Abstract

Second Harmonic Generation (SHG) was used to study the non-linear optical properties of a two-dimensional film formed by the achiral amphiphilic compound 5-(octadecyloxy)-2-(2-thiazolylazo) phenol (TARC18) at the air-water interface. The S-polarized SHG intensity was measured as a function of the incident fundamental wave polarization angle during the monolayer compression. The method was applied to follow the emergence of chirality during the film compression and at constant surface pressure. The formation of molecular aggregates revealing supramolecular chirality was then demonstrated. It was shown furthermore that the origin of chirality was dominated by the magnetic contributions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
    [CrossRef]
  2. X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
    [CrossRef] [PubMed]
  3. R. Raval, “Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques,” Chem. Soc. Rev. 38(3), 707–721 (2009).
    [CrossRef] [PubMed]
  4. J. A. W. Elemans, I. De Cat, H. Xu, and S. De Feyter, “Two-dimensional chirality at liquid-solid interfaces,” Chem. Soc. Rev. 38(3), 722–736 (2009).
    [CrossRef] [PubMed]
  5. G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
    [CrossRef]
  6. E. Benichou, G. Gassin-Martin, A. Derouet, I. Russier-Antoine, G. Bachelier, C. Jonin, N. Lascoux, M. Liu, and P.-F. Brevet, “Chirality in molecular films at the air-water interface,” Proc. SPIE 7935, 79350V, 79350V-8 (2011).
    [CrossRef]
  7. M. Liu, A. Kira, and H. Nakahara, “Complex formation between monolayers of a novel amphiphilic thiazolylazo dye and transition metal ions at the air/water interface,” Langmuir 13(4), 779–783 (1997).
    [CrossRef]
  8. P. Guo, L. Zhang, and M. Liu, “A supramolecular chiroptical switch exclusively from an achiral amphiphile,” Adv. Mater. (Deerfield Beach Fla.) 18(2), 177–180 (2006).
    [CrossRef]
  9. S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
    [CrossRef]
  10. L. C. Giancarlo and G. W. Flynn, “Raising flags: applications of chemical marker groups to study self-assembly, chirality, and orientation of interfacial films by scanning tunneling microscopy,” Acc. Chem. Res. 33(7), 491–501 (2000).
    [CrossRef] [PubMed]
  11. J. Zhang, A. Gesquière, M. Sieffert, M. Klapper, K. Müllen, F. C. De Schryver, and S. De Feyter, “Losing the expression of molecular chirality in self-assembled physisorbed monolayers,” Nano Lett. 5(7), 1395–1398 (2005).
    [CrossRef] [PubMed]
  12. F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
    [CrossRef] [PubMed]
  13. R. Viswanathan, J. A. Zasadzinski, and D. K. Schwartz, “Spontaneous chiral-symmetry breaking by achiral molecules in a Langmuir-Blodgett-film,” Nature 368(6470), 440–443 (1994).
    [CrossRef]
  14. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  15. Y. R. Shen, “Surface second harmonic generation: a new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).
    [CrossRef]
  16. K. B. Eisenthal, “Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy,” Chem. Rev. 96(4), 1343–1360 (1996).
    [CrossRef] [PubMed]
  17. T. F. Heinz, Modern Problems in Condensed Matter Science (North Holland, 1991).
  18. R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94(1), 107–125 (1994).
    [CrossRef]
  19. P. F. Brevet, Liquid Interfaces in Chemical, Biological and Pharmaceutical Applications (Marcel Dekker, 2001).
  20. G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1-3), 161–166 (2010).
    [CrossRef]
  21. J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233–6241 (1994).
    [CrossRef]
  22. M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second harmonic generation from chiral surfaces,” J. Chem. Phys. 101(9), 8193–8199 (1994).
    [CrossRef]
  23. T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
    [CrossRef]
  24. J. M. Hicks, T. Petralli-Mallow, and J. D. Byers, “Consequences of chirality in second-order non-linear spectroscopy at surfaces,” Faraday Discuss. 99(99), 341–357 (1994).
    [CrossRef] [PubMed]
  25. A. M. Pena, T. Boulesteix, T. Dartigalongue, and M. C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens I and IV,” J. Am. Chem. Soc. 127(29), 10314–10322 (2005).
    [CrossRef] [PubMed]
  26. M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
    [CrossRef]
  27. J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
    [CrossRef]
  28. T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
    [CrossRef]
  29. P. F. Brevet, “Phenomenological three-layer model for surface second-harmonic generation at the interface between two centrosymmetric media,” J. Chem. Soc., Faraday Trans. 92(22), 4547–4554 (1996).
    [CrossRef]
  30. V. Mizrahi and J. E. Sipe, “Phenomenological treatment of surface second-harmonic generation,” J. Opt. Soc. Am. B 5(3), 660–667 (1988).
    [CrossRef]
  31. S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mater. Sci. Eng. Rep. 42(5-6), 115–155 (2003).
    [CrossRef]

