Abstract

Nonlinear optical imaging is a powerful method for observing bulk and interfacial phenomena in time and space. Here, we present a step-by-step description of how to carry out second harmonic generation imaging with a kHz amplifier laser system and demonstrate its applicability for SHG microscopy studies of highly size-resolved colloidal CdSe quantum dots having radii of 1-2 nm deposited on glass slides. It is found that not all quantum dots are SHG active, which suggests that environmental effects and particle distributions are important for SHG activity of quantum dots.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).
  2. O. A. Aktsipetrov, P. V. Elyutin, A. A. Fedyanin, A. A. Nikulin, and A. N. Rubtsov, “Second harmonic generation in metal and semiconductor low-dimensional structures,” Surf. Sci. 325(3), 343–355 (1995).
    [CrossRef]
  3. M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104(1), 1–5 (2000).
    [CrossRef]
  4. B. S. Santos, G. A. Pereira, D. V. Petrov, and C. D. Donega, “First hyperpolarizability of CdS nanoparticles studied by hyper-Rayleigh scattering,” Opt. Commun. 178(1-3), 187–192 (2000).
    [CrossRef]
  5. M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5(24), 2835–2840 (2009).
    [CrossRef] [PubMed]
  6. E. Shaviv and U. Banin, “Synergistic effects on second harmonic generation of hybrid CdSe-Au nanoparticles,” ACS Nano 4(3), 1529–1538 (2010).
    [CrossRef] [PubMed]
  7. M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
    [CrossRef] [PubMed]
  8. N. Ji, K. Zhang, H. Yang, and Y.-R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006).
    [CrossRef] [PubMed]
  9. M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
    [CrossRef] [PubMed]
  10. R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
    [CrossRef]
  11. K. Cimatu and S. Baldelli, “Chemical imaging of corrosion: sum frequency generation imaging microscopy of cyanide on gold at the solid-liquid interface,” J. Am. Chem. Soc. 130(25), 8030–8037 (2008).
    [CrossRef] [PubMed]
  12. R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H.-F. Wang, D. H. Thompson, J.-X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
    [CrossRef] [PubMed]
  13. P. Rechsteiner, J. Hulliger, and M. Flörsheimer, “Phase-sensitive second harmonic microscopy reveals bipolar twinning of markov-type molecular crystals,” Chem. Mater. 12(11), 3296–3300 (2000).
    [CrossRef]
  14. A. C. Millard, L. Jin, J. P. Wuskell, D. M. Boudreau, A. Lewis, and L. M. Loew, “Wavelength- and time-dependence of potentiometric non-linear optical signals from styryl dyes,” J. Membr. Biol. 208(2), 103–111 (2005).
    [CrossRef] [PubMed]
  15. R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005).
    [CrossRef] [PubMed]
  16. J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett. 7(3), 831–836 (2007).
    [CrossRef] [PubMed]
  17. T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
    [CrossRef]
  18. T. Verbiest, S. V. Elshocht, A. Persoons, C. Nuckolls, K. E. Phillips, and T. J. Katz, “Second-order nonlinear optical properties of highly symmetric chiral thin films,” Langmuir 17(16), 4685–4687 (2001).
    [CrossRef]
  19. J. M. Hicks, Chirality: Physical Chemistry, ACS Symposium Series 810 (Oxford University Press, 2002).
  20. B. J. Burke, A. J. Moad, M. A. Polizzi, and G. J. Simpson, “Experimental confirmation of the importance of orientation in the anomalous chiral sensitivity of second harmonic generation,” J. Am. Chem. Soc. 125(30), 9111–9115 (2003).
    [CrossRef] [PubMed]
  21. G. J. Simpson, “Molecular origins of the remarkable chiral sensitivity of second-order nonlinear optics,” ChemPhysChem 5(9), 1301–1310 (2004).
    [CrossRef] [PubMed]
  22. N. Ji and Y. R. Shen, “Optically active sum frequency generation from molecules with a chiral center: amino acids as model systems,” J. Am. Chem. Soc. 126(46), 15008–15009 (2004).
    [CrossRef] [PubMed]
  23. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, 1984).
  24. P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16(18), 792–794 (1966).
    [CrossRef]
  25. M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
    [CrossRef] [PubMed]
  26. J. A. Giordmaine, “Nonlinear optical properties of liquids,” Phys. Rev. 138(6A), A1599–A1606 (1965).
    [CrossRef]
  27. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, 1957).
  28. A. J. Moad and G. J. Simpson, “Self-consistent approach for simplifying the molecular interpretation of nonlinear optical and multiphoton phenomena,” J. Phys. Chem. A 109(7), 1316–1323 (2005).
    [CrossRef] [PubMed]
  29. Y. R. Shen, “Nonlinear optical spectroscopy of molecular chirality,” in Trends and Perspectives in Modern Computational Science, G. Maroulis and T. Simos, eds. (Brill Academic Pub., 2006), pp. 461–471.
  30. V. J. Hall and G. J. Simpson, “Direct observation of transient Ostwald crystallization ordering from racemic serine solutions,” J. Am. Chem. Soc. 132(39), 13598–13599 (2010).
    [CrossRef] [PubMed]
  31. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
    [CrossRef] [PubMed]
  32. V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
    [CrossRef] [PubMed]
  33. N. J. Borys, M. J. Walter, and J. M. Lupton, “Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films,” Phys. Rev. B 80(16), 161407 (2009).
    [CrossRef]
  34. A. J. Morris-Cohen, M. D. Donakowski, K. E. Knowles, and E. A. Weiss, “The effect of a common purification procedure on the chemical composition of the surfaces of CdSe quantum dots synthesized with trioctylphosphine oxide,” J. Phys. Chem. C 114(2), 897–906 (2010).
    [CrossRef]
  35. A. J. Morris-Cohen, M. T. Frederick, G. D. Lilly, E. A. McArthur, and E. A. Weiss, “Organic surfactant-controlled composition of the surfaces of CdSe quantum dots,” J. Phys. Chem. Lett. 1(7), 1078–1081 (2010).
    [CrossRef]
  36. L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124(9), 2049–2055 (2002).
    [CrossRef] [PubMed]
  37. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
    [CrossRef]
  38. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, 2003).
  39. M. L. Frederick, J. L. Achtyl, K. E. Knowles, E. A. Weiss, and F. M. Geiger, “Surface amplified ligand disorder in CdSe quantum dots determined by electron and coherent vibrational spectroscopy” (submitted [2010]).
  40. C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. (Camb.) 5(5), 544–557 (2008).
    [CrossRef] [PubMed]

