Abstract

We perform second-harmonic generation (SHG) microscopy with circularly polarized (CP) light to measure chirality of individual twisted-cross gold nanodimers. The chiral signatures, based on different SHG response for the two CP components of incident light, are clearly visible even with off-resonance excitation. The SHG responses of individual nanodimers are found to vary by about a factor of five. The technique thus has very high sensitivity to the nanoscale deformations of the structure. The chiral signatures of the dimers, however, are found to be more uniform, and the technique is thus able to recognize the handedness of the twisted nanodimers with high reliability.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 1982).
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [CrossRef]
  3. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
    [CrossRef] [PubMed]
  4. A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
    [CrossRef] [PubMed]
  5. S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
    [CrossRef]
  6. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
    [CrossRef] [PubMed]
  7. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
    [CrossRef]
  8. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
    [CrossRef] [PubMed]
  9. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
    [CrossRef] [PubMed]
  10. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
    [CrossRef] [PubMed]
  11. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
    [CrossRef] [PubMed]
  12. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
    [CrossRef]
  13. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  14. M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009).
    [CrossRef]
  15. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
    [CrossRef] [PubMed]
  16. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
    [CrossRef] [PubMed]
  17. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
    [CrossRef] [PubMed]
  18. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
    [CrossRef] [PubMed]
  19. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007).
    [CrossRef] [PubMed]
  20. N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33(17), 1975–1977 (2008).
    [CrossRef] [PubMed]
  21. F. B. P. Niesler, N. Feth, S. Linden, J. Niegemann, J. Gieseler, K. Busch, and M. Wegener, “Second-harmonic generation from split-ring resonators on a GaAs substrate,” Opt. Lett. 34(13), 1997–1999 (2009).
    [CrossRef] [PubMed]
  22. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
    [CrossRef] [PubMed]
  23. H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, J. Turunen, N. V. Tkachenko, and H. Lemmetyinen, “Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles,” J. Nonlinear Opt. Phys. Mater. 11(4), 421–432 (2002).
    [CrossRef]
  24. B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12(22), 5418–5423 (2004).
    [CrossRef] [PubMed]
  25. B. K. Canfield, H. Husu, J. Kontio, J. Viheriala, T. Rytkonen, T. Niemi, E. Chandler, A. Hrin, J. A. Squier, and M. Kauranen, “Inhomogeneities in the nonlinear tensorial responses of arrays of gold nanodots,” N. J. Phys. 10(1), 013001 (2008).
    [CrossRef]
  26. B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express 14(2), 950–955 (2006).
    [CrossRef] [PubMed]
  27. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
    [CrossRef] [PubMed]
  28. H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Chiral coupling in gold nanodimers,” Appl. Phys. Lett. 93(18), 183115 (2008).
    [CrossRef]
  29. P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16(18), 792–794 (1966).
    [CrossRef]
  30. A. P. Shkurinov, A. V. Dubrovskii, and N. I. Koroteev, “Second harmonic generation in an optically active liquid: Experimental observation of a fourth-order optical nonlinearity due to molecular chirality,” Phys. Rev. Lett. 70(8), 1085–1088 (1993).
    [CrossRef] [PubMed]
  31. P. Fischer, D. S. Wiersma, R. Righini, B. Champagne, and A. D. Buckingham, “Three-wave mixing in chiral liquids,” Phys. Rev. Lett. 85(20), 4253–4256 (2000).
    [CrossRef] [PubMed]
  32. M. A. Belkin, T. A. Kulakov, K.-H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
    [CrossRef] [PubMed]
  33. M. Kauranen, T. Verbiest, and A. Persoons, “Second-order nonlinear optical signatures of surface chirality,” J. Mod. Opt. 45(2), 403–423 (1998).
    [CrossRef]
  34. J. Hicks, Chirality: Physical Chemistry, ACS Symposium Series 810 (American Chemical Society, 2002).
  35. S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mater. Sci. Eng. Rep. 42(5-6), 115–155 (2003).
    [CrossRef]
  36. M. A. Belkin and Y. R. Shen, “Non-linear optical spectroscopy as a novel probe for molecular chirality,” Int. Rev. Phys. Chem. 24(2), 257–299 (2005).
    [CrossRef]
  37. T. Verbiest, M. Kauranen, Y. Van Rompaey, and A. Persoons, “Optical activity of anisotropic achiral surfaces,” Phys. Rev. Lett. 77(8), 1456–1459 (1996).
    [CrossRef] [PubMed]
  38. M. Siltanen, E. Vuorimaa, H. Lemmetyinen, P. Ihalainen, J. Peltonen, and M. Kauranen, “Nonlinear optical and structural properties of langmuir-blodgett films of thiohelicenebisquinones,” J. Phys. Chem. B 112(7), 1940–1945 (2008).
    [CrossRef] [PubMed]
  39. V. A. Makarov and I. A. Perezhogin, “Generation of reflected second-harmonic light beam with inhomogeneous transversal distribution of polarization from the surface of chiral medium by normally incident Gaussian beam,” Opt. Commun. 281(14), 3906–3912 (2008).
    [CrossRef]
  40. M. J. Huttunen, M. Erkintalo, and M. Kauranen, “Absolute nonlinear optical probes of surface chirality,” J. Opt. A, Pure Appl. Opt. 11(3), 034006 (2009).
    [CrossRef]
  41. M. J. Huttunen, M. Virkki, M. Erkintalo, E. Vuorimaa, A. Efimov, H. Lemmetyinen, and M. Kauranen, “Absolute probe of surface chirality based on focused circularly polarized light,” J. Phys. Chem. Lett. 1(12), 1826–1829 (2010).
    [CrossRef]
  42. T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: A surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
    [CrossRef]
  43. J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotator dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233–6241 (1994).
    [CrossRef]
  44. J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B Condens. Matter 49(20), 14643–14647 (1994).
    [CrossRef] [PubMed]
  45. M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second-harmonic generation from chiral surfaces,” J. Chem. Phys. 101(9), 8193–8199 (1994).
    [CrossRef]
  46. T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
    [CrossRef]
  47. J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
    [CrossRef]
  48. M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
    [CrossRef]
  49. G. J. Simpson, “Molecular origins of the remarkable chiral sensitivity of second-order nonlinear optics,” ChemPhysChem 5(9), 1301–1310 (2004).
    [CrossRef] [PubMed]
  50. S. A. Mitchell and R. A. McAloney, “Second harmonic optical activity of tryptophan derivatives adsorbed at the air/water interface,” J. Phys. Chem. B 108(3), 1020–1029 (2004).
    [CrossRef]
  51. M. A. Kriech and J. C. Conboy, “Counterpropagating second-harmonic generation: A new technique for the investigation of molecular chirality at surfaces,” J. Opt. Soc. Am. B 21(5), 1013–1022 (2004).
    [CrossRef]
  52. M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
    [CrossRef] [PubMed]
  53. N. Ji, K. Zhang, H. Yang, and Y. R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006).
    [CrossRef] [PubMed]
  54. G. Subramania and S. Y. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85(21), 5037–5039 (2004).
    [CrossRef]
  55. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
    [CrossRef]
  56. V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
    [CrossRef] [PubMed]
  57. V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express 18(8), 8286–8293 (2010).
    [CrossRef] [PubMed]
  58. V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett. 104(12), 127401 (2010).
    [CrossRef] [PubMed]

