Abstract

Silver nanoparticles embedded in glass are prepared by a two-step ion exchange process, where silver ions are introduced into glass in silver ion exchange, and reduced into metallic silver in subsequent potassium ion exchange. The formation of the particles can be explained by the combination effect of the galvanic replacement reaction and the electrolytic deposition. The formed particles are characterized by optical absorption measurements, transmission electron microscopy and atomic force microscopy. Their application in SERS is demonstrated, and the optimal surface features in terms of SERS enhancement are also discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2(3), 136–159 (2008).
    [CrossRef]
  2. J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
    [CrossRef] [PubMed]
  3. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  4. Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
    [CrossRef] [PubMed]
  5. S. J. Lee, Z. Q. Guan, H. X. Xu, and M. Moskovits, “Surface-enhanced Raman spectroscopy and nanogeometry: The plasmonic origin of SERS,” J. Phys. Chem. C 111(49), 17985–17988 (2007).
    [CrossRef]
  6. Z. G. Xie, J. Tao, Y. H. Lu, K. Q. Lin, J. Yan, P. Wang, and H. Ming, “Polymer optical fiber SERS sensor with gold nanorods,” Opt. Commun. 282(3), 439–442 (2009).
    [CrossRef]
  7. L. M. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9(2), 193–195 (2009).
    [CrossRef] [PubMed]
  8. C. H. Lin, L. Jiang, H. Xiao, S. J. Chen, and H. L. Tsai, “Surface-enhanced Raman scattering microchip fabricated by femtosecond laser,” Opt. Lett. 35(17), 2937–2939 (2010).
    [CrossRef] [PubMed]
  9. M. Dubiel, H. Hofmeister, and E. Wendler, “Formation of nanoparticles in soda-lime glasses by single and double ion implantation,” J. Non-Cryst. Solids 354(2-9), 607–611 (2008).
    [CrossRef]
  10. B. Akkopru and C. Durucan, “Preparation and microstructure of sol-gel derived silver-doped silica,” J. Sol-Gel Sci. Technol. 43(2), 227–236 (2007).
    [CrossRef]
  11. J. Zhang, W. Dong, J. W. Sheng, J. W. Zheng, J. Li, L. Qiao, and L. Q. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310(1), 234–239 (2008).
    [CrossRef]
  12. Y. Chen, J. Jaakola, A. Säynätjoki, A. Tervonen, and S. Honkanen, “SERS-active silver nanoparticles in ion-exchanged glass,” J. Nonlinear Opt. Phys. 19(04), 527–533 (2010).
    [CrossRef]
  13. Y. Chen, J. Jaakola, Y. L. Ge, A. Säynätjoki, A. Tervonen, S. P. Hannula, and S. Honkanen, “In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process,” J. Non-Cryst. Solids 355(45-47), 2224–2227 (2009).
    [CrossRef]
  14. Y. Chen, J. Jaakola, A. Säynätjoki, A. Tervonen, and S. Honkanen, “Glass-embedded silver nanoparticle patterns by masked ion-exchange process for surface-enhanced Raman scattering,” J. Raman Spectrosc. (to be published).
  15. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numerical recipes in C, The art of scientific computing,” (Cambridge University Press, Second Edition, 1992), http: //www.nr.com .
  16. X. M. Lu, J. Y. Chen, S. E. Skrabalak, and Y. N. Xia, “Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures,” Proc. IMechE, Part N: J. Nanoengineering and Nanosystems 221(1), 1–16 (2007).
    [CrossRef]
  17. G. X. Zhang, S. H. Sun, R. Y. Li, and X. L. Sun, “New insight into the conventional replacement reaction for the large-scale synthesis of various metal nanostructures and their formation mechanism,” Chemistry 16(35), 10630–10634 (2010).
    [CrossRef] [PubMed]
  18. S. S. Wong, A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim, D. V. Vezenov, and C. M. Lieber, “Single-walled carbon nanotube probes for high-resolution nanostructure imaging,” Appl. Phys. Lett. 73(23), 3465–3467 (1998).
    [CrossRef]
  19. T. Larsen, K. Moloni, F. Flack, M. A. Eriksson, M. G. Lagally, and C. T. Black, “Comparison of wear characteristics of etched-silicon and carbon nanotube atomic-force microscopy probes,” Appl. Phys. Lett. 80(11), 1996–1998 (2002).
    [CrossRef]
  20. M. Carmichael, R. Vidu, A. Maksumov, A. Palazoglu, and P. Stroeve, “Using wavelets to analyze AFM images of thin films: surface micelles and supported lipid bilayers,” Langmuir 20(26), 11557–11568 (2004).
    [CrossRef] [PubMed]
  21. H. R. Gutiérrez, D. Nakabayashi, P. C. Silva, J. R. R. Bortoleto, V. Rodrigues, J. H. Clerici, M. A. Cotta, and D. Ugarte, “Carbon nanotube probe resolution: a quantitative analysis using Fourier Transform,” Phys. Status Solidi A-Appl, Mat. 201, 888–893 (2004).
    [CrossRef]
  22. M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
    [CrossRef] [PubMed]