2010 (5)

E. Shaviv and U. Banin, “Synergistic effects on second harmonic generation of hybrid CdSe-Au nanoparticles,” ACS Nano 4(3), 1529–1538 (2010).
[CrossRef] [PubMed]

V. J. Hall and G. J. Simpson, “Direct observation of transient Ostwald crystallization ordering from racemic serine solutions,” J. Am. Chem. Soc. 132(39), 13598–13599 (2010).
[CrossRef] [PubMed]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

A. J. Morris-Cohen, M. D. Donakowski, K. E. Knowles, and E. A. Weiss, “The effect of a common purification procedure on the chemical composition of the surfaces of CdSe quantum dots synthesized with trioctylphosphine oxide,” J. Phys. Chem. C 114(2), 897–906 (2010).
[CrossRef]

A. J. Morris-Cohen, M. T. Frederick, G. D. Lilly, E. A. McArthur, and E. A. Weiss, “Organic surfactant-controlled composition of the surfaces of CdSe quantum dots,” J. Phys. Chem. Lett. 1(7), 1078–1081 (2010).
[CrossRef]

2009 (3)

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

N. J. Borys, M. J. Walter, and J. M. Lupton, “Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films,” Phys. Rev. B 80(16), 161407 (2009).
[CrossRef]

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5(24), 2835–2840 (2009).
[CrossRef] [PubMed]

2008 (3)

K. Cimatu and S. Baldelli, “Chemical imaging of corrosion: sum frequency generation imaging microscopy of cyanide on gold at the solid-liquid interface,” J. Am. Chem. Soc. 130(25), 8030–8037 (2008).
[CrossRef] [PubMed]

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H.-F. Wang, D. H. Thompson, J.-X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[CrossRef] [PubMed]

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. (Camb.) 5(5), 544–557 (2008).
[CrossRef] [PubMed]

2007 (1)

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett. 7(3), 831–836 (2007).
[CrossRef] [PubMed]

2006 (2)

N. Ji, K. Zhang, H. Yang, and Y.-R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006).
[CrossRef] [PubMed]

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
[CrossRef] [PubMed]

2005 (4)

M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
[CrossRef] [PubMed]

A. C. Millard, L. Jin, J. P. Wuskell, D. M. Boudreau, A. Lewis, and L. M. Loew, “Wavelength- and time-dependence of potentiometric non-linear optical signals from styryl dyes,” J. Membr. Biol. 208(2), 103–111 (2005).
[CrossRef] [PubMed]

R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005).
[CrossRef] [PubMed]

A. J. Moad and G. J. Simpson, “Self-consistent approach for simplifying the molecular interpretation of nonlinear optical and multiphoton phenomena,” J. Phys. Chem. A 109(7), 1316–1323 (2005).
[CrossRef] [PubMed]

2004 (2)

G. J. Simpson, “Molecular origins of the remarkable chiral sensitivity of second-order nonlinear optics,” ChemPhysChem 5(9), 1301–1310 (2004).
[CrossRef] [PubMed]

N. Ji and Y. R. Shen, “Optically active sum frequency generation from molecules with a chiral center: amino acids as model systems,” J. Am. Chem. Soc. 126(46), 15008–15009 (2004).
[CrossRef] [PubMed]

2003 (2)

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[CrossRef]