2010 (4)

M. J. Huttunen, M. Virkki, M. Erkintalo, E. Vuorimaa, A. Efimov, H. Lemmetyinen, and M. Kauranen, “Absolute probe of surface chirality based on focused circularly polarized light,” J. Phys. Chem. Lett. 1(12), 1826–1829 (2010).
[CrossRef]

V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett. 104(12), 127401 (2010).
[CrossRef] [PubMed]

V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express 18(8), 8286–8293 (2010).
[CrossRef] [PubMed]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

2009 (9)

F. B. P. Niesler, N. Feth, S. Linden, J. Niegemann, J. Gieseler, K. Busch, and M. Wegener, “Second-harmonic generation from split-ring resonators on a GaAs substrate,” Opt. Lett. 34(13), 1997–1999 (2009).
[CrossRef] [PubMed]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[CrossRef] [PubMed]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

M. J. Huttunen, M. Erkintalo, and M. Kauranen, “Absolute nonlinear optical probes of surface chirality,” J. Opt. A, Pure Appl. Opt. 11(3), 034006 (2009).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[CrossRef]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009).
[CrossRef]

2008 (5)

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Chiral coupling in gold nanodimers,” Appl. Phys. Lett. 93(18), 183115 (2008).
[CrossRef]

M. Siltanen, E. Vuorimaa, H. Lemmetyinen, P. Ihalainen, J. Peltonen, and M. Kauranen, “Nonlinear optical and structural properties of langmuir-blodgett films of thiohelicenebisquinones,” J. Phys. Chem. B 112(7), 1940–1945 (2008).
[CrossRef] [PubMed]

V. A. Makarov and I. A. Perezhogin, “Generation of reflected second-harmonic light beam with inhomogeneous transversal distribution of polarization from the surface of chiral medium by normally incident Gaussian beam,” Opt. Commun. 281(14), 3906–3912 (2008).
[CrossRef]

B. K. Canfield, H. Husu, J. Kontio, J. Viheriala, T. Rytkonen, T. Niemi, E. Chandler, A. Hrin, J. A. Squier, and M. Kauranen, “Inhomogeneities in the nonlinear tensorial responses of arrays of gold nanodots,” N. J. Phys. 10(1), 013001 (2008).
[CrossRef]

N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33(17), 1975–1977 (2008).
[CrossRef] [PubMed]

2007 (7)

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[CrossRef] [PubMed]

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007).
[CrossRef] [PubMed]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[CrossRef]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

2006 (4)

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[CrossRef] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express 14(2), 950–955 (2006).
[CrossRef] [PubMed]

N. Ji, K. Zhang, H. Yang, and Y. R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006).
[CrossRef] [PubMed]

2005 (3)

M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

M. A. Belkin and Y. R. Shen, “Non-linear optical spectroscopy as a novel probe for molecular chirality,” Int. Rev. Phys. Chem. 24(2), 257–299 (2005).
[CrossRef]

2004 (7)

G. J. Simpson, “Molecular origins of the remarkable chiral sensitivity of second-order nonlinear optics,” ChemPhysChem 5(9), 1301–1310 (2004).
[CrossRef] [PubMed]

S. A. Mitchell and R. A. McAloney, “Second harmonic optical activity of tryptophan derivatives adsorbed at the air/water interface,” J. Phys. Chem. B 108(3), 1020–1029 (2004).
[CrossRef]

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[CrossRef] [PubMed]

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[CrossRef] [PubMed]

G. Subramania and S. Y. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85(21), 5037–5039 (2004).
[CrossRef]

M. A. Kriech and J. C. Conboy, “Counterpropagating second-harmonic generation: A new technique for the investigation of molecular chirality at surfaces,” J. Opt. Soc. Am. B 21(5), 1013–1022 (2004).
[CrossRef]

B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12(22), 5418–5423 (2004).
[CrossRef] [PubMed]

2003 (3)

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[CrossRef] [PubMed]

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[CrossRef]

S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mater. Sci. Eng. Rep. 42(5-6), 115–155 (2003).
[CrossRef]

2002 (1)

H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, J. Turunen, N. V. Tkachenko, and H. Lemmetyinen, “Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles,” J. Nonlinear Opt. Phys. Mater. 11(4), 421–432 (2002).
[CrossRef]

2000 (2)