2010 (3)

Y. Chen, J. Jaakola, A. Säynätjoki, A. Tervonen, and S. Honkanen, “SERS-active silver nanoparticles in ion-exchanged glass,” J. Nonlinear Opt. Phys. 19(04), 527–533 (2010).
[CrossRef]

G. X. Zhang, S. H. Sun, R. Y. Li, and X. L. Sun, “New insight into the conventional replacement reaction for the large-scale synthesis of various metal nanostructures and their formation mechanism,” Chemistry 16(35), 10630–10634 (2010).
[CrossRef] [PubMed]

C. H. Lin, L. Jiang, H. Xiao, S. J. Chen, and H. L. Tsai, “Surface-enhanced Raman scattering microchip fabricated by femtosecond laser,” Opt. Lett. 35(17), 2937–2939 (2010).
[CrossRef] [PubMed]

2009 (3)

Y. Chen, J. Jaakola, Y. L. Ge, A. Säynätjoki, A. Tervonen, S. P. Hannula, and S. Honkanen, “In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process,” J. Non-Cryst. Solids 355(45-47), 2224–2227 (2009).
[CrossRef]

Z. G. Xie, J. Tao, Y. H. Lu, K. Q. Lin, J. Yan, P. Wang, and H. Ming, “Polymer optical fiber SERS sensor with gold nanorods,” Opt. Commun. 282(3), 439–442 (2009).
[CrossRef]

L. M. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9(2), 193–195 (2009).
[CrossRef] [PubMed]

2008 (4)

M. Dubiel, H. Hofmeister, and E. Wendler, “Formation of nanoparticles in soda-lime glasses by single and double ion implantation,” J. Non-Cryst. Solids 354(2-9), 607–611 (2008).
[CrossRef]

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2(3), 136–159 (2008).
[CrossRef]

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

J. Zhang, W. Dong, J. W. Sheng, J. W. Zheng, J. Li, L. Qiao, and L. Q. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310(1), 234–239 (2008).
[CrossRef]

2007 (3)

X. M. Lu, J. Y. Chen, S. E. Skrabalak, and Y. N. Xia, “Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures,” Proc. IMechE, Part N: J. Nanoengineering and Nanosystems 221(1), 1–16 (2007).
[CrossRef]

S. J. Lee, Z. Q. Guan, H. X. Xu, and M. Moskovits, “Surface-enhanced Raman spectroscopy and nanogeometry: The plasmonic origin of SERS,” J. Phys. Chem. C 111(49), 17985–17988 (2007).
[CrossRef]

B. Akkopru and C. Durucan, “Preparation and microstructure of sol-gel derived silver-doped silica,” J. Sol-Gel Sci. Technol. 43(2), 227–236 (2007).
[CrossRef]

2006 (1)

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

2004 (2)

M. Carmichael, R. Vidu, A. Maksumov, A. Palazoglu, and P. Stroeve, “Using wavelets to analyze AFM images of thin films: surface micelles and supported lipid bilayers,” Langmuir 20(26), 11557–11568 (2004).
[CrossRef] [PubMed]

H. R. Gutiérrez, D. Nakabayashi, P. C. Silva, J. R. R. Bortoleto, V. Rodrigues, J. H. Clerici, M. A. Cotta, and D. Ugarte, “Carbon nanotube probe resolution: a quantitative analysis using Fourier Transform,” Phys. Status Solidi A-Appl, Mat. 201, 888–893 (2004).
[CrossRef]

2002 (1)

T. Larsen, K. Moloni, F. Flack, M. A. Eriksson, M. G. Lagally, and C. T. Black, “Comparison of wear characteristics of etched-silicon and carbon nanotube atomic-force microscopy probes,” Appl. Phys. Lett. 80(11), 1996–1998 (2002).
[CrossRef]

1998 (1)

S. S. Wong, A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim, D. V. Vezenov, and C. M. Lieber, “Single-walled carbon nanotube probes for high-resolution nanostructure imaging,” Appl. Phys. Lett. 73(23), 3465–3467 (1998).
[CrossRef]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

1992 (1)

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
[CrossRef] [PubMed]

Aizpurua, J.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2(3), 136–159 (2008).
[CrossRef]

Akkopru, B.