2011 (1)

E. Benichou, G. Gassin-Martin, A. Derouet, I. Russier-Antoine, G. Bachelier, C. Jonin, N. Lascoux, M. Liu, and P.-F. Brevet, “Chirality in molecular films at the air-water interface,” Proc. SPIE 7935, 79350V, 79350V-8 (2011).
[CrossRef]

2010 (1)

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1-3), 161–166 (2010).
[CrossRef]

2009 (3)

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[CrossRef]

R. Raval, “Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques,” Chem. Soc. Rev. 38(3), 707–721 (2009).
[CrossRef] [PubMed]

J. A. W. Elemans, I. De Cat, H. Xu, and S. De Feyter, “Two-dimensional chirality at liquid-solid interfaces,” Chem. Soc. Rev. 38(3), 722–736 (2009).
[CrossRef] [PubMed]

2008 (1)

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[CrossRef]

2006 (1)

P. Guo, L. Zhang, and M. Liu, “A supramolecular chiroptical switch exclusively from an achiral amphiphile,” Adv. Mater. (Deerfield Beach Fla.) 18(2), 177–180 (2006).
[CrossRef]

2005 (2)

J. Zhang, A. Gesquière, M. Sieffert, M. Klapper, K. Müllen, F. C. De Schryver, and S. De Feyter, “Losing the expression of molecular chirality in self-assembled physisorbed monolayers,” Nano Lett. 5(7), 1395–1398 (2005).
[CrossRef] [PubMed]

A. M. Pena, T. Boulesteix, T. Dartigalongue, and M. C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens I and IV,” J. Am. Chem. Soc. 127(29), 10314–10322 (2005).
[CrossRef] [PubMed]

2004 (1)

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[CrossRef] [PubMed]

2003 (1)

S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mater. Sci. Eng. Rep. 42(5-6), 115–155 (2003).
[CrossRef]

2001 (1)

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[CrossRef]

2000 (1)

L. C. Giancarlo and G. W. Flynn, “Raising flags: applications of chemical marker groups to study self-assembly, chirality, and orientation of interfacial films by scanning tunneling microscopy,” Acc. Chem. Res. 33(7), 491–501 (2000).
[CrossRef] [PubMed]

1998 (1)

M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
[CrossRef]

1997 (1)

M. Liu, A. Kira, and H. Nakahara, “Complex formation between monolayers of a novel amphiphilic thiazolylazo dye and transition metal ions at the air/water interface,” Langmuir 13(4), 779–783 (1997).
[CrossRef]

1996 (3)

J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
[CrossRef]

K. B. Eisenthal, “Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy,” Chem. Rev. 96(4), 1343–1360 (1996).
[CrossRef] [PubMed]

P. F. Brevet, “Phenomenological three-layer model for surface second-harmonic generation at the interface between two centrosymmetric media,” J. Chem. Soc., Faraday Trans. 92(22), 4547–4554 (1996).
[CrossRef]

1995 (1)

