Abstract

The conformal coating of a 50 nm-thick layer of copper nanoparticles deposited with pulse chemical vapor deposition of a copper (I) guanidinate precursor on the cladding of a single mode optical fiber was monitored by using a tilted fiber Bragg grating (TFBG) photo-inscribed in the fiber core. The pulse-per-pulse growth of the copper nanoparticles is readily obtained from the position and amplitudes of resonances in the reflection spectrum of the grating. In particular, we confirm that the real part of the effective complex permittivity of the deposited nano-structured copper layer is an order of magnitude larger than that of a bulk copper film at an optical wavelength of 1550 nm. We further observe a transition in the growth behavior from granular to continuous film (as determined from the complex material permittivity) after approximately 20 pulses (corresponding to an effective thickness of 25 nm). Finally, despite the remaining granularity of the film, the final copper-coated optical fiber is shown to support plasmon waves suitable for sensing, even after the growth of a thin oxide layer on the copper surface.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, “Copper metallization for high performance silicon technology,” Annu. Rev. Mater. Sci. 30(1), 229–262 (2000).
    [CrossRef]
  2. G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
    [CrossRef]
  3. K. Zawada and J. Bukowska, “Surface-enhanced Raman spectroscopy studies of phenylpyridines interacting with a copper electrode surface,” Surf. Sci. 507–510(1-3), 34–39 (2002).
    [CrossRef]
  4. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
    [CrossRef]
  5. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  6. J. P. Coyle, W. H. Monillas, G. P. A. Yap, and S. T. Barry, “Synthesis and thermal chemistry of copper (I) guanidinates,” Inorg. Chem. 47(2), 683–689 (2008).
    [CrossRef] [PubMed]
  7. A. L. Brazeau and S. T. Barry, “Atomic layer deposition of aluminum oxide thin films from a heteroleptic, amidinate-containing precursor,” Chem. Mater. 20(23), 7287–7291 (2008).
    [CrossRef]
  8. N. V. Gelfond, P. P. Semyannikov, S. V. Trubin, N. B. Morozova, and I. K. Igumenov, “Deposition of Ir nanostructured thin films by pulse CVD,” ECS Trans. 25, 871–874 (2009).
    [CrossRef]
  9. S.-H. Kim, E.-S. Hwang, S.-Y. Han, S.-H. Pyi, N. Kawk, H. Sohn, J. Kim, and G. B. Choi, “Pulsed CVD of tungsten thin film as a nucleation layer for tungsten plug-fill,” Electrochem. Solid-State Lett. 7(9), G195–G197 (2004).
    [CrossRef]
  10. C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
    [CrossRef] [PubMed]
  11. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  12. M. Chen and R. G. Horn, “Refractive index of sparse layers of adsorbed gold nanoparticles,” J. Colloid Interface Sci. 315(2), 814–817 (2007).
    [CrossRef] [PubMed]
  13. L.-Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express 18(11), 11464–11471 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-11-11464 .
    [CrossRef] [PubMed]
  14. J. P. Coyle, P. A. Johnson, G. A. DiLabio, S. T. Barry, and J. Müller, “Gas-phase thermolysis of a guanidinate precursor of copper studied by matrix isolation, time-of-flight mass spectrometry, and computational chemistry,” Inorg. Chem. 49(6), 2844–2850 (2010).
    [CrossRef] [PubMed]
  15. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
    [CrossRef] [PubMed]
  16. C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7(8), 260–272 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=oe-7-8-260 .
    [CrossRef] [PubMed]
  17. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [CrossRef]
  18. C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1656 .
    [CrossRef] [PubMed]
  19. H. Du, S. W. Lee, J. Gong, C. Sun, and L. S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mater. Lett. 58(6), 1117–1120 (2004).
    [CrossRef]

2011 (1)

2010 (3)

2009 (1)

N. V. Gelfond, P. P. Semyannikov, S. V. Trubin, N. B. Morozova, and I. K. Igumenov, “Deposition of Ir nanostructured thin films by pulse CVD,” ECS Trans. 25, 871–874 (2009).
[CrossRef]

2008 (3)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

J. P. Coyle, W. H. Monillas, G. P. A. Yap, and S. T. Barry, “Synthesis and thermal chemistry of copper (I) guanidinates,” Inorg. Chem. 47(2), 683–689 (2008).
[CrossRef] [PubMed]