B. Akkopru and C. Durucan, “Preparation and microstructure of sol-gel derived silver-doped silica,” J. Sol-Gel Sci. Technol. 43(2), 227–236 (2007).
[CrossRef]

Black, C. T.

T. Larsen, K. Moloni, F. Flack, M. A. Eriksson, M. G. Lagally, and C. T. Black, “Comparison of wear characteristics of etched-silicon and carbon nanotube atomic-force microscopy probes,” Appl. Phys. Lett. 80(11), 1996–1998 (2002).
[CrossRef]

Bortoleto, J. R. R.

H. R. Gutiérrez, D. Nakabayashi, P. C. Silva, J. R. R. Bortoleto, V. Rodrigues, J. H. Clerici, M. A. Cotta, and D. Ugarte, “Carbon nanotube probe resolution: a quantitative analysis using Fourier Transform,” Phys. Status Solidi A-Appl, Mat. 201, 888–893 (2004).
[CrossRef]

Botet, R.

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
[CrossRef] [PubMed]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2(3), 136–159 (2008).
[CrossRef]

Carmichael, M.

M. Carmichael, R. Vidu, A. Maksumov, A. Palazoglu, and P. Stroeve, “Using wavelets to analyze AFM images of thin films: surface micelles and supported lipid bilayers,” Langmuir 20(26), 11557–11568 (2004).
[CrossRef] [PubMed]

Chen, J. Y.

X. M. Lu, J. Y. Chen, S. E. Skrabalak, and Y. N. Xia, “Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures,” Proc. IMechE, Part N: J. Nanoengineering and Nanosystems 221(1), 1–16 (2007).
[CrossRef]

Chen, S. J.

Chen, Y.

Y. Chen, J. Jaakola, A. Säynätjoki, A. Tervonen, and S. Honkanen, “SERS-active silver nanoparticles in ion-exchanged glass,” J. Nonlinear Opt. Phys. 19(04), 527–533 (2010).
[CrossRef]

Y. Chen, J. Jaakola, Y. L. Ge, A. Säynätjoki, A. Tervonen, S. P. Hannula, and S. Honkanen, “In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process,” J. Non-Cryst. Solids 355(45-47), 2224–2227 (2009).
[CrossRef]

Clerici, J. H.

H. R. Gutiérrez, D. Nakabayashi, P. C. Silva, J. R. R. Bortoleto, V. Rodrigues, J. H. Clerici, M. A. Cotta, and D. Ugarte, “Carbon nanotube probe resolution: a quantitative analysis using Fourier Transform,” Phys. Status Solidi A-Appl, Mat. 201, 888–893 (2004).
[CrossRef]

Cotta, M. A.

H. R. Gutiérrez, D. Nakabayashi, P. C. Silva, J. R. R. Bortoleto, V. Rodrigues, J. H. Clerici, M. A. Cotta, and D. Ugarte, “Carbon nanotube probe resolution: a quantitative analysis using Fourier Transform,” Phys. Status Solidi A-Appl, Mat. 201, 888–893 (2004).
[CrossRef]

Dieringer, J. A.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Dong, W.

J. Zhang, W. Dong, J. W. Sheng, J. W. Zheng, J. Li, L. Qiao, and L. Q. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310(1), 234–239 (2008).
[CrossRef]

Dubiel, M.

M. Dubiel, H. Hofmeister, and E. Wendler, “Formation of nanoparticles in soda-lime glasses by single and double ion implantation,” J. Non-Cryst. Solids 354(2-9), 607–611 (2008).
[CrossRef]

Durucan, C.

B. Akkopru and C. Durucan, “Preparation and microstructure of sol-gel derived silver-doped silica,” J. Sol-Gel Sci. Technol. 43(2), 227–236 (2007).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Eriksson, M. A.

T. Larsen, K. Moloni, F. Flack, M. A. Eriksson, M. G. Lagally, and C. T. Black, “Comparison of wear characteristics of etched-silicon and carbon nanotube atomic-force microscopy probes,” Appl. Phys. Lett. 80(11), 1996–1998 (2002).
[CrossRef]

Flack, F.

T. Larsen, K. Moloni, F. Flack, M. A. Eriksson, M. G. Lagally, and C. T. Black, “Comparison of wear characteristics of etched-silicon and carbon nanotube atomic-force microscopy probes,” Appl. Phys. Lett. 80(11), 1996–1998 (2002).
[CrossRef]

Ge, Y. L.