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

1994 (5)

J. M. Hicks, T. Petralli-Mallow, and J. D. Byers, “Consequences of chirality in second-order non-linear spectroscopy at surfaces,” Faraday Discuss. 99(99), 341–357 (1994).
[CrossRef] [PubMed]

R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94(1), 107–125 (1994).
[CrossRef]

R. Viswanathan, J. A. Zasadzinski, and D. K. Schwartz, “Spontaneous chiral-symmetry breaking by achiral molecules in a Langmuir-Blodgett-film,” Nature 368(6470), 440–443 (1994).
[CrossRef]

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233–6241 (1994).
[CrossRef]

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second harmonic generation from chiral surfaces,” J. Chem. Phys. 101(9), 8193–8199 (1994).
[CrossRef]

1993 (1)

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

1991 (1)

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[CrossRef] [PubMed]

1988 (1)

1986 (1)

Y. R. Shen, “Surface second harmonic generation: a new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).
[CrossRef]

Als-Nielsen, J.

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[CrossRef] [PubMed]

Amabilino, D. B.

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[CrossRef]

Bachelier, G.

E. Benichou, G. Gassin-Martin, A. Derouet, I. Russier-Antoine, G. Bachelier, C. Jonin, N. Lascoux, M. Liu, and P.-F. Brevet, “Chirality in molecular films at the air-water interface,” Proc. SPIE 7935, 79350V, 79350V-8 (2011).
[CrossRef]

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1-3), 161–166 (2010).
[CrossRef]

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[CrossRef]

Benichou, E.

E. Benichou, G. Gassin-Martin, A. Derouet, I. Russier-Antoine, G. Bachelier, C. Jonin, N. Lascoux, M. Liu, and P.-F. Brevet, “Chirality in molecular films at the air-water interface,” Proc. SPIE 7935, 79350V, 79350V-8 (2011).
[CrossRef]

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1-3), 161–166 (2010).
[CrossRef]

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[CrossRef]

Besson, F.

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1-3), 161–166 (2010).
[CrossRef]

Boulesteix, T.

A. M. Pena, T. Boulesteix, T. Dartigalongue, and M. C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens I and IV,” J. Am. Chem. Soc. 127(29), 10314–10322 (2005).
[CrossRef] [PubMed]

Brevet, P. F.

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[CrossRef]

P. F. Brevet, “Phenomenological three-layer model for surface second-harmonic generation at the interface between two centrosymmetric media,” J. Chem. Soc., Faraday Trans. 92(22), 4547–4554 (1996).
[CrossRef]

Brevet, P.-F.

E. Benichou, G. Gassin-Martin, A. Derouet, I. Russier-Antoine, G. Bachelier, C. Jonin, N. Lascoux, M. Liu, and P.-F. Brevet, “Chirality in molecular films at the air-water interface,” Proc. SPIE 7935, 79350V, 79350V-8 (2011).
[CrossRef]

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1-3), 161–166 (2010).
[CrossRef]

Byers, J. D.

J. M. Hicks, T. Petralli-Mallow, and J. D. Byers, “Consequences of chirality in second-order non-linear spectroscopy at surfaces,” Faraday Discuss. 99(99), 341–357 (1994).
[CrossRef] [PubMed]

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233–6241 (1994).
[CrossRef]

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

Corn, R. M.

R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94(1), 107–125 (1994).
[CrossRef]

Dartigalongue, T.

A. M. Pena, T. Boulesteix, T. Dartigalongue, and M. C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens I and IV,” J. Am. Chem. Soc. 127(29), 10314–10322 (2005).
[CrossRef] [PubMed]

De Cat, I.

J. A. W. Elemans, I. De Cat, H. Xu, and S. De Feyter, “Two-dimensional chirality at liquid-solid interfaces,” Chem. Soc. Rev. 38(3), 722–736 (2009).
[CrossRef] [PubMed]

De Feyter, S.