A. L. Brazeau and S. T. Barry, “Atomic layer deposition of aluminum oxide thin films from a heteroleptic, amidinate-containing precursor,” Chem. Mater. 20(23), 7287–7291 (2008).
[CrossRef]

2007 (3)

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[CrossRef]

C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

M. Chen and R. G. Horn, “Refractive index of sparse layers of adsorbed gold nanoparticles,” J. Colloid Interface Sci. 315(2), 814–817 (2007).
[CrossRef] [PubMed]

2004 (2)

H. Du, S. W. Lee, J. Gong, C. Sun, and L. S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mater. Lett. 58(6), 1117–1120 (2004).
[CrossRef]

S.-H. Kim, E.-S. Hwang, S.-Y. Han, S.-H. Pyi, N. Kawk, H. Sohn, J. Kim, and G. B. Choi, “Pulsed CVD of tungsten thin film as a nucleation layer for tungsten plug-fill,” Electrochem. Solid-State Lett. 7(9), G195–G197 (2004).
[CrossRef]

2002 (1)

K. Zawada and J. Bukowska, “Surface-enhanced Raman spectroscopy studies of phenylpyridines interacting with a copper electrode surface,” Surf. Sci. 507–510(1-3), 34–39 (2002).
[CrossRef]

2000 (2)

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

1993 (1)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

1983 (1)

Albert, J.

Alexander, R. W.

Barry, S. T.

J. P. Coyle, P. A. Johnson, G. A. DiLabio, S. T. Barry, and J. Müller, “Gas-phase thermolysis of a guanidinate precursor of copper studied by matrix isolation, time-of-flight mass spectrometry, and computational chemistry,” Inorg. Chem. 49(6), 2844–2850 (2010).
[CrossRef] [PubMed]

J. P. Coyle, W. H. Monillas, G. P. A. Yap, and S. T. Barry, “Synthesis and thermal chemistry of copper (I) guanidinates,” Inorg. Chem. 47(2), 683–689 (2008).
[CrossRef] [PubMed]

A. L. Brazeau and S. T. Barry, “Atomic layer deposition of aluminum oxide thin films from a heteroleptic, amidinate-containing precursor,” Chem. Mater. 20(23), 7287–7291 (2008).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Berini, P.

Brazeau, A. L.

A. L. Brazeau and S. T. Barry, “Atomic layer deposition of aluminum oxide thin films from a heteroleptic, amidinate-containing precursor,” Chem. Mater. 20(23), 7287–7291 (2008).
[CrossRef]

Bukowska, J.

K. Zawada and J. Bukowska, “Surface-enhanced Raman spectroscopy studies of phenylpyridines interacting with a copper electrode surface,” Surf. Sci. 507–510(1-3), 34–39 (2002).
[CrossRef]

Caucheteur, C.

Chan, C.-F.

Chan, G. H.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[CrossRef]

Chen, C.

Chen, M.

M. Chen and R. G. Horn, “Refractive index of sparse layers of adsorbed gold nanoparticles,” J. Colloid Interface Sci. 315(2), 814–817 (2007).
[CrossRef] [PubMed]

Choi, G. B.

S.-H. Kim, E.-S. Hwang, S.-Y. Han, S.-H. Pyi, N. Kawk, H. Sohn, J. Kim, and G. B. Choi, “Pulsed CVD of tungsten thin film as a nucleation layer for tungsten plug-fill,” Electrochem. Solid-State Lett. 7(9), G195–G197 (2004).
[CrossRef]

Coyle, J. P.

J. P. Coyle, P. A. Johnson, G. A. DiLabio, S. T. Barry, and J. Müller, “Gas-phase thermolysis of a guanidinate precursor of copper studied by matrix isolation, time-of-flight mass spectrometry, and computational chemistry,” Inorg. Chem. 49(6), 2844–2850 (2010).
[CrossRef] [PubMed]

J. P. Coyle, W. H. Monillas, G. P. A. Yap, and S. T. Barry, “Synthesis and thermal chemistry of copper (I) guanidinates,” Inorg. Chem. 47(2), 683–689 (2008).
[CrossRef] [PubMed]

Dakka, M. A.

DiLabio, G. A.