Y. Chen, J. Jaakola, Y. L. Ge, A. Säynätjoki, A. Tervonen, S. P. Hannula, and S. Honkanen, “In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process,” J. Non-Cryst. Solids 355(45-47), 2224–2227 (2009).
[CrossRef]

George, T. F.

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
[CrossRef] [PubMed]

Golden, G.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Gonzalez, M. U.

L. M. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9(2), 193–195 (2009).
[CrossRef] [PubMed]

Guan, P.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Guan, Z. Q.

S. J. Lee, Z. Q. Guan, H. X. Xu, and M. Moskovits, “Surface-enhanced Raman spectroscopy and nanogeometry: The plasmonic origin of SERS,” J. Phys. Chem. C 111(49), 17985–17988 (2007).
[CrossRef]

Gutiérrez, H. R.

H. R. Gutiérrez, D. Nakabayashi, P. C. Silva, J. R. R. Bortoleto, V. Rodrigues, J. H. Clerici, M. A. Cotta, and D. Ugarte, “Carbon nanotube probe resolution: a quantitative analysis using Fourier Transform,” Phys. Status Solidi A-Appl, Mat. 201, 888–893 (2004).
[CrossRef]

Hannula, S. P.

Y. Chen, J. Jaakola, Y. L. Ge, A. Säynätjoki, A. Tervonen, S. P. Hannula, and S. Honkanen, “In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process,” J. Non-Cryst. Solids 355(45-47), 2224–2227 (2009).
[CrossRef]

Hofmeister, H.

M. Dubiel, H. Hofmeister, and E. Wendler, “Formation of nanoparticles in soda-lime glasses by single and double ion implantation,” J. Non-Cryst. Solids 354(2-9), 607–611 (2008).
[CrossRef]

Honkanen, S.

Y. Chen, J. Jaakola, A. Säynätjoki, A. Tervonen, and S. Honkanen, “SERS-active silver nanoparticles in ion-exchanged glass,” J. Nonlinear Opt. Phys. 19(04), 527–533 (2010).
[CrossRef]

Y. Chen, J. Jaakola, Y. L. Ge, A. Säynätjoki, A. Tervonen, S. P. Hannula, and S. Honkanen, “In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process,” J. Non-Cryst. Solids 355(45-47), 2224–2227 (2009).
[CrossRef]

Huang, J. L.

S. S. Wong, A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim, D. V. Vezenov, and C. M. Lieber, “Single-walled carbon nanotube probes for high-resolution nanostructure imaging,” Appl. Phys. Lett. 73(23), 3465–3467 (1998).
[CrossRef]

Jaakola, J.

Y. Chen, J. Jaakola, A. Säynätjoki, A. Tervonen, and S. Honkanen, “SERS-active silver nanoparticles in ion-exchanged glass,” J. Nonlinear Opt. Phys. 19(04), 527–533 (2010).
[CrossRef]

Y. Chen, J. Jaakola, Y. L. Ge, A. Säynätjoki, A. Tervonen, S. P. Hannula, and S. Honkanen, “In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process,” J. Non-Cryst. Solids 355(45-47), 2224–2227 (2009).
[CrossRef]

Jiang, L.

Jiang, L. Q.

J. Zhang, W. Dong, J. W. Sheng, J. W. Zheng, J. Li, L. Qiao, and L. Q. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310(1), 234–239 (2008).
[CrossRef]

Käll, M.

L. M. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9(2), 193–195 (2009).
[CrossRef] [PubMed]

Kim, P.

S. S. Wong, A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim, D. V. Vezenov, and C. M. Lieber, “Single-walled carbon nanotube probes for high-resolution nanostructure imaging,” Appl. Phys. Lett. 73(23), 3465–3467 (1998).
[CrossRef]

Lagally, M. G.

T. Larsen, K. Moloni, F. Flack, M. A. Eriksson, M. G. Lagally, and C. T. Black, “Comparison of wear characteristics of etched-silicon and carbon nanotube atomic-force microscopy probes,” Appl. Phys. Lett. 80(11), 1996–1998 (2002).
[CrossRef]

Larsen, T.

T. Larsen, K. Moloni, F. Flack, M. A. Eriksson, M. G. Lagally, and C. T. Black, “Comparison of wear characteristics of etched-silicon and carbon nanotube atomic-force microscopy probes,” Appl. Phys. Lett. 80(11), 1996–1998 (2002).
[CrossRef]

Lee, S. J.

S. J. Lee, Z. Q. Guan, H. X. Xu, and M. Moskovits, “Surface-enhanced Raman spectroscopy and nanogeometry: The plasmonic origin of SERS,” J. Phys. Chem. C 111(49), 17985–17988 (2007).
[CrossRef]

Li, J.