J. A. W. Elemans, I. De Cat, H. Xu, and S. De Feyter, “Two-dimensional chirality at liquid-solid interfaces,” Chem. Soc. Rev. 38(3), 722–736 (2009).
[CrossRef] [PubMed]

J. Zhang, A. Gesquière, M. Sieffert, M. Klapper, K. Müllen, F. C. De Schryver, and S. De Feyter, “Losing the expression of molecular chirality in self-assembled physisorbed monolayers,” Nano Lett. 5(7), 1395–1398 (2005).
[CrossRef] [PubMed]

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[CrossRef]

De Schryver, F. C.

J. Zhang, A. Gesquière, M. Sieffert, M. Klapper, K. Müllen, F. C. De Schryver, and S. De Feyter, “Losing the expression of molecular chirality in self-assembled physisorbed monolayers,” Nano Lett. 5(7), 1395–1398 (2005).
[CrossRef] [PubMed]

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[CrossRef]

Derouet, A.

E. Benichou, G. Gassin-Martin, A. Derouet, I. Russier-Antoine, G. Bachelier, C. Jonin, N. Lascoux, M. Liu, and P.-F. Brevet, “Chirality in molecular films at the air-water interface,” Proc. SPIE 7935, 79350V, 79350V-8 (2011).
[CrossRef]

Deutsch, M.

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[CrossRef] [PubMed]

Duboisset, J.

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1-3), 161–166 (2010).
[CrossRef]

Eisenthal, K. B.

K. B. Eisenthal, “Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy,” Chem. Rev. 96(4), 1343–1360 (1996).
[CrossRef] [PubMed]

Elemans, J. A. W.

J. A. W. Elemans, I. De Cat, H. Xu, and S. De Feyter, “Two-dimensional chirality at liquid-solid interfaces,” Chem. Soc. Rev. 38(3), 722–736 (2009).
[CrossRef] [PubMed]

Elshocht, S. V.

J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
[CrossRef]

Ficheux, D.

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1-3), 161–166 (2010).
[CrossRef]

Flynn, G. W.

L. C. Giancarlo and G. W. Flynn, “Raising flags: applications of chemical marker groups to study self-assembly, chirality, and orientation of interfacial films by scanning tunneling microscopy,” Acc. Chem. Res. 33(7), 491–501 (2000).
[CrossRef] [PubMed]

Flytzanis, C.

M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
[CrossRef]

Gassin-Martin, G.

E. Benichou, G. Gassin-Martin, A. Derouet, I. Russier-Antoine, G. Bachelier, C. Jonin, N. Lascoux, M. Liu, and P.-F. Brevet, “Chirality in molecular films at the air-water interface,” Proc. SPIE 7935, 79350V, 79350V-8 (2011).
[CrossRef]

Gesquière, A.

J. Zhang, A. Gesquière, M. Sieffert, M. Klapper, K. Müllen, F. C. De Schryver, and S. De Feyter, “Losing the expression of molecular chirality in self-assembled physisorbed monolayers,” Nano Lett. 5(7), 1395–1398 (2005).
[CrossRef] [PubMed]

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[CrossRef]

Giancarlo, L. C.

L. C. Giancarlo and G. W. Flynn, “Raising flags: applications of chemical marker groups to study self-assembly, chirality, and orientation of interfacial films by scanning tunneling microscopy,” Acc. Chem. Res. 33(7), 491–501 (2000).
[CrossRef] [PubMed]

Guo, P.

P. Guo, L. Zhang, and M. Liu, “A supramolecular chiroptical switch exclusively from an achiral amphiphile,” Adv. Mater. (Deerfield Beach Fla.) 18(2), 177–180 (2006).
[CrossRef]

Guo, Y.

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[CrossRef]

Hache, F.

M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
[CrossRef]

Hicks, J. M.

J. M. Hicks, T. Petralli-Mallow, and J. D. Byers, “Consequences of chirality in second-order non-linear spectroscopy at surfaces,” Faraday Discuss. 99(99), 341–357 (1994).
[CrossRef] [PubMed]

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233–6241 (1994).
[CrossRef]

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

Higgins, D. A.