J. P. Coyle, P. A. Johnson, G. A. DiLabio, S. T. Barry, and J. Müller, “Gas-phase thermolysis of a guanidinate precursor of copper studied by matrix isolation, time-of-flight mass spectrometry, and computational chemistry,” Inorg. Chem. 49(6), 2844–2850 (2010).
[CrossRef] [PubMed]

Du, H.

H. Du, S. W. Lee, J. Gong, C. Sun, and L. S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mater. Lett. 58(6), 1117–1120 (2004).
[CrossRef]

Edelstein, D. C.

R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, “Copper metallization for high performance silicon technology,” Annu. Rev. Mater. Sci. 30(1), 229–262 (2000).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Feng, D.

Gelfond, N. V.

N. V. Gelfond, P. P. Semyannikov, S. V. Trubin, N. B. Morozova, and I. K. Igumenov, “Deposition of Ir nanostructured thin films by pulse CVD,” ECS Trans. 25, 871–874 (2009).
[CrossRef]

Gong, J.

H. Du, S. W. Lee, J. Gong, C. Sun, and L. S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mater. Lett. 58(6), 1117–1120 (2004).
[CrossRef]

Han, S.-Y.

S.-H. Kim, E.-S. Hwang, S.-Y. Han, S.-H. Pyi, N. Kawk, H. Sohn, J. Kim, and G. B. Choi, “Pulsed CVD of tungsten thin film as a nucleation layer for tungsten plug-fill,” Electrochem. Solid-State Lett. 7(9), G195–G197 (2004).
[CrossRef]

Hicks, E. M.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[CrossRef]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Horn, R. G.

M. Chen and R. G. Horn, “Refractive index of sparse layers of adsorbed gold nanoparticles,” J. Colloid Interface Sci. 315(2), 814–817 (2007).
[CrossRef] [PubMed]

Hu, C.-K.

R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, “Copper metallization for high performance silicon technology,” Annu. Rev. Mater. Sci. 30(1), 229–262 (2000).
[CrossRef]

Hwang, E.-S.

S.-H. Kim, E.-S. Hwang, S.-Y. Han, S.-H. Pyi, N. Kawk, H. Sohn, J. Kim, and G. B. Choi, “Pulsed CVD of tungsten thin film as a nucleation layer for tungsten plug-fill,” Electrochem. Solid-State Lett. 7(9), G195–G197 (2004).
[CrossRef]

Igumenov, I. K.

N. V. Gelfond, P. P. Semyannikov, S. V. Trubin, N. B. Morozova, and I. K. Igumenov, “Deposition of Ir nanostructured thin films by pulse CVD,” ECS Trans. 25, 871–874 (2009).
[CrossRef]

Jafari, A.

Johnson, P. A.

J. P. Coyle, P. A. Johnson, G. A. DiLabio, S. T. Barry, and J. Müller, “Gas-phase thermolysis of a guanidinate precursor of copper studied by matrix isolation, time-of-flight mass spectrometry, and computational chemistry,” Inorg. Chem. 49(6), 2844–2850 (2010).
[CrossRef] [PubMed]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

Kawk, N.

S.-H. Kim, E.-S. Hwang, S.-Y. Han, S.-H. Pyi, N. Kawk, H. Sohn, J. Kim, and G. B. Choi, “Pulsed CVD of tungsten thin film as a nucleation layer for tungsten plug-fill,” Electrochem. Solid-State Lett. 7(9), G195–G197 (2004).
[CrossRef]

Kim, J.

S.-H. Kim, E.-S. Hwang, S.-Y. Han, S.-H. Pyi, N. Kawk, H. Sohn, J. Kim, and G. B. Choi, “Pulsed CVD of tungsten thin film as a nucleation layer for tungsten plug-fill,” Electrochem. Solid-State Lett. 7(9), G195–G197 (2004).
[CrossRef]

Kim, S.-H.

S.-H. Kim, E.-S. Hwang, S.-Y. Han, S.-H. Pyi, N. Kawk, H. Sohn, J. Kim, and G. B. Choi, “Pulsed CVD of tungsten thin film as a nucleation layer for tungsten plug-fill,” Electrochem. Solid-State Lett. 7(9), G195–G197 (2004).
[CrossRef]

Laronche, A.

Lee, S. W.

H. Du, S. W. Lee, J. Gong, C. Sun, and L. S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mater. Lett. 58(6), 1117–1120 (2004).
[CrossRef]

Long, L. L.