B. J. Burke, A. J. Moad, M. A. Polizzi, and G. J. Simpson, “Experimental confirmation of the importance of orientation in the anomalous chiral sensitivity of second harmonic generation,” J. Am. Chem. Soc. 125(30), 9111–9115 (2003).
[CrossRef] [PubMed]

2002 (2)

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124(9), 2049–2055 (2002).
[CrossRef] [PubMed]

2001 (1)

T. Verbiest, S. V. Elshocht, A. Persoons, C. Nuckolls, K. E. Phillips, and T. J. Katz, “Second-order nonlinear optical properties of highly symmetric chiral thin films,” Langmuir 17(16), 4685–4687 (2001).
[CrossRef]

2000 (4)

P. Rechsteiner, J. Hulliger, and M. Flörsheimer, “Phase-sensitive second harmonic microscopy reveals bipolar twinning of markov-type molecular crystals,” Chem. Mater. 12(11), 3296–3300 (2000).
[CrossRef]

M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104(1), 1–5 (2000).
[CrossRef]

B. S. Santos, G. A. Pereira, D. V. Petrov, and C. D. Donega, “First hyperpolarizability of CdS nanoparticles studied by hyper-Rayleigh scattering,” Opt. Commun. 178(1-3), 187–192 (2000).
[CrossRef]

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

1995 (1)

O. A. Aktsipetrov, P. V. Elyutin, A. A. Fedyanin, A. A. Nikulin, and A. N. Rubtsov, “Second harmonic generation in metal and semiconductor low-dimensional structures,” Surf. Sci. 325(3), 343–355 (1995).
[CrossRef]

1993 (1)

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

1966 (1)

P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16(18), 792–794 (1966).
[CrossRef]

1965 (1)

J. A. Giordmaine, “Nonlinear optical properties of liquids,” Phys. Rev. 138(6A), A1599–A1606 (1965).
[CrossRef]

Aktsipetrov, O. A.

O. A. Aktsipetrov, P. V. Elyutin, A. A. Fedyanin, A. A. Nikulin, and A. N. Rubtsov, “Second harmonic generation in metal and semiconductor low-dimensional structures,” Surf. Sci. 325(3), 343–355 (1995).
[CrossRef]

Alkilany, A.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. (Camb.) 5(5), 544–557 (2008).
[CrossRef] [PubMed]

Ameloot, M.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Bachelier, G.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Baldelli, S.

K. Cimatu and S. Baldelli, “Chemical imaging of corrosion: sum frequency generation imaging microscopy of cyanide on gold at the solid-liquid interface,” J. Am. Chem. Soc. 130(25), 8030–8037 (2008).
[CrossRef] [PubMed]

Banin, U.

E. Shaviv and U. Banin, “Synergistic effects on second harmonic generation of hybrid CdSe-Au nanoparticles,” ACS Nano 4(3), 1529–1538 (2010).
[CrossRef] [PubMed]

M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104(1), 1–5 (2000).
[CrossRef]

Belkin, M. A.

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

Benichou, E.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Borys, N. J.

N. J. Borys, M. J. Walter, and J. M. Lupton, “Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films,” Phys. Rev. B 80(16), 161407 (2009).
[CrossRef]

Boudreau, D. M.

A. C. Millard, L. Jin, J. P. Wuskell, D. M. Boudreau, A. Lewis, and L. M. Loew, “Wavelength- and time-dependence of potentiometric non-linear optical signals from styryl dyes,” J. Membr. Biol. 208(2), 103–111 (2005).
[CrossRef] [PubMed]

Brevet, P.-F.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Burke, B. J.

B. J. Burke, A. J. Moad, M. A. Polizzi, and G. J. Simpson, “Experimental confirmation of the importance of orientation in the anomalous chiral sensitivity of second harmonic generation,” J. Am. Chem. Soc. 125(30), 9111–9115 (2003).
[CrossRef] [PubMed]

Butet, J.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Byers, J. D.

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

Chauvat, D.

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5(24), 2835–2840 (2009).
[CrossRef] [PubMed]

Cheng, J.-X.

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H.-F. Wang, D. H. Thompson, J.-X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[CrossRef] [PubMed]

Cimatu, K.

K. Cimatu and S. Baldelli, “Chemical imaging of corrosion: sum frequency generation imaging microscopy of cyanide on gold at the solid-liquid interface,” J. Am. Chem. Soc. 130(25), 8030–8037 (2008).
[CrossRef] [PubMed]

Conboy, J. C.

M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
[CrossRef] [PubMed]

De Clercq, B.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Dehen, C. J.

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H.-F. Wang, D. H. Thompson, J.-X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[CrossRef] [PubMed]

Donakowski, M. D.

A. J. Morris-Cohen, M. D. Donakowski, K. E. Knowles, and E. A. Weiss, “The effect of a common purification procedure on the chemical composition of the surfaces of CdSe quantum dots synthesized with trioctylphosphine oxide,” J. Phys. Chem. C 114(2), 897–906 (2010).
[CrossRef]

Donega, C. D.