R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94(1), 107–125 (1994).
[CrossRef]

Huang, X.

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[CrossRef] [PubMed]

Jacquemain, D.

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[CrossRef] [PubMed]

Jiang, S.

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[CrossRef] [PubMed]

Jonin, C.

E. Benichou, G. Gassin-Martin, A. Derouet, I. Russier-Antoine, G. Bachelier, C. Jonin, N. Lascoux, M. Liu, and P.-F. Brevet, “Chirality in molecular films at the air-water interface,” Proc. SPIE 7935, 79350V, 79350V-8 (2011).
[CrossRef]

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1-3), 161–166 (2010).
[CrossRef]

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[CrossRef]

Kauranen, M.

J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
[CrossRef]

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second harmonic generation from chiral surfaces,” J. Chem. Phys. 101(9), 8193–8199 (1994).
[CrossRef]

Kira, A.

M. Liu, A. Kira, and H. Nakahara, “Complex formation between monolayers of a novel amphiphilic thiazolylazo dye and transition metal ions at the air/water interface,” Langmuir 13(4), 779–783 (1997).
[CrossRef]

Kjaer, K.

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[CrossRef] [PubMed]

Klapper, M.

J. Zhang, A. Gesquière, M. Sieffert, M. Klapper, K. Müllen, F. C. De Schryver, and S. De Feyter, “Losing the expression of molecular chirality in self-assembled physisorbed monolayers,” Nano Lett. 5(7), 1395–1398 (2005).
[CrossRef] [PubMed]

Lahav, M.

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[CrossRef] [PubMed]

Lascoux, N.

E. Benichou, G. Gassin-Martin, A. Derouet, I. Russier-Antoine, G. Bachelier, C. Jonin, N. Lascoux, M. Liu, and P.-F. Brevet, “Chirality in molecular films at the air-water interface,” Proc. SPIE 7935, 79350V, 79350V-8 (2011).
[CrossRef]

Leiserowitz, L.

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[CrossRef] [PubMed]

Leveiller, F.

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[CrossRef] [PubMed]

Li, C.

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[CrossRef] [PubMed]

Liu, M.

E. Benichou, G. Gassin-Martin, A. Derouet, I. Russier-Antoine, G. Bachelier, C. Jonin, N. Lascoux, M. Liu, and P.-F. Brevet, “Chirality in molecular films at the air-water interface,” Proc. SPIE 7935, 79350V, 79350V-8 (2011).
[CrossRef]

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[CrossRef]

P. Guo, L. Zhang, and M. Liu, “A supramolecular chiroptical switch exclusively from an achiral amphiphile,” Adv. Mater. (Deerfield Beach Fla.) 18(2), 177–180 (2006).
[CrossRef]

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[CrossRef] [PubMed]

M. Liu, A. Kira, and H. Nakahara, “Complex formation between monolayers of a novel amphiphilic thiazolylazo dye and transition metal ions at the air/water interface,” Langmuir 13(4), 779–783 (1997).
[CrossRef]

Maki, J. J.

J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
[CrossRef]

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second harmonic generation from chiral surfaces,” J. Chem. Phys. 101(9), 8193–8199 (1994).
[CrossRef]

Martin-Gassin, G.

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[CrossRef]

Matar, G.

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1-3), 161–166 (2010).
[CrossRef]

Mizrahi, V.

Müllen, K.

J. Zhang, A. Gesquière, M. Sieffert, M. Klapper, K. Müllen, F. C. De Schryver, and S. De Feyter, “Losing the expression of molecular chirality in self-assembled physisorbed monolayers,” Nano Lett. 5(7), 1395–1398 (2005).
[CrossRef] [PubMed]

Nakahara, H.