Monillas, W. H.

J. P. Coyle, W. H. Monillas, G. P. A. Yap, and S. T. Barry, “Synthesis and thermal chemistry of copper (I) guanidinates,” Inorg. Chem. 47(2), 683–689 (2008).
[CrossRef] [PubMed]

Morozova, N. B.

N. V. Gelfond, P. P. Semyannikov, S. V. Trubin, N. B. Morozova, and I. K. Igumenov, “Deposition of Ir nanostructured thin films by pulse CVD,” ECS Trans. 25, 871–874 (2009).
[CrossRef]

Müller, J.

J. P. Coyle, P. A. Johnson, G. A. DiLabio, S. T. Barry, and J. Müller, “Gas-phase thermolysis of a guanidinate precursor of copper studied by matrix isolation, time-of-flight mass spectrometry, and computational chemistry,” Inorg. Chem. 49(6), 2844–2850 (2010).
[CrossRef] [PubMed]

Ordal, M. A.

Pyi, S.-H.

S.-H. Kim, E.-S. Hwang, S.-Y. Han, S.-H. Pyi, N. Kawk, H. Sohn, J. Kim, and G. B. Choi, “Pulsed CVD of tungsten thin film as a nucleation layer for tungsten plug-fill,” Electrochem. Solid-State Lett. 7(9), G195–G197 (2004).
[CrossRef]

Rodbell, K. P.

R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, “Copper metallization for high performance silicon technology,” Annu. Rev. Mater. Sci. 30(1), 229–262 (2000).
[CrossRef]

Rosenberg, R.

R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, “Copper metallization for high performance silicon technology,” Annu. Rev. Mater. Sci. 30(1), 229–262 (2000).
[CrossRef]

Schatz, G. C.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[CrossRef]

Semyannikov, P. P.

N. V. Gelfond, P. P. Semyannikov, S. V. Trubin, N. B. Morozova, and I. K. Igumenov, “Deposition of Ir nanostructured thin films by pulse CVD,” ECS Trans. 25, 871–874 (2009).
[CrossRef]

Shao, L.-Y.

Shevchenko, Y.

Sohn, H.

S.-H. Kim, E.-S. Hwang, S.-Y. Han, S.-H. Pyi, N. Kawk, H. Sohn, J. Kim, and G. B. Choi, “Pulsed CVD of tungsten thin film as a nucleation layer for tungsten plug-fill,” Electrochem. Solid-State Lett. 7(9), G195–G197 (2004).
[CrossRef]

Sun, C.

H. Du, S. W. Lee, J. Gong, C. Sun, and L. S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mater. Lett. 58(6), 1117–1120 (2004).
[CrossRef]

Tanev, S.

Thomson, D. J.

Trubin, S. V.

N. V. Gelfond, P. P. Semyannikov, S. V. Trubin, N. B. Morozova, and I. K. Igumenov, “Deposition of Ir nanostructured thin films by pulse CVD,” ECS Trans. 25, 871–874 (2009).
[CrossRef]

Tzolov, V.

Van Duyne, R. P.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[CrossRef]

Ward, C. A.

Wen, L. S.

H. Du, S. W. Lee, J. Gong, C. Sun, and L. S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mater. Lett. 58(6), 1117–1120 (2004).
[CrossRef]

Wuilpart, M.

Yap, G. P. A.

J. P. Coyle, W. H. Monillas, G. P. A. Yap, and S. T. Barry, “Synthesis and thermal chemistry of copper (I) guanidinates,” Inorg. Chem. 47(2), 683–689 (2008).
[CrossRef] [PubMed]

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

Zawada, K.