P. Fischer, D. S. Wiersma, R. Righini, B. Champagne, and A. D. Buckingham, “Three-wave mixing in chiral liquids,” Phys. Rev. Lett. 85(20), 4253–4256 (2000).
[CrossRef] [PubMed]

M. A. Belkin, T. A. Kulakov, K.-H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

1998 (2)

M. Kauranen, T. Verbiest, and A. Persoons, “Second-order nonlinear optical signatures of surface chirality,” J. Mod. Opt. 45(2), 403–423 (1998).
[CrossRef]

M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
[CrossRef]

1996 (2)

T. Verbiest, M. Kauranen, Y. Van Rompaey, and A. Persoons, “Optical activity of anisotropic achiral surfaces,” Phys. Rev. Lett. 77(8), 1456–1459 (1996).
[CrossRef] [PubMed]

J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
[CrossRef]

1995 (1)

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

1994 (3)

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotator dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233–6241 (1994).
[CrossRef]

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B Condens. Matter 49(20), 14643–14647 (1994).
[CrossRef] [PubMed]

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second-harmonic generation from chiral surfaces,” J. Chem. Phys. 101(9), 8193–8199 (1994).
[CrossRef]

1993 (2)

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: A surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

A. P. Shkurinov, A. V. Dubrovskii, and N. I. Koroteev, “Second harmonic generation in an optically active liquid: Experimental observation of a fourth-order optical nonlinearity due to molecular chirality,” Phys. Rev. Lett. 70(8), 1085–1088 (1993).
[CrossRef] [PubMed]

1966 (1)

P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16(18), 792–794 (1966).
[CrossRef]

Aktsipetrov, O. A.

V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett. 104(12), 127401 (2010).
[CrossRef] [PubMed]

V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express 18(8), 8286–8293 (2010).
[CrossRef] [PubMed]

Ameloot, M.

V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express 18(8), 8286–8293 (2010).
[CrossRef] [PubMed]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Anceau, C.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[CrossRef] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Bagnall, D. M.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[CrossRef] [PubMed]

Bai, B.

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Chiral coupling in gold nanodimers,” Appl. Phys. Lett. 93(18), 183115 (2008).
[CrossRef]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Belkin, M. A.

M. A. Belkin and Y. R. Shen, “Non-linear optical spectroscopy as a novel probe for molecular chirality,” Int. Rev. Phys. Chem. 24(2), 257–299 (2005).
[CrossRef]

M. A. Belkin, T. A. Kulakov, K.-H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

Bergman, D. J.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[CrossRef] [PubMed]

Brasselet, S.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[CrossRef] [PubMed]

Buckingham, A. D.

P. Fischer, D. S. Wiersma, R. Righini, B. Champagne, and A. D. Buckingham, “Three-wave mixing in chiral liquids,” Phys. Rev. Lett. 85(20), 4253–4256 (2000).
[CrossRef] [PubMed]

Busch, K.

Byers, J. D.

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B Condens. Matter 49(20), 14643–14647 (1994).
[CrossRef] [PubMed]

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotator dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233–6241 (1994).
[CrossRef]

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: A surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

Canfield, B. K.

B. K. Canfield, H. Husu, J. Kontio, J. Viheriala, T. Rytkonen, T. Niemi, E. Chandler, A. Hrin, J. A. Squier, and M. Kauranen, “Inhomogeneities in the nonlinear tensorial responses of arrays of gold nanodots,” N. J. Phys. 10(1), 013001 (2008).
[CrossRef]

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Chiral coupling in gold nanodimers,” Appl. Phys. Lett. 93(18), 183115 (2008).
[CrossRef]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[CrossRef] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express 14(2), 950–955 (2006).
[CrossRef] [PubMed]

B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12(22), 5418–5423 (2004).
[CrossRef] [PubMed]

Champagne, B.

P. Fischer, D. S. Wiersma, R. Righini, B. Champagne, and A. D. Buckingham, “Three-wave mixing in chiral liquids,” Phys. Rev. Lett. 85(20), 4253–4256 (2000).
[CrossRef] [PubMed]

Chandler, E.

B. K. Canfield, H. Husu, J. Kontio, J. Viheriala, T. Rytkonen, T. Niemi, E. Chandler, A. Hrin, J. A. Squier, and M. Kauranen, “Inhomogeneities in the nonlinear tensorial responses of arrays of gold nanodots,” N. J. Phys. 10(1), 013001 (2008).
[CrossRef]

Chen, Y.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[CrossRef]

Conboy, J. C.

De Clercq, B.

V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express 18(8), 8286–8293 (2010).
[CrossRef] [PubMed]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Decker, M.

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[CrossRef]

Dubrovskii, A. V.

A. P. Shkurinov, A. V. Dubrovskii, and N. I. Koroteev, “Second harmonic generation in an optically active liquid: Experimental observation of a fourth-order optical nonlinearity due to molecular chirality,” Phys. Rev. Lett. 70(8), 1085–1088 (1993).
[CrossRef] [PubMed]

Efimov, A.

M. J. Huttunen, M. Virkki, M. Erkintalo, E. Vuorimaa, A. Efimov, H. Lemmetyinen, and M. Kauranen, “Absolute probe of surface chirality based on focused circularly polarized light,” J. Phys. Chem. Lett. 1(12), 1826–1829 (2010).
[CrossRef]

Elshocht, S. V.

J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
[CrossRef]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Erkintalo, M.

M. J. Huttunen, M. Virkki, M. Erkintalo, E. Vuorimaa, A. Efimov, H. Lemmetyinen, and M. Kauranen, “Absolute probe of surface chirality based on focused circularly polarized light,” J. Phys. Chem. Lett. 1(12), 1826–1829 (2010).
[CrossRef]

M. J. Huttunen, M. Erkintalo, and M. Kauranen, “Absolute nonlinear optical probes of surface chirality,” J. Opt. A, Pure Appl. Opt. 11(3), 034006 (2009).
[CrossRef]

Ernst, K.-H.