M. Liu, A. Kira, and H. Nakahara, “Complex formation between monolayers of a novel amphiphilic thiazolylazo dye and transition metal ions at the air/water interface,” Langmuir 13(4), 779–783 (1997).
[CrossRef]

Nolte, R. J. M.

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

Payrastre, C.

M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
[CrossRef]

Pena, A. M.

A. M. Pena, T. Boulesteix, T. Dartigalongue, and M. C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens I and IV,” J. Am. Chem. Soc. 127(29), 10314–10322 (2005).
[CrossRef] [PubMed]

Persoons, A.

S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mater. Sci. Eng. Rep. 42(5-6), 115–155 (2003).
[CrossRef]

J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
[CrossRef]

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second harmonic generation from chiral surfaces,” J. Chem. Phys. 101(9), 8193–8199 (1994).
[CrossRef]

Petralli-Mallow, T.

J. M. Hicks, T. Petralli-Mallow, and J. D. Byers, “Consequences of chirality in second-order non-linear spectroscopy at surfaces,” Faraday Discuss. 99(99), 341–357 (1994).
[CrossRef] [PubMed]

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

Rao, Y.

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[CrossRef]

Raval, R.

R. Raval, “Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques,” Chem. Soc. Rev. 38(3), 707–721 (2009).
[CrossRef] [PubMed]

Roy, A.

M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
[CrossRef]

Russier-Antoine, I.

E. Benichou, G. Gassin-Martin, A. Derouet, I. Russier-Antoine, G. Bachelier, C. Jonin, N. Lascoux, M. Liu, and P.-F. Brevet, “Chirality in molecular films at the air-water interface,” Proc. SPIE 7935, 79350V, 79350V-8 (2011).
[CrossRef]

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1-3), 161–166 (2010).
[CrossRef]

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[CrossRef]

Schanne-Klein, M. C.

A. M. Pena, T. Boulesteix, T. Dartigalongue, and M. C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens I and IV,” J. Am. Chem. Soc. 127(29), 10314–10322 (2005).
[CrossRef] [PubMed]

M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
[CrossRef]

Schouten, A. J.

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

Schwartz, D. K.

R. Viswanathan, J. A. Zasadzinski, and D. K. Schwartz, “Spontaneous chiral-symmetry breaking by achiral molecules in a Langmuir-Blodgett-film,” Nature 368(6470), 440–443 (1994).
[CrossRef]

Shen, Y. R.

Y. R. Shen, “Surface second harmonic generation: a new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).
[CrossRef]

Sieffert, M.

J. Zhang, A. Gesquière, M. Sieffert, M. Klapper, K. Müllen, F. C. De Schryver, and S. De Feyter, “Losing the expression of molecular chirality in self-assembled physisorbed monolayers,” Nano Lett. 5(7), 1395–1398 (2005).
[CrossRef] [PubMed]

Sioncke, S.

S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mater. Sci. Eng. Rep. 42(5-6), 115–155 (2003).
[CrossRef]

Sipe, J. E.

Teerenstra, M. N.

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

Veciana, J.

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[CrossRef]

Verbiest, T.

S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mater. Sci. Eng. Rep. 42(5-6), 115–155 (2003).
[CrossRef]

J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
[CrossRef]

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second harmonic generation from chiral surfaces,” J. Chem. Phys. 101(9), 8193–8199 (1994).
[CrossRef]

Viswanathan, R.

R. Viswanathan, J. A. Zasadzinski, and D. K. Schwartz, “Spontaneous chiral-symmetry breaking by achiral molecules in a Langmuir-Blodgett-film,” Nature 368(6470), 440–443 (1994).
[CrossRef]

Wang, H.

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[CrossRef]

Wang, X.

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[CrossRef] [PubMed]

Wong, T. M.

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

Wurst, K.

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[CrossRef]

Xu, H.

J. A. W. Elemans, I. De Cat, H. Xu, and S. De Feyter, “Two-dimensional chirality at liquid-solid interfaces,” Chem. Soc. Rev. 38(3), 722–736 (2009).
[CrossRef] [PubMed]

Xu, Y.