J. Zhang, W. Dong, J. W. Sheng, J. W. Zheng, J. Li, L. Qiao, and L. Q. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310(1), 234–239 (2008).
[CrossRef]

Li, R. Y.

G. X. Zhang, S. H. Sun, R. Y. Li, and X. L. Sun, “New insight into the conventional replacement reaction for the large-scale synthesis of various metal nanostructures and their formation mechanism,” Chemistry 16(35), 10630–10634 (2010).
[CrossRef] [PubMed]

Lieber, C. M.

S. S. Wong, A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim, D. V. Vezenov, and C. M. Lieber, “Single-walled carbon nanotube probes for high-resolution nanostructure imaging,” Appl. Phys. Lett. 73(23), 3465–3467 (1998).
[CrossRef]

Lin, C. H.

Lin, K. Q.

Z. G. Xie, J. Tao, Y. H. Lu, K. Q. Lin, J. Yan, P. Wang, and H. Ming, “Polymer optical fiber SERS sensor with gold nanorods,” Opt. Commun. 282(3), 439–442 (2009).
[CrossRef]

Lu, X. M.

X. M. Lu, J. Y. Chen, S. E. Skrabalak, and Y. N. Xia, “Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures,” Proc. IMechE, Part N: J. Nanoengineering and Nanosystems 221(1), 1–16 (2007).
[CrossRef]

Lu, Y. H.

Z. G. Xie, J. Tao, Y. H. Lu, K. Q. Lin, J. Yan, P. Wang, and H. Ming, “Polymer optical fiber SERS sensor with gold nanorods,” Opt. Commun. 282(3), 439–442 (2009).
[CrossRef]

Maksumov, A.

M. Carmichael, R. Vidu, A. Maksumov, A. Palazoglu, and P. Stroeve, “Using wavelets to analyze AFM images of thin films: surface micelles and supported lipid bilayers,” Langmuir 20(26), 11557–11568 (2004).
[CrossRef] [PubMed]

McFarland, A. D.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Ming, H.

Z. G. Xie, J. Tao, Y. H. Lu, K. Q. Lin, J. Yan, P. Wang, and H. Ming, “Polymer optical fiber SERS sensor with gold nanorods,” Opt. Commun. 282(3), 439–442 (2009).
[CrossRef]

Moloni, K.

T. Larsen, K. Moloni, F. Flack, M. A. Eriksson, M. G. Lagally, and C. T. Black, “Comparison of wear characteristics of etched-silicon and carbon nanotube atomic-force microscopy probes,” Appl. Phys. Lett. 80(11), 1996–1998 (2002).
[CrossRef]

Moskovits, M.

S. J. Lee, Z. Q. Guan, H. X. Xu, and M. Moskovits, “Surface-enhanced Raman spectroscopy and nanogeometry: The plasmonic origin of SERS,” J. Phys. Chem. C 111(49), 17985–17988 (2007).
[CrossRef]

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
[CrossRef] [PubMed]

Nakabayashi, D.

H. R. Gutiérrez, D. Nakabayashi, P. C. Silva, J. R. R. Bortoleto, V. Rodrigues, J. H. Clerici, M. A. Cotta, and D. Ugarte, “Carbon nanotube probe resolution: a quantitative analysis using Fourier Transform,” Phys. Status Solidi A-Appl, Mat. 201, 888–893 (2004).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Odom, T. W.

S. S. Wong, A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim, D. V. Vezenov, and C. M. Lieber, “Single-walled carbon nanotube probes for high-resolution nanostructure imaging,” Appl. Phys. Lett. 73(23), 3465–3467 (1998).
[CrossRef]

Palazoglu, A.

M. Carmichael, R. Vidu, A. Maksumov, A. Palazoglu, and P. Stroeve, “Using wavelets to analyze AFM images of thin films: surface micelles and supported lipid bilayers,” Langmuir 20(26), 11557–11568 (2004).
[CrossRef] [PubMed]

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2(3), 136–159 (2008).
[CrossRef]

Qiao, L.

J. Zhang, W. Dong, J. W. Sheng, J. W. Zheng, J. Li, L. Qiao, and L. Q. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310(1), 234–239 (2008).
[CrossRef]

Qin, D.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Quidant, R.

L. M. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9(2), 193–195 (2009).
[CrossRef] [PubMed]

Righini, M.

L. M. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9(2), 193–195 (2009).
[CrossRef] [PubMed]

Rodrigues, V.