M. A. Belkin, T. A. Kulakov, K.-H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[CrossRef] [PubMed]

Feth, N.

Fischer, P.

P. Fischer, D. S. Wiersma, R. Righini, B. Champagne, and A. D. Buckingham, “Three-wave mixing in chiral liquids,” Phys. Rev. Lett. 85(20), 4253–4256 (2000).
[CrossRef] [PubMed]

Flytzanis, C.

M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Gieseler, J.

Giessen, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

Gillijns, W.

V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express 18(8), 8286–8293 (2010).
[CrossRef] [PubMed]

V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett. 104(12), 127401 (2010).
[CrossRef] [PubMed]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Giordmaine, J. A.

P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16(18), 792–794 (1966).
[CrossRef]

Hache, F.

M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
[CrossRef]

Hicks, J. M.

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotator dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233–6241 (1994).
[CrossRef]

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B Condens. Matter 49(20), 14643–14647 (1994).
[CrossRef] [PubMed]

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: A surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

Hoyer, W.

Hrin, A.

B. K. Canfield, H. Husu, J. Kontio, J. Viheriala, T. Rytkonen, T. Niemi, E. Chandler, A. Hrin, J. A. Squier, and M. Kauranen, “Inhomogeneities in the nonlinear tensorial responses of arrays of gold nanodots,” N. J. Phys. 10(1), 013001 (2008).
[CrossRef]

Husu, H.

B. K. Canfield, H. Husu, J. Kontio, J. Viheriala, T. Rytkonen, T. Niemi, E. Chandler, A. Hrin, J. A. Squier, and M. Kauranen, “Inhomogeneities in the nonlinear tensorial responses of arrays of gold nanodots,” N. J. Phys. 10(1), 013001 (2008).
[CrossRef]

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Chiral coupling in gold nanodimers,” Appl. Phys. Lett. 93(18), 183115 (2008).
[CrossRef]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Huttunen, M. J.

M. J. Huttunen, M. Virkki, M. Erkintalo, E. Vuorimaa, A. Efimov, H. Lemmetyinen, and M. Kauranen, “Absolute probe of surface chirality based on focused circularly polarized light,” J. Phys. Chem. Lett. 1(12), 1826–1829 (2010).
[CrossRef]

M. J. Huttunen, M. Erkintalo, and M. Kauranen, “Absolute nonlinear optical probes of surface chirality,” J. Opt. A, Pure Appl. Opt. 11(3), 034006 (2009).
[CrossRef]

Ihalainen, P.

M. Siltanen, E. Vuorimaa, H. Lemmetyinen, P. Ihalainen, J. Peltonen, and M. Kauranen, “Nonlinear optical and structural properties of langmuir-blodgett films of thiohelicenebisquinones,” J. Phys. Chem. B 112(7), 1940–1945 (2008).
[CrossRef] [PubMed]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Jefimovs, K.

B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express 14(2), 950–955 (2006).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12(22), 5418–5423 (2004).
[CrossRef] [PubMed]

H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, J. Turunen, N. V. Tkachenko, and H. Lemmetyinen, “Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles,” J. Nonlinear Opt. Phys. Mater. 11(4), 421–432 (2002).
[CrossRef]

Ji, N.

N. Ji, K. Zhang, H. Yang, and Y. R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006).
[CrossRef] [PubMed]

Kauranen, M.

M. J. Huttunen, M. Virkki, M. Erkintalo, E. Vuorimaa, A. Efimov, H. Lemmetyinen, and M. Kauranen, “Absolute probe of surface chirality based on focused circularly polarized light,” J. Phys. Chem. Lett. 1(12), 1826–1829 (2010).
[CrossRef]

M. J. Huttunen, M. Erkintalo, and M. Kauranen, “Absolute nonlinear optical probes of surface chirality,” J. Opt. A, Pure Appl. Opt. 11(3), 034006 (2009).
[CrossRef]

B. K. Canfield, H. Husu, J. Kontio, J. Viheriala, T. Rytkonen, T. Niemi, E. Chandler, A. Hrin, J. A. Squier, and M. Kauranen, “Inhomogeneities in the nonlinear tensorial responses of arrays of gold nanodots,” N. J. Phys. 10(1), 013001 (2008).
[CrossRef]

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Chiral coupling in gold nanodimers,” Appl. Phys. Lett. 93(18), 183115 (2008).
[CrossRef]

M. Siltanen, E. Vuorimaa, H. Lemmetyinen, P. Ihalainen, J. Peltonen, and M. Kauranen, “Nonlinear optical and structural properties of langmuir-blodgett films of thiohelicenebisquinones,” J. Phys. Chem. B 112(7), 1940–1945 (2008).
[CrossRef] [PubMed]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[CrossRef] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express 14(2), 950–955 (2006).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12(22), 5418–5423 (2004).
[CrossRef] [PubMed]

H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, J. Turunen, N. V. Tkachenko, and H. Lemmetyinen, “Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles,” J. Nonlinear Opt. Phys. Mater. 11(4), 421–432 (2002).
[CrossRef]

M. Kauranen, T. Verbiest, and A. Persoons, “Second-order nonlinear optical signatures of surface chirality,” J. Mod. Opt. 45(2), 403–423 (1998).
[CrossRef]

J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
[CrossRef]

T. Verbiest, M. Kauranen, Y. Van Rompaey, and A. Persoons, “Optical activity of anisotropic achiral surfaces,” Phys. Rev. Lett. 77(8), 1456–1459 (1996).
[CrossRef] [PubMed]

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second-harmonic generation from chiral surfaces,” J. Chem. Phys. 101(9), 8193–8199 (1994).
[CrossRef]

Klein, M. W.

Koch, S. W.

Kontio, J.