K. Zawada and J. Bukowska, “Surface-enhanced Raman spectroscopy studies of phenylpyridines interacting with a copper electrode surface,” Surf. Sci. 507–510(1-3), 34–39 (2002).
[CrossRef]

Zhao, J.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, “Copper metallization for high performance silicon technology,” Annu. Rev. Mater. Sci. 30(1), 229–262 (2000).
[CrossRef]

Appl. Opt. (2)

Chem. Mater. (1)

A. L. Brazeau and S. T. Barry, “Atomic layer deposition of aluminum oxide thin films from a heteroleptic, amidinate-containing precursor,” Chem. Mater. 20(23), 7287–7291 (2008).
[CrossRef]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

ECS Trans. (1)

N. V. Gelfond, P. P. Semyannikov, S. V. Trubin, N. B. Morozova, and I. K. Igumenov, “Deposition of Ir nanostructured thin films by pulse CVD,” ECS Trans. 25, 871–874 (2009).
[CrossRef]

Electrochem. Solid-State Lett. (1)

S.-H. Kim, E.-S. Hwang, S.-Y. Han, S.-H. Pyi, N. Kawk, H. Sohn, J. Kim, and G. B. Choi, “Pulsed CVD of tungsten thin film as a nucleation layer for tungsten plug-fill,” Electrochem. Solid-State Lett. 7(9), G195–G197 (2004).
[CrossRef]

Inorg. Chem. (2)

J. P. Coyle, P. A. Johnson, G. A. DiLabio, S. T. Barry, and J. Müller, “Gas-phase thermolysis of a guanidinate precursor of copper studied by matrix isolation, time-of-flight mass spectrometry, and computational chemistry,” Inorg. Chem. 49(6), 2844–2850 (2010).
[CrossRef] [PubMed]

J. P. Coyle, W. H. Monillas, G. P. A. Yap, and S. T. Barry, “Synthesis and thermal chemistry of copper (I) guanidinates,” Inorg. Chem. 47(2), 683–689 (2008).
[CrossRef] [PubMed]

J. Colloid Interface Sci. (1)

M. Chen and R. G. Horn, “Refractive index of sparse layers of adsorbed gold nanoparticles,” J. Colloid Interface Sci. 315(2), 814–817 (2007).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Mater. Lett. (1)

H. Du, S. W. Lee, J. Gong, C. Sun, and L. S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mater. Lett. 58(6), 1117–1120 (2004).
[CrossRef]

Nano Lett. (1)

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Sens. Actuators B Chem. (1)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

Surf. Sci. (1)

K. Zawada and J. Bukowska, “Surface-enhanced Raman spectroscopy studies of phenylpyridines interacting with a copper electrode surface,” Surf. Sci. 507–510(1-3), 34–39 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagram of TFBG sensor with a gold mirror; (b) Reflection spectrum of 10° TFBG sensor before copper deposition, where the inset shows the photo of fabricated TFBG sensor (in the fiber sticking out of on the left of the black and white connector).

Fig. 2
Fig. 2

Schematic diagram of the pulsed CVD reactor and optical measurement setup (PC: polarization controller)

Fig. 3
Fig. 3

Gas phase thermolysis of the copper(I) guanidinate pulsed CVD precursor.

Fig. 4
Fig. 4

(a) Spectral evolution of TFBG at P-polarization state (Colour indicates resonance amplitude) and (b) corresponding wavelength and peak-to-peak amplitude changes of one cladding mode resonance around 1526.2 nm as a function of the number of cycles.

Fig. 5
Fig. 5

AFM image (a) and bearing histogram (b) of Cu film on flat substrate after deposition of 40 pulsing cycles. The measured average thickness is 50 nm. (c) Absolute AFM height measurements on flat substrates up to 100 pulsing cycles.

Fig. 6
Fig. 6

(a) Cross-section of the four layer model of the fiber with sparse layer of copper nanoparticles (left) and an equivalent copper coating (right). (b) Calculation of the change in peak to peak resonance amplitude vs the imaginary part of the effective index of the cladding mode; (c) Resulting effective complex refractive index of copper nanoparticles on the cladding of the fiber vs pulsing cycles.

Fig. 7
Fig. 7

SEM images of Cu nanoparticles deposited on the fiber surface of (a) 10 cycles, (b) 40 cycles and (c) whole fiber at 40 cycles.

Fig. 8
Fig. 8

Transmission spectra of (a) bare TFBG and (b) Cu nanoparticles coated TFBG in the solution (RI = 1.3597); (c)comparison spectra of the TFBGs with oxide-free Cu nanoparticles and Cu oxides; (d) PDL spectra evolution of Cu nanoparticles coated TFBG in air and three liquids

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ B r a g g = N e f f ( c o r e ) Λ / cos ( θ )
λ c l a d i = ( N e f f ( c o r e ) + N e f f i ( c l a d ) ) Λ / cos ( θ )

Metrics