B. S. Santos, G. A. Pereira, D. V. Petrov, and C. D. Donega, “First hyperpolarizability of CdS nanoparticles studied by hyper-Rayleigh scattering,” Opt. Commun. 178(1-3), 187–192 (2000).
[CrossRef]

Duboisset, J.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Eisenthal, K. B.

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
[CrossRef] [PubMed]

Elshocht, S. V.

T. Verbiest, S. V. Elshocht, A. Persoons, C. Nuckolls, K. E. Phillips, and T. J. Katz, “Second-order nonlinear optical properties of highly symmetric chiral thin films,” Langmuir 17(16), 4685–4687 (2001).
[CrossRef]

Elyutin, P. V.

O. A. Aktsipetrov, P. V. Elyutin, A. A. Fedyanin, A. A. Nikulin, and A. N. Rubtsov, “Second harmonic generation in metal and semiconductor low-dimensional structures,” Surf. Sci. 325(3), 343–355 (1995).
[CrossRef]

Ernst, K. H.

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

Fedyanin, A. A.

O. A. Aktsipetrov, P. V. Elyutin, A. A. Fedyanin, A. A. Nikulin, and A. N. Rubtsov, “Second harmonic generation in metal and semiconductor low-dimensional structures,” Surf. Sci. 325(3), 343–355 (1995).
[CrossRef]

Flörsheimer, M.

P. Rechsteiner, J. Hulliger, and M. Flörsheimer, “Phase-sensitive second harmonic microscopy reveals bipolar twinning of markov-type molecular crystals,” Chem. Mater. 12(11), 3296–3300 (2000).
[CrossRef]

Frederick, M. T.

A. J. Morris-Cohen, M. T. Frederick, G. D. Lilly, E. A. McArthur, and E. A. Weiss, “Organic surfactant-controlled composition of the surfaces of CdSe quantum dots,” J. Phys. Chem. Lett. 1(7), 1078–1081 (2010).
[CrossRef]

Gillijns, W.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Giordmaine, J. A.

P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16(18), 792–794 (1966).
[CrossRef]

J. A. Giordmaine, “Nonlinear optical properties of liquids,” Phys. Rev. 138(6A), A1599–A1606 (1965).
[CrossRef]

Gole, A. M.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. (Camb.) 5(5), 544–557 (2008).
[CrossRef] [PubMed]

Grey, J. L.

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H.-F. Wang, D. H. Thompson, J.-X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[CrossRef] [PubMed]

Gualtieri, E. J.

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H.-F. Wang, D. H. Thompson, J.-X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[CrossRef] [PubMed]

Guo, W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[CrossRef]

Haber, L. H.

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

Hall, V. J.

V. J. Hall and G. J. Simpson, “Direct observation of transient Ostwald crystallization ordering from racemic serine solutions,” J. Am. Chem. Soc. 132(39), 13598–13599 (2010).
[CrossRef] [PubMed]

Hankins, P.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. (Camb.) 5(5), 544–557 (2008).
[CrossRef] [PubMed]

Hicks, J. M.

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

Hulliger, J.

P. Rechsteiner, J. Hulliger, and M. Flörsheimer, “Phase-sensitive second harmonic microscopy reveals bipolar twinning of markov-type molecular crystals,” Chem. Mater. 12(11), 3296–3300 (2000).
[CrossRef]

Hunyadi, S. E.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. (Camb.) 5(5), 544–557 (2008).
[CrossRef] [PubMed]

Jacobsohn, M.

M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104(1), 1–5 (2000).
[CrossRef]

Ji, N.

N. Ji, K. Zhang, H. Yang, and Y.-R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006).
[CrossRef] [PubMed]

N. Ji and Y. R. Shen, “Optically active sum frequency generation from molecules with a chiral center: amino acids as model systems,” J. Am. Chem. Soc. 126(46), 15008–15009 (2004).
[CrossRef] [PubMed]

Jiang, J.

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
[CrossRef] [PubMed]

Jin, L.

A. C. Millard, L. Jin, J. P. Wuskell, D. M. Boudreau, A. Lewis, and L. M. Loew, “Wavelength- and time-dependence of potentiometric non-linear optical signals from styryl dyes,” J. Membr. Biol. 208(2), 103–111 (2005).
[CrossRef] [PubMed]

Jin, R.

R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005).
[CrossRef] [PubMed]

Johnson, J. C.

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

Jonin, C.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Jureller, J. E.

R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005).
[CrossRef] [PubMed]

Katz, T. J.

T. Verbiest, S. V. Elshocht, A. Persoons, C. Nuckolls, K. E. Phillips, and T. J. Katz, “Second-order nonlinear optical properties of highly symmetric chiral thin films,” Langmuir 17(16), 4685–4687 (2001).
[CrossRef]

Kim, H. Y.

R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005).
[CrossRef] [PubMed]

Kinard, B. E.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. (Camb.) 5(5), 544–557 (2008).
[CrossRef] [PubMed]

Kissick, D. J.