B. K. Canfield, H. Husu, J. Kontio, J. Viheriala, T. Rytkonen, T. Niemi, E. Chandler, A. Hrin, J. A. Squier, and M. Kauranen, “Inhomogeneities in the nonlinear tensorial responses of arrays of gold nanodots,” N. J. Phys. 10(1), 013001 (2008).
[CrossRef]

Koroteev, N. I.

A. P. Shkurinov, A. V. Dubrovskii, and N. I. Koroteev, “Second harmonic generation in an optically active liquid: Experimental observation of a fourth-order optical nonlinearity due to molecular chirality,” Phys. Rev. Lett. 70(8), 1085–1088 (1993).
[CrossRef] [PubMed]

Koschny, T.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[CrossRef]

Krasavin, A.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[CrossRef] [PubMed]

Kriech, M. A.

Kriegler, C. E.

Kuittinen, M.

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Chiral coupling in gold nanodimers,” Appl. Phys. Lett. 93(18), 183115 (2008).
[CrossRef]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Kujala, S.

Kulakov, T. A.

M. A. Belkin, T. A. Kulakov, K.-H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Laiho, K.

Laukkanen, J.

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Chiral coupling in gold nanodimers,” Appl. Phys. Lett. 93(18), 183115 (2008).
[CrossRef]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Lemmetyinen, H.

M. J. Huttunen, M. Virkki, M. Erkintalo, E. Vuorimaa, A. Efimov, H. Lemmetyinen, and M. Kauranen, “Absolute probe of surface chirality based on focused circularly polarized light,” J. Phys. Chem. Lett. 1(12), 1826–1829 (2010).
[CrossRef]

M. Siltanen, E. Vuorimaa, H. Lemmetyinen, P. Ihalainen, J. Peltonen, and M. Kauranen, “Nonlinear optical and structural properties of langmuir-blodgett films of thiohelicenebisquinones,” J. Phys. Chem. B 112(7), 1940–1945 (2008).
[CrossRef] [PubMed]

H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, J. Turunen, N. V. Tkachenko, and H. Lemmetyinen, “Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles,” J. Nonlinear Opt. Phys. Mater. 11(4), 421–432 (2002).
[CrossRef]

Li, J.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[CrossRef] [PubMed]

Lin, S. Y.

G. Subramania and S. Y. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85(21), 5037–5039 (2004).
[CrossRef]

Linden, S.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[CrossRef] [PubMed]

F. B. P. Niesler, N. Feth, S. Linden, J. Niegemann, J. Gieseler, K. Busch, and M. Wegener, “Second-harmonic generation from split-ring resonators on a GaAs substrate,” Opt. Lett. 34(13), 1997–1999 (2009).
[CrossRef] [PubMed]

N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33(17), 1975–1977 (2008).
[CrossRef] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007).
[CrossRef] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[CrossRef] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Liu, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

Liu, J.

Liu, N.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

Lu, X.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[CrossRef] [PubMed]

Makarov, V. A.

V. A. Makarov and I. A. Perezhogin, “Generation of reflected second-harmonic light beam with inhomogeneous transversal distribution of polarization from the surface of chiral medium by normally incident Gaussian beam,” Opt. Commun. 281(14), 3906–3912 (2008).
[CrossRef]

Maki, J. J.

J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
[CrossRef]

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second-harmonic generation from chiral surfaces,” J. Chem. Phys. 101(9), 8193–8199 (1994).
[CrossRef]

Maslovski, S.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[CrossRef]

McAloney, R. A.

S. A. Mitchell and R. A. McAloney, “Second harmonic optical activity of tryptophan derivatives adsorbed at the air/water interface,” J. Phys. Chem. B 108(3), 1020–1029 (2004).
[CrossRef]

Mitchell, S. A.

S. A. Mitchell and R. A. McAloney, “Second harmonic optical activity of tryptophan derivatives adsorbed at the air/water interface,” J. Phys. Chem. B 108(3), 1020–1029 (2004).
[CrossRef]

Moloney, J. V.

Moshchalkov, V. V.

V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett. 104(12), 127401 (2010).
[CrossRef] [PubMed]

V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express 18(8), 8286–8293 (2010).
[CrossRef] [PubMed]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Nefedov, I.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[CrossRef]

Niegemann, J.

Niemi, T.

B. K. Canfield, H. Husu, J. Kontio, J. Viheriala, T. Rytkonen, T. Niemi, E. Chandler, A. Hrin, J. A. Squier, and M. Kauranen, “Inhomogeneities in the nonlinear tensorial responses of arrays of gold nanodots,” N. J. Phys. 10(1), 013001 (2008).
[CrossRef]

Niesler, F. B. P.

Nolte, R. J. M.

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

Park, Y.-S.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[CrossRef] [PubMed]

Payrastre, C.

M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
[CrossRef]

Peltonen, J.

M. Siltanen, E. Vuorimaa, H. Lemmetyinen, P. Ihalainen, J. Peltonen, and M. Kauranen, “Nonlinear optical and structural properties of langmuir-blodgett films of thiohelicenebisquinones,” J. Phys. Chem. B 112(7), 1940–1945 (2008).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[CrossRef] [PubMed]

Perezhogin, I. A.

V. A. Makarov and I. A. Perezhogin, “Generation of reflected second-harmonic light beam with inhomogeneous transversal distribution of polarization from the surface of chiral medium by normally incident Gaussian beam,” Opt. Commun. 281(14), 3906–3912 (2008).
[CrossRef]

Persoons, A.

S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mater. Sci. Eng. Rep. 42(5-6), 115–155 (2003).
[CrossRef]

M. Kauranen, T. Verbiest, and A. Persoons, “Second-order nonlinear optical signatures of surface chirality,” J. Mod. Opt. 45(2), 403–423 (1998).
[CrossRef]

J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
[CrossRef]

T. Verbiest, M. Kauranen, Y. Van Rompaey, and A. Persoons, “Optical activity of anisotropic achiral surfaces,” Phys. Rev. Lett. 77(8), 1456–1459 (1996).
[CrossRef] [PubMed]

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second-harmonic generation from chiral surfaces,” J. Chem. Phys. 101(9), 8193–8199 (1994).
[CrossRef]

Petralli-Mallow, T.