H. R. Gutiérrez, D. Nakabayashi, P. C. Silva, J. R. R. Bortoleto, V. Rodrigues, J. H. Clerici, M. A. Cotta, and D. Ugarte, “Carbon nanotube probe resolution: a quantitative analysis using Fourier Transform,” Phys. Status Solidi A-Appl, Mat. 201, 888–893 (2004).
[CrossRef]

Säynätjoki, A.

Y. Chen, J. Jaakola, A. Säynätjoki, A. Tervonen, and S. Honkanen, “SERS-active silver nanoparticles in ion-exchanged glass,” J. Nonlinear Opt. Phys. 19(04), 527–533 (2010).
[CrossRef]

Y. Chen, J. Jaakola, Y. L. Ge, A. Säynätjoki, A. Tervonen, S. P. Hannula, and S. Honkanen, “In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process,” J. Non-Cryst. Solids 355(45-47), 2224–2227 (2009).
[CrossRef]

Shah, N. C.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
[CrossRef] [PubMed]

Sheng, J. W.

J. Zhang, W. Dong, J. W. Sheng, J. W. Zheng, J. Li, L. Qiao, and L. Q. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310(1), 234–239 (2008).
[CrossRef]

Silva, P. C.

H. R. Gutiérrez, D. Nakabayashi, P. C. Silva, J. R. R. Bortoleto, V. Rodrigues, J. H. Clerici, M. A. Cotta, and D. Ugarte, “Carbon nanotube probe resolution: a quantitative analysis using Fourier Transform,” Phys. Status Solidi A-Appl, Mat. 201, 888–893 (2004).
[CrossRef]

Skrabalak, S. E.

X. M. Lu, J. Y. Chen, S. E. Skrabalak, and Y. N. Xia, “Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures,” Proc. IMechE, Part N: J. Nanoengineering and Nanosystems 221(1), 1–16 (2007).
[CrossRef]

Stockman, M. I.

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
[CrossRef] [PubMed]

Stroeve, P.

M. Carmichael, R. Vidu, A. Maksumov, A. Palazoglu, and P. Stroeve, “Using wavelets to analyze AFM images of thin films: surface micelles and supported lipid bilayers,” Langmuir 20(26), 11557–11568 (2004).
[CrossRef] [PubMed]

Stuart, D. A.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Sun, S. H.

G. X. Zhang, S. H. Sun, R. Y. Li, and X. L. Sun, “New insight into the conventional replacement reaction for the large-scale synthesis of various metal nanostructures and their formation mechanism,” Chemistry 16(35), 10630–10634 (2010).
[CrossRef] [PubMed]

Sun, X. L.

G. X. Zhang, S. H. Sun, R. Y. Li, and X. L. Sun, “New insight into the conventional replacement reaction for the large-scale synthesis of various metal nanostructures and their formation mechanism,” Chemistry 16(35), 10630–10634 (2010).
[CrossRef] [PubMed]

Tao, J.

Z. G. Xie, J. Tao, Y. H. Lu, K. Q. Lin, J. Yan, P. Wang, and H. Ming, “Polymer optical fiber SERS sensor with gold nanorods,” Opt. Commun. 282(3), 439–442 (2009).
[CrossRef]

Tervonen, A.

Y. Chen, J. Jaakola, A. Säynätjoki, A. Tervonen, and S. Honkanen, “SERS-active silver nanoparticles in ion-exchanged glass,” J. Nonlinear Opt. Phys. 19(04), 527–533 (2010).
[CrossRef]

Y. Chen, J. Jaakola, Y. L. Ge, A. Säynätjoki, A. Tervonen, S. P. Hannula, and S. Honkanen, “In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process,” J. Non-Cryst. Solids 355(45-47), 2224–2227 (2009).
[CrossRef]

Tong, L. M.

L. M. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9(2), 193–195 (2009).
[CrossRef] [PubMed]

Tsai, H. L.

Ugarte, D.

H. R. Gutiérrez, D. Nakabayashi, P. C. Silva, J. R. R. Bortoleto, V. Rodrigues, J. H. Clerici, M. A. Cotta, and D. Ugarte, “Carbon nanotube probe resolution: a quantitative analysis using Fourier Transform,” Phys. Status Solidi A-Appl, Mat. 201, 888–893 (2004).
[CrossRef]

Van Duyne, R. P.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Vezenov, D. V.

S. S. Wong, A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim, D. V. Vezenov, and C. M. Lieber, “Single-walled carbon nanotube probes for high-resolution nanostructure imaging,” Appl. Phys. Lett. 73(23), 3465–3467 (1998).
[CrossRef]

Vidu, R.