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H.-F. Wang, D. H. Thompson, J.-X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[CrossRef] [PubMed]

Knowles, K. E.

A. J. Morris-Cohen, M. D. Donakowski, K. E. Knowles, and E. A. Weiss, “The effect of a common purification procedure on the chemical composition of the surfaces of CdSe quantum dots synthesized with trioctylphosphine oxide,” J. Phys. Chem. C 114(2), 897–906 (2010).
[CrossRef]

Kriech, M. A.

M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
[CrossRef] [PubMed]

Kulakov, T. A.

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

Lee, L. F.

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

Lewis, A.

A. C. Millard, L. Jin, J. P. Wuskell, D. M. Boudreau, A. Lewis, and L. M. Loew, “Wavelength- and time-dependence of potentiometric non-linear optical signals from styryl dyes,” J. Membr. Biol. 208(2), 103–111 (2005).
[CrossRef] [PubMed]

Lilly, G. D.

A. J. Morris-Cohen, M. T. Frederick, G. D. Lilly, E. A. McArthur, and E. A. Weiss, “Organic surfactant-controlled composition of the surfaces of CdSe quantum dots,” J. Phys. Chem. Lett. 1(7), 1078–1081 (2010).
[CrossRef]

Loew, L. M.

A. C. Millard, L. Jin, J. P. Wuskell, D. M. Boudreau, A. Lewis, and L. M. Loew, “Wavelength- and time-dependence of potentiometric non-linear optical signals from styryl dyes,” J. Membr. Biol. 208(2), 103–111 (2005).
[CrossRef] [PubMed]

Long, J. P.

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett. 7(3), 831–836 (2007).
[CrossRef] [PubMed]

Lupton, J. M.

N. J. Borys, M. J. Walter, and J. M. Lupton, “Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films,” Phys. Rev. B 80(16), 161407 (2009).
[CrossRef]

McArthur, E. A.

A. J. Morris-Cohen, M. T. Frederick, G. D. Lilly, E. A. McArthur, and E. A. Weiss, “Organic surfactant-controlled composition of the surfaces of CdSe quantum dots,” J. Phys. Chem. Lett. 1(7), 1078–1081 (2010).
[CrossRef]

Millard, A. C.

A. C. Millard, L. Jin, J. P. Wuskell, D. M. Boudreau, A. Lewis, and L. M. Loew, “Wavelength- and time-dependence of potentiometric non-linear optical signals from styryl dyes,” J. Membr. Biol. 208(2), 103–111 (2005).
[CrossRef] [PubMed]

Moad, A. J.

A. J. Moad and G. J. Simpson, “Self-consistent approach for simplifying the molecular interpretation of nonlinear optical and multiphoton phenomena,” J. Phys. Chem. A 109(7), 1316–1323 (2005).
[CrossRef] [PubMed]

B. J. Burke, A. J. Moad, M. A. Polizzi, and G. J. Simpson, “Experimental confirmation of the importance of orientation in the anomalous chiral sensitivity of second harmonic generation,” J. Am. Chem. Soc. 125(30), 9111–9115 (2003).
[CrossRef] [PubMed]

Morris-Cohen, A. J.

A. J. Morris-Cohen, M. D. Donakowski, K. E. Knowles, and E. A. Weiss, “The effect of a common purification procedure on the chemical composition of the surfaces of CdSe quantum dots synthesized with trioctylphosphine oxide,” J. Phys. Chem. C 114(2), 897–906 (2010).
[CrossRef]

A. J. Morris-Cohen, M. T. Frederick, G. D. Lilly, E. A. McArthur, and E. A. Weiss, “Organic surfactant-controlled composition of the surfaces of CdSe quantum dots,” J. Phys. Chem. Lett. 1(7), 1078–1081 (2010).
[CrossRef]

Moshchalkov, V. V.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Murphy, C. J.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. (Camb.) 5(5), 544–557 (2008).
[CrossRef] [PubMed]

Nemet, B.

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
[CrossRef] [PubMed]

Nikulin, A. A.

O. A. Aktsipetrov, P. V. Elyutin, A. A. Fedyanin, A. A. Nikulin, and A. N. Rubtsov, “Second harmonic generation in metal and semiconductor low-dimensional structures,” Surf. Sci. 325(3), 343–355 (1995).
[CrossRef]

Nuckolls, C.

T. Verbiest, S. V. Elshocht, A. Persoons, C. Nuckolls, K. E. Phillips, and T. J. Katz, “Second-order nonlinear optical properties of highly symmetric chiral thin films,” Langmuir 17(16), 4685–4687 (2001).
[CrossRef]

Nuriya, M.

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
[CrossRef] [PubMed]

Oron, D.

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5(24), 2835–2840 (2009).
[CrossRef] [PubMed]

Pehrsson, P. E.

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett. 7(3), 831–836 (2007).
[CrossRef] [PubMed]

Peng, X.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[CrossRef]

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124(9), 2049–2055 (2002).
[CrossRef] [PubMed]

Pereira, G. A.