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B Condens. Matter 49(20), 14643–14647 (1994).
[CrossRef] [PubMed]

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: A surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

Plum, E.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[CrossRef]

Potts, A.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[CrossRef] [PubMed]

Rentzepis, P. M.

P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16(18), 792–794 (1966).
[CrossRef]

Righini, R.

P. Fischer, D. S. Wiersma, R. Righini, B. Champagne, and A. D. Buckingham, “Three-wave mixing in chiral liquids,” Phys. Rev. Lett. 85(20), 4253–4256 (2000).
[CrossRef] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009).
[CrossRef]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[CrossRef] [PubMed]

Roy, A.

M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
[CrossRef]

Ruther, M.

Rytkonen, T.

B. K. Canfield, H. Husu, J. Kontio, J. Viheriala, T. Rytkonen, T. Niemi, E. Chandler, A. Hrin, J. A. Squier, and M. Kauranen, “Inhomogeneities in the nonlinear tensorial responses of arrays of gold nanodots,” N. J. Phys. 10(1), 013001 (2008).
[CrossRef]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Schanne-Klein, M. C.

M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
[CrossRef]

Schouten, A. J.

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

Schwanecke, A. S.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[CrossRef] [PubMed]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Shen, Y. R.

N. Ji, K. Zhang, H. Yang, and Y. R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006).
[CrossRef] [PubMed]

M. A. Belkin and Y. R. Shen, “Non-linear optical spectroscopy as a novel probe for molecular chirality,” Int. Rev. Phys. Chem. 24(2), 257–299 (2005).
[CrossRef]

M. A. Belkin, T. A. Kulakov, K.-H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

Shkurinov, A. P.

A. P. Shkurinov, A. V. Dubrovskii, and N. I. Koroteev, “Second harmonic generation in an optically active liquid: Experimental observation of a fourth-order optical nonlinearity due to molecular chirality,” Phys. Rev. Lett. 70(8), 1085–1088 (1993).
[CrossRef] [PubMed]

Sihvola, A.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[CrossRef]

Silhanek, A. V.

V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett. 104(12), 127401 (2010).
[CrossRef] [PubMed]

V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express 18(8), 8286–8293 (2010).
[CrossRef] [PubMed]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Siltanen, M.

M. Siltanen, E. Vuorimaa, H. Lemmetyinen, P. Ihalainen, J. Peltonen, and M. Kauranen, “Nonlinear optical and structural properties of langmuir-blodgett films of thiohelicenebisquinones,” J. Phys. Chem. B 112(7), 1940–1945 (2008).
[CrossRef] [PubMed]

Simovski, C.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[CrossRef]

Simpson, G. J.

G. J. Simpson, “Molecular origins of the remarkable chiral sensitivity of second-order nonlinear optics,” ChemPhysChem 5(9), 1301–1310 (2004).
[CrossRef] [PubMed]

Sioncke, S.

S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mater. Sci. Eng. Rep. 42(5-6), 115–155 (2003).
[CrossRef]

Smisdom, N.

V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express 18(8), 8286–8293 (2010).
[CrossRef] [PubMed]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Soukoulis, C. M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[CrossRef]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[CrossRef] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

Squier, J. A.

B. K. Canfield, H. Husu, J. Kontio, J. Viheriala, T. Rytkonen, T. Niemi, E. Chandler, A. Hrin, J. A. Squier, and M. Kauranen, “Inhomogeneities in the nonlinear tensorial responses of arrays of gold nanodots,” N. J. Phys. 10(1), 013001 (2008).
[CrossRef]

Stockman, M. I.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[CrossRef] [PubMed]

Subramania, G.

G. Subramania and S. Y. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85(21), 5037–5039 (2004).
[CrossRef]

Svirko, Y.

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Teerenstra, M. N.

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

Thiel, M.

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Tkachenko, N. V.

H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, J. Turunen, N. V. Tkachenko, and H. Lemmetyinen, “Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles,” J. Nonlinear Opt. Phys. Mater. 11(4), 421–432 (2002).
[CrossRef]

Tretyakov, S.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[CrossRef]

Tuovinen, H.

H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, J. Turunen, N. V. Tkachenko, and H. Lemmetyinen, “Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles,” J. Nonlinear Opt. Phys. Mater. 11(4), 421–432 (2002).
[CrossRef]

Turunen, J.

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Chiral coupling in gold nanodimers,” Appl. Phys. Lett. 93(18), 183115 (2008).
[CrossRef]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[CrossRef] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express 14(2), 950–955 (2006).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12(22), 5418–5423 (2004).
[CrossRef] [PubMed]

H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, J. Turunen, N. V. Tkachenko, and H. Lemmetyinen, “Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles,” J. Nonlinear Opt. Phys. Mater. 11(4), 421–432 (2002).
[CrossRef]

Vahimaa, P.

H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, J. Turunen, N. V. Tkachenko, and H. Lemmetyinen, “Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles,” J. Nonlinear Opt. Phys. Mater. 11(4), 421–432 (2002).
[CrossRef]

Valev, V. K.

V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express 18(8), 8286–8293 (2010).
[CrossRef] [PubMed]

V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett. 104(12), 127401 (2010).
[CrossRef] [PubMed]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, J. Turunen, N. V. Tkachenko, and H. Lemmetyinen, “Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles,” J. Nonlinear Opt. Phys. Mater. 11(4), 421–432 (2002).
[CrossRef]

Van Dorpe, P.

V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett. 104(12), 127401 (2010).
[CrossRef] [PubMed]

Van Rompaey, Y.