M. Carmichael, R. Vidu, A. Maksumov, A. Palazoglu, and P. Stroeve, “Using wavelets to analyze AFM images of thin films: surface micelles and supported lipid bilayers,” Langmuir 20(26), 11557–11568 (2004).
[CrossRef] [PubMed]

Wallace, P. M.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Wang, P.

Z. G. Xie, J. Tao, Y. H. Lu, K. Q. Lin, J. Yan, P. Wang, and H. Ming, “Polymer optical fiber SERS sensor with gold nanorods,” Opt. Commun. 282(3), 439–442 (2009).
[CrossRef]

Wendler, E.

M. Dubiel, H. Hofmeister, and E. Wendler, “Formation of nanoparticles in soda-lime glasses by single and double ion implantation,” J. Non-Cryst. Solids 354(2-9), 607–611 (2008).
[CrossRef]

Whitney, A. V.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Wong, S. S.

S. S. Wong, A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim, D. V. Vezenov, and C. M. Lieber, “Single-walled carbon nanotube probes for high-resolution nanostructure imaging,” Appl. Phys. Lett. 73(23), 3465–3467 (1998).
[CrossRef]

Woolley, A. T.

S. S. Wong, A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim, D. V. Vezenov, and C. M. Lieber, “Single-walled carbon nanotube probes for high-resolution nanostructure imaging,” Appl. Phys. Lett. 73(23), 3465–3467 (1998).
[CrossRef]

Xia, Y. N.

X. M. Lu, J. Y. Chen, S. E. Skrabalak, and Y. N. Xia, “Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures,” Proc. IMechE, Part N: J. Nanoengineering and Nanosystems 221(1), 1–16 (2007).
[CrossRef]

Xiao, H.

Xie, Z. G.

Z. G. Xie, J. Tao, Y. H. Lu, K. Q. Lin, J. Yan, P. Wang, and H. Ming, “Polymer optical fiber SERS sensor with gold nanorods,” Opt. Commun. 282(3), 439–442 (2009).
[CrossRef]

Xu, H. X.

S. J. Lee, Z. Q. Guan, H. X. Xu, and M. Moskovits, “Surface-enhanced Raman spectroscopy and nanogeometry: The plasmonic origin of SERS,” J. Phys. Chem. C 111(49), 17985–17988 (2007).
[CrossRef]

Yan, J.

Z. G. Xie, J. Tao, Y. H. Lu, K. Q. Lin, J. Yan, P. Wang, and H. Ming, “Polymer optical fiber SERS sensor with gold nanorods,” Opt. Commun. 282(3), 439–442 (2009).
[CrossRef]

Yonzon, C. R.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Young, M. A.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Yu, Q.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Zhang, G. X.

G. X. Zhang, S. H. Sun, R. Y. Li, and X. L. Sun, “New insight into the conventional replacement reaction for the large-scale synthesis of various metal nanostructures and their formation mechanism,” Chemistry 16(35), 10630–10634 (2010).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, W. Dong, J. W. Sheng, J. W. Zheng, J. Li, L. Qiao, and L. Q. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310(1), 234–239 (2008).
[CrossRef]

Zhang, X.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Zheng, J. W.

J. Zhang, W. Dong, J. W. Sheng, J. W. Zheng, J. Li, L. Qiao, and L. Q. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310(1), 234–239 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

S. S. Wong, A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim, D. V. Vezenov, and C. M. Lieber, “Single-walled carbon nanotube probes for high-resolution nanostructure imaging,” Appl. Phys. Lett. 73(23), 3465–3467 (1998).
[CrossRef]

T. Larsen, K. Moloni, F. Flack, M. A. Eriksson, M. G. Lagally, and C. T. Black, “Comparison of wear characteristics of etched-silicon and carbon nanotube atomic-force microscopy probes,” Appl. Phys. Lett. 80(11), 1996–1998 (2002).
[CrossRef]

Chemistry (1)

G. X. Zhang, S. H. Sun, R. Y. Li, and X. L. Sun, “New insight into the conventional replacement reaction for the large-scale synthesis of various metal nanostructures and their formation mechanism,” Chemistry 16(35), 10630–10634 (2010).
[CrossRef] [PubMed]

Faraday Discuss. (1)

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

J. Cryst. Growth (1)

J. Zhang, W. Dong, J. W. Sheng, J. W. Zheng, J. Li, L. Qiao, and L. Q. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310(1), 234–239 (2008).
[CrossRef]

J. Non-Cryst. Solids (2)

Y. Chen, J. Jaakola, Y. L. Ge, A. Säynätjoki, A. Tervonen, S. P. Hannula, and S. Honkanen, “In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process,” J. Non-Cryst. Solids 355(45-47), 2224–2227 (2009).
[CrossRef]