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[CrossRef]

Yee, H. I.

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233–6241 (1994).
[CrossRef]

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

Zasadzinski, J. A.

R. Viswanathan, J. A. Zasadzinski, and D. K. Schwartz, “Spontaneous chiral-symmetry breaking by achiral molecules in a Langmuir-Blodgett-film,” Nature 368(6470), 440–443 (1994).
[CrossRef]

Zhang, B.

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, A. Gesquière, M. Sieffert, M. Klapper, K. Müllen, F. C. De Schryver, and S. De Feyter, “Losing the expression of molecular chirality in self-assembled physisorbed monolayers,” Nano Lett. 5(7), 1395–1398 (2005).
[CrossRef] [PubMed]

Zhang, L.

P. Guo, L. Zhang, and M. Liu, “A supramolecular chiroptical switch exclusively from an achiral amphiphile,” Adv. Mater. (Deerfield Beach Fla.) 18(2), 177–180 (2006).
[CrossRef]

Zheng, D.

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[CrossRef]

Acc. Chem. Res. (1)

L. C. Giancarlo and G. W. Flynn, “Raising flags: applications of chemical marker groups to study self-assembly, chirality, and orientation of interfacial films by scanning tunneling microscopy,” Acc. Chem. Res. 33(7), 491–501 (2000).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

P. Guo, L. Zhang, and M. Liu, “A supramolecular chiroptical switch exclusively from an achiral amphiphile,” Adv. Mater. (Deerfield Beach Fla.) 18(2), 177–180 (2006).
[CrossRef]

Angew. Chem. Int. Ed. (1)

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

Y. R. Shen, “Surface second harmonic generation: a new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).
[CrossRef]

Chem. Phys. Lett. (1)

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1-3), 161–166 (2010).
[CrossRef]

Chem. Rev. (2)

K. B. Eisenthal, “Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy,” Chem. Rev. 96(4), 1343–1360 (1996).
[CrossRef] [PubMed]

R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94(1), 107–125 (1994).
[CrossRef]

Chem. Soc. Rev. (2)

R. Raval, “Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques,” Chem. Soc. Rev. 38(3), 707–721 (2009).
[CrossRef] [PubMed]

J. A. W. Elemans, I. De Cat, H. Xu, and S. De Feyter, “Two-dimensional chirality at liquid-solid interfaces,” Chem. Soc. Rev. 38(3), 722–736 (2009).
[CrossRef] [PubMed]

Faraday Discuss. (1)

J. M. Hicks, T. Petralli-Mallow, and J. D. Byers, “Consequences of chirality in second-order non-linear spectroscopy at surfaces,” Faraday Discuss. 99(99), 341–357 (1994).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (2)

A. M. Pena, T. Boulesteix, T. Dartigalongue, and M. C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens I and IV,” J. Am. Chem. Soc. 127(29), 10314–10322 (2005).
[CrossRef] [PubMed]

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[CrossRef] [PubMed]

J. Chem. Phys. (5)

M. C. Schanne-Klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, “Off resonance second order optical activity of isotropic layers of chiral molecules: Observation of electric and magnetic contributions,” J. Chem. Phys. 108(22), 9436–9443 (1998).
[CrossRef]

J. J. Maki, T. Verbiest, M. Kauranen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996).
[CrossRef]

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995).
[CrossRef]

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233–6241 (1994).
[CrossRef]

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second harmonic generation from chiral surfaces,” J. Chem. Phys. 101(9), 8193–8199 (1994).
[CrossRef]

J. Chem. Soc., Faraday Trans. (1)

P. F. Brevet, “Phenomenological three-layer model for surface second-harmonic generation at the interface between two centrosymmetric media,” J. Chem. Soc., Faraday Trans. 92(22), 4547–4554 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[CrossRef]

J. Phys. Chem. C (2)

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[CrossRef]

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[CrossRef]

Langmuir (1)