T. Verbiest, M. Kauranen, Y. Van Rompaey, and A. Persoons, “Optical activity of anisotropic achiral surfaces,” Phys. Rev. Lett. 77(8), 1456–1459 (1996).
[CrossRef] [PubMed]

Vandenbosch, G. A.

V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett. 104(12), 127401 (2010).
[CrossRef] [PubMed]

Verbiest, T.

V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett. 104(12), 127401 (2010).
[CrossRef] [PubMed]

V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express 18(8), 8286–8293 (2010).
[CrossRef] [PubMed]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mater. Sci. Eng. Rep. 42(5-6), 115–155 (2003).
[CrossRef]

M. Kauranen, T. Verbiest, and A. Persoons, “Second-order nonlinear optical signatures of surface chirality,” J. Mod. Opt. 45(2), 403–423 (1998).
[CrossRef]

J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
[CrossRef]

T. Verbiest, M. Kauranen, Y. Van Rompaey, and A. Persoons, “Optical activity of anisotropic achiral surfaces,” Phys. Rev. Lett. 77(8), 1456–1459 (1996).
[CrossRef] [PubMed]

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second-harmonic generation from chiral surfaces,” J. Chem. Phys. 101(9), 8193–8199 (1994).
[CrossRef]

Verellen, N.

V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett. 104(12), 127401 (2010).
[CrossRef] [PubMed]

Viheriala, J.

B. K. Canfield, H. Husu, J. Kontio, J. Viheriala, T. Rytkonen, T. Niemi, E. Chandler, A. Hrin, J. A. Squier, and M. Kauranen, “Inhomogeneities in the nonlinear tensorial responses of arrays of gold nanodots,” N. J. Phys. 10(1), 013001 (2008).
[CrossRef]

Virkki, M.

M. J. Huttunen, M. Virkki, M. Erkintalo, E. Vuorimaa, A. Efimov, H. Lemmetyinen, and M. Kauranen, “Absolute probe of surface chirality based on focused circularly polarized light,” J. Phys. Chem. Lett. 1(12), 1826–1829 (2010).
[CrossRef]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009).
[CrossRef]

Vuorimaa, E.

M. J. Huttunen, M. Virkki, M. Erkintalo, E. Vuorimaa, A. Efimov, H. Lemmetyinen, and M. Kauranen, “Absolute probe of surface chirality based on focused circularly polarized light,” J. Phys. Chem. Lett. 1(12), 1826–1829 (2010).
[CrossRef]

M. Siltanen, E. Vuorimaa, H. Lemmetyinen, P. Ihalainen, J. Peltonen, and M. Kauranen, “Nonlinear optical and structural properties of langmuir-blodgett films of thiohelicenebisquinones,” J. Phys. Chem. B 112(7), 1940–1945 (2008).
[CrossRef] [PubMed]

Wecht, K. W.

P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16(18), 792–794 (1966).
[CrossRef]

Wegener, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009).
[CrossRef]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[CrossRef] [PubMed]

F. B. P. Niesler, N. Feth, S. Linden, J. Niegemann, J. Gieseler, K. Busch, and M. Wegener, “Second-harmonic generation from split-ring resonators on a GaAs substrate,” Opt. Lett. 34(13), 1997–1999 (2009).
[CrossRef] [PubMed]

N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33(17), 1975–1977 (2008).
[CrossRef] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007).
[CrossRef] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[CrossRef] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Wiersma, D. S.

P. Fischer, D. S. Wiersma, R. Righini, B. Champagne, and A. D. Buckingham, “Three-wave mixing in chiral liquids,” Phys. Rev. Lett. 85(20), 4253–4256 (2000).
[CrossRef] [PubMed]

Wong, T. M.

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: A surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

Yan, L.

M. A. Belkin, T. A. Kulakov, K.-H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

Yang, H.

N. Ji, K. Zhang, H. Yang, and Y. R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006).
[CrossRef] [PubMed]

Yee, H. I.

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B Condens. Matter 49(20), 14643–14647 (1994).
[CrossRef] [PubMed]

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotator dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233–6241 (1994).
[CrossRef]

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: A surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

Zayats, A. V.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[CrossRef] [PubMed]

Zeng, Y.

Zhang, K.

N. Ji, K. Zhang, H. Yang, and Y. R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[CrossRef] [PubMed]

Zhang, W.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[CrossRef] [PubMed]

Zhang, X.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[CrossRef] [PubMed]

Zhao, R.

Zheludev, N. I.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[CrossRef] [PubMed]

Zhou, J.

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[CrossRef] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[CrossRef]

Zhu, S.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

Zyss, J.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[CrossRef]

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Chiral coupling in gold nanodimers,” Appl. Phys. Lett. 93(18), 183115 (2008).
[CrossRef]

G. Subramania and S. Y. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85(21), 5037–5039 (2004).
[CrossRef]

ChemPhysChem (1)

G. J. Simpson, “Molecular origins of the remarkable chiral sensitivity of second-order nonlinear optics,” ChemPhysChem 5(9), 1301–1310 (2004).
[CrossRef] [PubMed]

Int. Rev. Phys. Chem. (1)

M. A. Belkin and Y. R. Shen, “Non-linear optical spectroscopy as a novel probe for molecular chirality,” Int. Rev. Phys. Chem. 24(2), 257–299 (2005).
[CrossRef]

J. Am. Chem. Soc. (2)

M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005).
[CrossRef] [PubMed]

N. Ji, K. Zhang, H. Yang, and Y. R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006).
[CrossRef] [PubMed]

J. Chem. Phys. (5)

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotator dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233–6241 (1994).
[CrossRef]

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second-harmonic generation from chiral surfaces,” J. Chem. Phys. 101(9), 8193–8199 (1994).
[CrossRef]

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
[CrossRef]

M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
[CrossRef]

J. Electromagn. Waves Appl. (1)

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[CrossRef]