B. S. Santos, G. A. Pereira, D. V. Petrov, and C. D. Donega, “First hyperpolarizability of CdS nanoparticles studied by hyper-Rayleigh scattering,” Opt. Commun. 178(1-3), 187–192 (2000).
[CrossRef]

Persoons, A.

T. Verbiest, S. V. Elshocht, A. Persoons, C. Nuckolls, K. E. Phillips, and T. J. Katz, “Second-order nonlinear optical properties of highly symmetric chiral thin films,” Langmuir 17(16), 4685–4687 (2001).
[CrossRef]

Petralli-Mallow, T.

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

Petrov, D. V.

B. S. Santos, G. A. Pereira, D. V. Petrov, and C. D. Donega, “First hyperpolarizability of CdS nanoparticles studied by hyper-Rayleigh scattering,” Opt. Commun. 178(1-3), 187–192 (2000).
[CrossRef]

Phillips, K. E.

T. Verbiest, S. V. Elshocht, A. Persoons, C. Nuckolls, K. E. Phillips, and T. J. Katz, “Second-order nonlinear optical properties of highly symmetric chiral thin films,” Langmuir 17(16), 4685–4687 (2001).
[CrossRef]

Polizzi, M. A.

B. J. Burke, A. J. Moad, M. A. Polizzi, and G. J. Simpson, “Experimental confirmation of the importance of orientation in the anomalous chiral sensitivity of second harmonic generation,” J. Am. Chem. Soc. 125(30), 9111–9115 (2003).
[CrossRef] [PubMed]

Qu, L.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[CrossRef]

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124(9), 2049–2055 (2002).
[CrossRef] [PubMed]

Rechsteiner, P.

P. Rechsteiner, J. Hulliger, and M. Flörsheimer, “Phase-sensitive second harmonic microscopy reveals bipolar twinning of markov-type molecular crystals,” Chem. Mater. 12(11), 3296–3300 (2000).
[CrossRef]

Rentzepis, P. M.

P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16(18), 792–794 (1966).
[CrossRef]

Rowenhorst, D. J.

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett. 7(3), 831–836 (2007).
[CrossRef] [PubMed]

Rubtsov, A. N.

O. A. Aktsipetrov, P. V. Elyutin, A. A. Fedyanin, A. A. Nikulin, and A. N. Rubtsov, “Second harmonic generation in metal and semiconductor low-dimensional structures,” Surf. Sci. 325(3), 343–355 (1995).
[CrossRef]

Russier-Antoine, I.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Santos, B. S.

B. S. Santos, G. A. Pereira, D. V. Petrov, and C. D. Donega, “First hyperpolarizability of CdS nanoparticles studied by hyper-Rayleigh scattering,” Opt. Commun. 178(1-3), 187–192 (2000).
[CrossRef]

Saykally, R. J.

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

Schaller, R. D.

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

Scherer, N. F.

R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005).
[CrossRef] [PubMed]

Shaviv, E.

E. Shaviv and U. Banin, “Synergistic effects on second harmonic generation of hybrid CdSe-Au nanoparticles,” ACS Nano 4(3), 1529–1538 (2010).
[CrossRef] [PubMed]

Shen, Y. R.

N. Ji and Y. R. Shen, “Optically active sum frequency generation from molecules with a chiral center: amino acids as model systems,” J. Am. Chem. Soc. 126(46), 15008–15009 (2004).
[CrossRef] [PubMed]

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

Shen, Y.-R.

N. Ji, K. Zhang, H. Yang, and Y.-R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006).
[CrossRef] [PubMed]

Silhanek, A. V.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Simpkins, B. S.

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett. 7(3), 831–836 (2007).
[CrossRef] [PubMed]

Simpson, G. J.

V. J. Hall and G. J. Simpson, “Direct observation of transient Ostwald crystallization ordering from racemic serine solutions,” J. Am. Chem. Soc. 132(39), 13598–13599 (2010).
[CrossRef] [PubMed]

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H.-F. Wang, D. H. Thompson, J.-X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[CrossRef] [PubMed]

A. J. Moad and G. J. Simpson, “Self-consistent approach for simplifying the molecular interpretation of nonlinear optical and multiphoton phenomena,” J. Phys. Chem. A 109(7), 1316–1323 (2005).
[CrossRef] [PubMed]

G. J. Simpson, “Molecular origins of the remarkable chiral sensitivity of second-order nonlinear optics,” ChemPhysChem 5(9), 1301–1310 (2004).
[CrossRef] [PubMed]

B. J. Burke, A. J. Moad, M. A. Polizzi, and G. J. Simpson, “Experimental confirmation of the importance of orientation in the anomalous chiral sensitivity of second harmonic generation,” J. Am. Chem. Soc. 125(30), 9111–9115 (2003).
[CrossRef] [PubMed]

Sisco, P. N.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. (Camb.) 5(5), 544–557 (2008).
[CrossRef] [PubMed]

Smisdom, N.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Stone, J. W.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. (Camb.) 5(5), 544–557 (2008).
[CrossRef] [PubMed]

Thompson, D. H.