M. Dubiel, H. Hofmeister, and E. Wendler, “Formation of nanoparticles in soda-lime glasses by single and double ion implantation,” J. Non-Cryst. Solids 354(2-9), 607–611 (2008).
[CrossRef]

J. Nonlinear Opt. Phys. (1)

Y. Chen, J. Jaakola, A. Säynätjoki, A. Tervonen, and S. Honkanen, “SERS-active silver nanoparticles in ion-exchanged glass,” J. Nonlinear Opt. Phys. 19(04), 527–533 (2010).
[CrossRef]

J. Phys. Chem. C (1)

S. J. Lee, Z. Q. Guan, H. X. Xu, and M. Moskovits, “Surface-enhanced Raman spectroscopy and nanogeometry: The plasmonic origin of SERS,” J. Phys. Chem. C 111(49), 17985–17988 (2007).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

B. Akkopru and C. Durucan, “Preparation and microstructure of sol-gel derived silver-doped silica,” J. Sol-Gel Sci. Technol. 43(2), 227–236 (2007).
[CrossRef]

Lab Chip (1)

L. M. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9(2), 193–195 (2009).
[CrossRef] [PubMed]

Langmuir (1)

M. Carmichael, R. Vidu, A. Maksumov, A. Palazoglu, and P. Stroeve, “Using wavelets to analyze AFM images of thin films: surface micelles and supported lipid bilayers,” Langmuir 20(26), 11557–11568 (2004).
[CrossRef] [PubMed]

Laser Photon. Rev. (1)

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2(3), 136–159 (2008).
[CrossRef]

Nano Lett. (1)

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

Z. G. Xie, J. Tao, Y. H. Lu, K. Q. Lin, J. Yan, P. Wang, and H. Ming, “Polymer optical fiber SERS sensor with gold nanorods,” Opt. Commun. 282(3), 439–442 (2009).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (1)

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992).
[CrossRef] [PubMed]

Phys. Status Solidi A-Appl, Mat. (1)

H. R. Gutiérrez, D. Nakabayashi, P. C. Silva, J. R. R. Bortoleto, V. Rodrigues, J. H. Clerici, M. A. Cotta, and D. Ugarte, “Carbon nanotube probe resolution: a quantitative analysis using Fourier Transform,” Phys. Status Solidi A-Appl, Mat. 201, 888–893 (2004).
[CrossRef]

Proc. IMechE, Part N: J. Nanoengineering and Nanosystems (1)

X. M. Lu, J. Y. Chen, S. E. Skrabalak, and Y. N. Xia, “Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures,” Proc. IMechE, Part N: J. Nanoengineering and Nanosystems 221(1), 1–16 (2007).
[CrossRef]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Other (2)

Y. Chen, J. Jaakola, A. Säynätjoki, A. Tervonen, and S. Honkanen, “Glass-embedded silver nanoparticle patterns by masked ion-exchange process for surface-enhanced Raman scattering,” J. Raman Spectrosc. (to be published).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numerical recipes in C, The art of scientific computing,” (Cambridge University Press, Second Edition, 1992), http: //www.nr.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical absorption spectra of different glass samples with embedded Ag NPs. The samples were prepared under different experimental conditions.

Fig. 2
Fig. 2

(a) The overview image showing the distribution of Ag NPs under the surface of the sample #1. (b) Bright field TEM image of the particles observed with high magnification.

Fig. 3
Fig. 3

AFM images (6μm × 6μm) scanned from the sample #1 etched to different depths (a) 55 nm, (b) 110 nm, and (c) 220 nm. The height scale is shown at the bottom of each image.

Fig. 4
Fig. 4

2D-PS images of AFM images scanned from the sample #1 etched to different depths (a) 55 nm, (b) 110 nm, and (c) 220 nm, and these three images have the same brightness scale. (d) the logarithmic spectra of 1D-PS integrated from the 2D-PS images, and the curve showing the function dependent on the spatial frequency to the power of −3.3.

Fig. 5
Fig. 5

(a) Raman spectra, (b) average Raman intensity and RSD of Raman intensity of 1µM R6G observed from the sample #1 etched to different depths 55 nm, 110 nm, and 220 nm.

Fig. 6
Fig. 6

Proposed mechanism for the formation of Ag NPs during K+ ion exchange with an Al layer.

Tables (1)

Tables Icon

Table 1 The processing details of three different samples.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔK = ΔL x  = ΔL y  =  the scan length along the axes the number of scan lines along the axes  = 0 .02343 μm,

Metrics