M. Liu, A. Kira, and H. Nakahara, “Complex formation between monolayers of a novel amphiphilic thiazolylazo dye and transition metal ions at the air/water interface,” Langmuir 13(4), 779–783 (1997).
[CrossRef]

Mater. Sci. Eng. Rep. (1)

S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mater. Sci. Eng. Rep. 42(5-6), 115–155 (2003).
[CrossRef]

Nano Lett. (1)

J. Zhang, A. Gesquière, M. Sieffert, M. Klapper, K. Müllen, F. C. De Schryver, and S. De Feyter, “Losing the expression of molecular chirality in self-assembled physisorbed monolayers,” Nano Lett. 5(7), 1395–1398 (2005).
[CrossRef] [PubMed]

Nature (1)

R. Viswanathan, J. A. Zasadzinski, and D. K. Schwartz, “Spontaneous chiral-symmetry breaking by achiral molecules in a Langmuir-Blodgett-film,” Nature 368(6470), 440–443 (1994).
[CrossRef]

Proc. SPIE (1)

E. Benichou, G. Gassin-Martin, A. Derouet, I. Russier-Antoine, G. Bachelier, C. Jonin, N. Lascoux, M. Liu, and P.-F. Brevet, “Chirality in molecular films at the air-water interface,” Proc. SPIE 7935, 79350V, 79350V-8 (2011).
[CrossRef]

Science (1)

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[CrossRef] [PubMed]

Other (3)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

P. F. Brevet, Liquid Interfaces in Chemical, Biological and Pharmaceutical Applications (Marcel Dekker, 2001).

T. F. Heinz, Modern Problems in Condensed Matter Science (North Holland, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Isotherm recorded at 20°C of a TARC18 monolayer at the air/water interface. Insert: TARC18 molecular structure.

Fig. 2
Fig. 2

Schematics of the experimental setup: Half-wave plate (WP), low and high pass filters (RG, BG), mirrors (M1, M2, M3, M4), fused-silica 10 cm focal length lenses (L1, L2), fused-silica 5 cm focal length lens (L3), Langmuir trough (LT), and analyzer (half-wave plate and polarizer cube).

Fig. 3
Fig. 3

S-Out SH intensity plots as a function of the input polarisation angle for a TARC18 monolayer at the air-water interface for two surface pressures of the isotherm shown in Fig. 1: at the beginning of the isotherm (approx. 0 mN/m, open circles) and near the film collapse (25 mN/m, filled squares). The dash and the solid-line curves correspond respectively to fits to the experimental data with Eqs. (1) and (2).

Fig. 4
Fig. 4

Evolution of the S-Out SHG intensity for the three polarization angles γ = π/4, π/2 and 3π/4 during three successive compression cycles of a TARC18 film at the air/water interface. The evolution of the surface pressure (dashed curve) is also reported in this figure.

Fig. 5
Fig. 5

Evolution of the S-Out intensities for three polarization angles γ = π/4, π/2 and 3π/4 during a full compression of a TARC18 film at the air/water interface. The evolution of the surface pressure (dashed curve) is also reported in this figure. Insert: zoom of the S-Out intensity evolution at low surface pressure.

Fig. 6
Fig. 6

Evolution of the S-Out intensities for three polarization angles γ = π/4, π/2 and 3π/4 during compression followed by a constant pressure regime at a surface pressure of 20 mN/m. The evolution of the surface pressure (dashed curve) is also reported in this figure.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I s ( γ ) | a 1 χ x x z e e e sin ( 2 γ ) | 2
I s ( γ ) | a 1 χ x x z e e e sin ( 2 γ ) + a 7 χ x y z e e e cos 2 ( γ ) | 2
I S ( γ ) | ( a 1 χ x x z e e e + a 10 χ x y z e e m + a 11 χ x z y e e m ) sin 2 γ +   ( a 7 χ x y z e e e + a 9 χ x z x e e m ) cos 2 γ + a 8 χ x x z e e m sin 2 γ | 2

Metrics