, R. Schaller, J. F. Wu, and J. Jiao, “Antireflective photoanode made of TiO2 nanobelts and a ZnO nanowire array,” J. Phys. Chem. C 114(26), 11375–11380 (2010).
[CrossRef]

Langmuir (1)

S.-S. Lo and D. Huang, “Morphological variation and Raman spectroscopy of ZnO hollow microspheres prepared by a chemical colloidal process,” Langmuir 26, 6762–6766 (2010).

Nano Lett. (1)

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[CrossRef] [PubMed]

Nanoscience (1)

Y. H. Huang, Y. Zhang, X. M. Zhang, J. Liu, J. He, and Q. L. Liao, “Structures, growth mechanisms and properties of ZnO nanomaterials fabricated by zinc powder evaporation,” Nanoscience 11, 265–275 (2006).

Nanotechnology (1)

Y. Zhang, J. Q. Xu, P. C. Xu, Y. H. Zhu, X. D. Chen, and W. J. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance,” Nanotechnology 21(28), 285501 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Nature (1)

M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Phys. Rev. (2)

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
[CrossRef]

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in Wurtzite-type crystals,” Phys. Rev. 181(3), 1351–1363 (1969).
[CrossRef]

Phys. Rev. Lett. (1)

J. E. Smith, M. H. Brodsky, B. L. Crowder, M. L. Nathan, and A. Pinczuk, “Raman spectra of amorphous si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971).
[CrossRef]

Science (1)

Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

I-V curve recorded during the nanodamage process, insert SEM and HRTEM images compare the morphology and crystal structures before and after the failure process.

Fig. 2
Fig. 2

Enlarged room temperature Raman spectra at E2 (high) for pearl and pole parts.

Fig. 3
Fig. 3

(a) Room temperature PL spectra of single crystal and polycrystalline ZnO. Inset: the sample, the red and blue circles indicate the test location. (b) Photoluminescence images of columnar (top) and pearl-like ZnO (bottom) nanowires dispersed on a SiOX/Si substrate, respectively. White circles point out the emission parts except the end.

Fig. 4
Fig. 4

Electromagnetic field distributions in the two-dimensional cross section of single crystalline and polycrystalline ZnO waveguides.

Metrics