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H.-F. Wang, D. H. Thompson, J.-X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[CrossRef] [PubMed]

Valev, V. K.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Verbiest, T.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

T. Verbiest, S. V. Elshocht, A. Persoons, C. Nuckolls, K. E. Phillips, and T. J. Katz, “Second-order nonlinear optical properties of highly symmetric chiral thin films,” Langmuir 17(16), 4685–4687 (2001).
[CrossRef]

Walter, M. J.

N. J. Borys, M. J. Walter, and J. M. Lupton, “Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films,” Phys. Rev. B 80(16), 161407 (2009).
[CrossRef]

Wampler, R. D.

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H.-F. Wang, D. H. Thompson, J.-X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[CrossRef] [PubMed]

Wang, H.-F.

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H.-F. Wang, D. H. Thompson, J.-X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[CrossRef] [PubMed]

Wecht, K. W.

P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16(18), 792–794 (1966).
[CrossRef]

Weiss, E. A.

A. J. Morris-Cohen, M. D. Donakowski, K. E. Knowles, and E. A. Weiss, “The effect of a common purification procedure on the chemical composition of the surfaces of CdSe quantum dots synthesized with trioctylphosphine oxide,” J. Phys. Chem. C 114(2), 897–906 (2010).
[CrossRef]

A. J. Morris-Cohen, M. T. Frederick, G. D. Lilly, E. A. McArthur, and E. A. Weiss, “Organic surfactant-controlled composition of the surfaces of CdSe quantum dots,” J. Phys. Chem. Lett. 1(7), 1078–1081 (2010).
[CrossRef]

Wilson, K. R.

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

Wong, T. M.

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

Wuskell, J. P.

A. C. Millard, L. Jin, J. P. Wuskell, D. M. Boudreau, A. Lewis, and L. M. Loew, “Wavelength- and time-dependence of potentiometric non-linear optical signals from styryl dyes,” J. Membr. Biol. 208(2), 103–111 (2005).
[CrossRef] [PubMed]

Yan, L.

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

Yang, H.

N. Ji, K. Zhang, H. Yang, and Y.-R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006).
[CrossRef] [PubMed]

Yee, H. I.

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

Yu, W. W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[CrossRef]

Yuste, R.

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
[CrossRef] [PubMed]

Zhang, K.

N. Ji, K. Zhang, H. Yang, and Y.-R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006).
[CrossRef] [PubMed]

Zielinski, M.

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5(24), 2835–2840 (2009).
[CrossRef] [PubMed]

Zyss, J.

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5(24), 2835–2840 (2009).
[CrossRef] [PubMed]

ACS Nano (1)

E. Shaviv and U. Banin, “Synergistic effects on second harmonic generation of hybrid CdSe-Au nanoparticles,” ACS Nano 4(3), 1529–1538 (2010).
[CrossRef] [PubMed]

Chem. Commun. (Camb.) (1)

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. (Camb.) 5(5), 544–557 (2008).
[CrossRef] [PubMed]

Chem. Mater. (2)

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[CrossRef]

P. Rechsteiner, J. Hulliger, and M. Flörsheimer, “Phase-sensitive second harmonic microscopy reveals bipolar twinning of markov-type molecular crystals,” Chem. Mater. 12(11), 3296–3300 (2000).
[CrossRef]

ChemPhysChem (1)

G. J. Simpson, “Molecular origins of the remarkable chiral sensitivity of second-order nonlinear optics,” ChemPhysChem 5(9), 1301–1310 (2004).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (9)

N. Ji and Y. R. Shen, “Optically active sum frequency generation from molecules with a chiral center: amino acids as model systems,” J. Am. Chem. Soc. 126(46), 15008–15009 (2004).
[CrossRef] [PubMed]

B. J. Burke, A. J. Moad, M. A. Polizzi, and G. J. Simpson, “Experimental confirmation of the importance of orientation in the anomalous chiral sensitivity of second harmonic generation,” J. Am. Chem. Soc. 125(30), 9111–9115 (2003).
[CrossRef] [PubMed]

V. J. Hall and G. J. Simpson, “Direct observation of transient Ostwald crystallization ordering from racemic serine solutions,” J. Am. Chem. Soc. 132(39), 13598–13599 (2010).
[CrossRef] [PubMed]

K. Cimatu and S. Baldelli, “Chemical imaging of corrosion: sum frequency generation imaging microscopy of cyanide on gold at the solid-liquid interface,” J. Am. Chem. Soc. 130(25), 8030–8037 (2008).
[CrossRef] [PubMed]

R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H.-F. Wang, D. H. Thompson, J.-X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008).
[CrossRef] [PubMed]

R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005).
[CrossRef] [PubMed]

M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
[CrossRef] [PubMed]

N. Ji, K. Zhang, H. Yang, and Y.-R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006).
[CrossRef] [PubMed]

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124(9), 2049–2055 (2002).
[CrossRef] [PubMed]