J. Mod. Opt. (1)

M. Kauranen, T. Verbiest, and A. Persoons, “Second-order nonlinear optical signatures of surface chirality,” J. Mod. Opt. 45(2), 403–423 (1998).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, J. Turunen, N. V. Tkachenko, and H. Lemmetyinen, “Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles,” J. Nonlinear Opt. Phys. Mater. 11(4), 421–432 (2002).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

M. J. Huttunen, M. Erkintalo, and M. Kauranen, “Absolute nonlinear optical probes of surface chirality,” J. Opt. A, Pure Appl. Opt. 11(3), 034006 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: A surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

J. Phys. Chem. B (2)

S. A. Mitchell and R. A. McAloney, “Second harmonic optical activity of tryptophan derivatives adsorbed at the air/water interface,” J. Phys. Chem. B 108(3), 1020–1029 (2004).
[CrossRef]

M. Siltanen, E. Vuorimaa, H. Lemmetyinen, P. Ihalainen, J. Peltonen, and M. Kauranen, “Nonlinear optical and structural properties of langmuir-blodgett films of thiohelicenebisquinones,” J. Phys. Chem. B 112(7), 1940–1945 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. Lett. (1)

M. J. Huttunen, M. Virkki, M. Erkintalo, E. Vuorimaa, A. Efimov, H. Lemmetyinen, and M. Kauranen, “Absolute probe of surface chirality based on focused circularly polarized light,” J. Phys. Chem. Lett. 1(12), 1826–1829 (2010).
[CrossRef]

Mater. Sci. Eng. Rep. (1)

S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mater. Sci. Eng. Rep. 42(5-6), 115–155 (2003).
[CrossRef]

N. J. Phys. (1)

B. K. Canfield, H. Husu, J. Kontio, J. Viheriala, T. Rytkonen, T. Niemi, E. Chandler, A. Hrin, J. A. Squier, and M. Kauranen, “Inhomogeneities in the nonlinear tensorial responses of arrays of gold nanodots,” N. J. Phys. 10(1), 013001 (2008).
[CrossRef]

Nano Lett. (2)

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009).
[CrossRef] [PubMed]

Nat. Photonics (2)

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Opt. Commun. (1)

V. A. Makarov and I. A. Perezhogin, “Generation of reflected second-harmonic light beam with inhomogeneous transversal distribution of polarization from the surface of chiral medium by normally incident Gaussian beam,” Opt. Commun. 281(14), 3906–3912 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. B (1)

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B Condens. Matter 49(20), 14643–14647 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (12)

V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett. 104(12), 127401 (2010).
[CrossRef] [PubMed]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91(24), 247404 (2003).
[CrossRef] [PubMed]

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[CrossRef] [PubMed]

P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16(18), 792–794 (1966).
[CrossRef]

A. P. Shkurinov, A. V. Dubrovskii, and N. I. Koroteev, “Second harmonic generation in an optically active liquid: Experimental observation of a fourth-order optical nonlinearity due to molecular chirality,” Phys. Rev. Lett. 70(8), 1085–1088 (1993).
[CrossRef] [PubMed]

P. Fischer, D. S. Wiersma, R. Righini, B. Champagne, and A. D. Buckingham, “Three-wave mixing in chiral liquids,” Phys. Rev. Lett. 85(20), 4253–4256 (2000).
[CrossRef] [PubMed]

M. A. Belkin, T. A. Kulakov, K.-H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[CrossRef] [PubMed]

T. Verbiest, M. Kauranen, Y. Van Rompaey, and A. Persoons, “Optical activity of anisotropic achiral surfaces,” Phys. Rev. Lett. 77(8), 1456–1459 (1996).
[CrossRef] [PubMed]

Science (4)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[CrossRef] [PubMed]

Other (2)

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 1982).

J. Hicks, Chirality: Physical Chemistry, ACS Symposium Series 810 (American Chemical Society, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the SHG microscope used for characterizing the nonlinear response and chirality of the twisted-cross nanodimers. The optical setup consists of lenses (L1,L2,L3,L4), pinhole (PH), polarizer (P), motorized quarter-wave plate (QWP), microscope objectives (O1,O2), 3-axis motorized stage (S), flip mirrors (FM1,FM2), fundamental wavelength-blocking filter (FF), interference filter (IF), photomultiplier tube (PMT), white light source (WLS) and camera (C). Ray path colors: fundamental excitation wavelength (red), frequency doubled SHG signal (green), white light (yellow).

Fig. 2
Fig. 2

Large-area electron micrograph of the fabricated twisted-cross nanodimers (a). Close-up views of the lh (b) and rh (c) twisted-cross nanodimers consisting of two achiral crosses on top of each other.

Fig. 3
Fig. 3

SHG images of lh and rh twisted-cross nanodimers using LHCP [(a) and (e)] and RHCP [(b) and (f)] fundamental beam. Y-stacked composite SHG line profiles of the lh [(c) and (d)] and rh [(g) and (h)] nanodimers illustrate the signal variation. Average SHG values are shown as black dotted lines [(c), (d), (g) and (h)] together with the calculated standard deviation bars.

Fig. 4
Fig. 4

SHG-CD images of lh (a) and rh (b) twisted-cross nanodimers derived using the images in Fig. 3. Y-stacked composite SHG-CD line profiles [(c) and (d)] illustrate the pixelwise SHG-CD values of (a) and (b). Coloring highlights the sign of the response and thus the chirality of the structures. Averaged SHG-CD responses of the scanned areas are −0.32 and 0.35 for the lh and rh structures, respectively. Those are shown as red dotted lines in (c) and (d) together with the calculated standard deviation bars. Zero reference levels are marked as black dotted lines in (c) and (d).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SHG-CD = Δ P SHG-CD P AVE = P LHCP P RHCP ( P LHCP + P RHCP ) / 2 ,

Metrics