J. Membr. Biol. (1)

A. C. Millard, L. Jin, J. P. Wuskell, D. M. Boudreau, A. Lewis, and L. M. Loew, “Wavelength- and time-dependence of potentiometric non-linear optical signals from styryl dyes,” J. Membr. Biol. 208(2), 103–111 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. (1)

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

J. Phys. Chem. A (1)

A. J. Moad and G. J. Simpson, “Self-consistent approach for simplifying the molecular interpretation of nonlinear optical and multiphoton phenomena,” J. Phys. Chem. A 109(7), 1316–1323 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104(1), 1–5 (2000).
[CrossRef]

J. Phys. Chem. C (1)

A. J. Morris-Cohen, M. D. Donakowski, K. E. Knowles, and E. A. Weiss, “The effect of a common purification procedure on the chemical composition of the surfaces of CdSe quantum dots synthesized with trioctylphosphine oxide,” J. Phys. Chem. C 114(2), 897–906 (2010).
[CrossRef]

J. Phys. Chem. Lett. (1)

A. J. Morris-Cohen, M. T. Frederick, G. D. Lilly, E. A. McArthur, and E. A. Weiss, “Organic surfactant-controlled composition of the surfaces of CdSe quantum dots,” J. Phys. Chem. Lett. 1(7), 1078–1081 (2010).
[CrossRef]

Langmuir (1)

T. Verbiest, S. V. Elshocht, A. Persoons, C. Nuckolls, K. E. Phillips, and T. J. Katz, “Second-order nonlinear optical properties of highly symmetric chiral thin films,” Langmuir 17(16), 4685–4687 (2001).
[CrossRef]

Nano Lett. (3)

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett. 7(3), 831–836 (2007).
[CrossRef] [PubMed]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

B. S. Santos, G. A. Pereira, D. V. Petrov, and C. D. Donega, “First hyperpolarizability of CdS nanoparticles studied by hyper-Rayleigh scattering,” Opt. Commun. 178(1-3), 187–192 (2000).
[CrossRef]

Phys. Rev. (1)

J. A. Giordmaine, “Nonlinear optical properties of liquids,” Phys. Rev. 138(6A), A1599–A1606 (1965).
[CrossRef]

Phys. Rev. B (1)

N. J. Borys, M. J. Walter, and J. M. Lupton, “Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films,” Phys. Rev. B 80(16), 161407 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16(18), 792–794 (1966).
[CrossRef]

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006).
[CrossRef] [PubMed]

Small (1)

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5(24), 2835–2840 (2009).
[CrossRef] [PubMed]

Surf. Sci. (1)

O. A. Aktsipetrov, P. V. Elyutin, A. A. Fedyanin, A. A. Nikulin, and A. N. Rubtsov, “Second harmonic generation in metal and semiconductor low-dimensional structures,” Surf. Sci. 325(3), 343–355 (1995).
[CrossRef]

Other (7)

R. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).

J. M. Hicks, Chirality: Physical Chemistry, ACS Symposium Series 810 (Oxford University Press, 2002).

J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, 1957).

Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, 1984).

Y. R. Shen, “Nonlinear optical spectroscopy of molecular chirality,” in Trends and Perspectives in Modern Computational Science, G. Maroulis and T. Simos, eds. (Brill Academic Pub., 2006), pp. 461–471.

Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, 2003).

M. L. Frederick, J. L. Achtyl, K. E. Knowles, E. A. Weiss, and F. M. Geiger, “Surface amplified ligand disorder in CdSe quantum dots determined by electron and coherent vibrational spectroscopy” (submitted [2010]).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SHG microscope for a kHz amplifier laser producing 120 fs pulses.

Fig. 2
Fig. 2

SHG image (A) and spectral response (B) from a 1 mm thick z-cut quartz window. (C) SHG intensity from z-cut quartz (empty circles) and confectioners' sugar on a glass microscope slide (filled circles) as a function of z-axis translation into and out of the cross-sectional volume of the two incident beams while maintaining focus on the top surface, as indicated in (D).

Fig. 3
Fig. 3

(A) Optical and superimposed SHG image of a glass microscope slide containing confectioners' sugar and corresponding power study (B).

Fig. 4
Fig. 4

(A) UV-vis spectrum of 1.22 nm radius CdSe quantum dots in hexane. Inset: TEM of CdSe quantum dots that have an average radius of approximately 1.3 nm and a bandedge absorption of 522 nm. (B) Vibrational SFG of 2.0 nm radius CdSe quantum dots spin coated from hexane onto a microscope glass slide.

Fig. 5
Fig. 5

Optical (A) and SHG (B) images of 1.2 ± 0.1 nm radius CdSe quantum dots spin coated from hexane onto a glass microscope slide, obtained with a 10x objective. Optical (C) and SHG (D) image of quantum dots (1.2 ± 0.1 nm radius), purified of HDA ligands, obtained with a 50x objective.

Metrics