Abstract

Results are presented on the photosensitivity behavior of a phosphate glass optical fibre using 248nm, 500fs laser radiation. Bragg grating exposures performed using a double phase mask interferometer and peak intensities of 0.37TW/cm2, revealed that grating growth becomes non-monotonic in terms of average and modulated refractive index changes, resembling the Type IIA photosensitivity behavior. Average refractive index changes greater than 10−3 were measured after accumulated energy density doses of 6.5KJ/cm2. The Bragg gratings inscribed maintained significant part of their strength up to 377°C. Exposed and side-polished fibre samples were subjected to Knoop micro-hardness measurements for revealing that the irradiated glass undergoes significant volume dilation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Pissadakis, A. Ikiades, P. Hua, A. Sheridan, and J. Wilkinson, “Photosensitivity of ion-exchanged Er-doped phosphate glass using 248nm excimer laser radiation,” Opt. Express 12(14), 3131–3136 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-14-3131 .
    [CrossRef] [PubMed]
  2. S. Yliniemi, S. Honkanen, A. Ianoul, A. Laronche, and J. Albert, “Photosensitivity and volume gratings in phosphate glasses for rare-earth-doped ion-exchanged optical waveguide lasers,” J. Opt. Soc. Am. B 23(12), 2470–2478 (2006).
    [CrossRef]
  3. C. Pappas and S. Pissadakis, “Periodic nanostructuring of Er/Yb-codoped IOG1 phosphate glass by using ultraviolet laser-assisted selective chemical etching,” J. Appl. Phys. 100(11), 114308 (2006).
    [CrossRef]
  4. J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
    [CrossRef]
  5. B. C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35(12), 1007–1009 (1999).
    [CrossRef]
  6. J. E. Shelby, Introduction to Glass Science and Technology (RSC, 2004).
  7. I. Michelakaki and S. Pissadakis, “Atypical behaviour of the surface hardness and the elastic modulus of a phosphate glass matrix under 193 nm laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 453–456 (2009).
    [CrossRef]
  8. J. Canning, M. G. Sceats, H. G. Inglis, and P. Hill, “Transient and permanent gratings in phosphosilicate optical fibers produced by the flash condensation technique,” Opt. Lett. 20(21), 2189–2191 (1995).
    [CrossRef] [PubMed]
  9. J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89(10), 101127 (2006).
    [CrossRef]
  10. D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er–Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
    [CrossRef]
  11. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
    [CrossRef] [PubMed]
  12. J. Canning, “Fibre gratings and devices for sensors and lasers,” Lasers Photonics Rev. 4(2), 275–289 (2008).
    [CrossRef]
  13. M. Livitziis and S. Pissadakis, “Bragg grating recording in low-defect optical fibers using ultraviolet femtosecond radiation and a double-phase mask interferometer,” Opt. Lett. 33(13), 1449–1451 (2008).
    [CrossRef] [PubMed]
  14. N. Groothoff and J. Canning, “Enhanced type IIA gratings for high-temperature operation,” Opt. Lett. 29(20), 2360–2362 (2004).
    [CrossRef] [PubMed]
  15. R. Matei Rogojan, A. Schülzgen, N. Peyghambarian, A. Laronche, and J. Albert, “Photo-thermal gratings in Er3+/Yb3+-doped core phosphate glass single mode fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (Optical Society of America, 2007), paper BTuC3.
  16. S. Pissadakis and I. Michelakaki, “Photosensitivity of the Er/Yb-codoped Schott IOG1 phosphate glass using 248nm, femtosecond and picosecond laser radiation,” Laser Chem. 2008, 868767 (2008).
    [CrossRef]
  17. D. B. Marshall, T. Noma, and A. G. Evans, “A simple method for determining elastic-modulus-to-hardness ratios using knoop indentation technique,” J. Am. Ceram. Soc. 65(10), c175–c176 (1982).
    [CrossRef]
  18. D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,” J. Non-Cryst. Solids 263-264(1-2), 240–250 (2000).
    [CrossRef]
  19. N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
    [CrossRef]
  20. R. Aashia, K. V. Madhav, U. Ramamurty, and S. Asokan, “Nanoindentation study on germania-doped silica glass preforms: evidence for the compaction-densification model of photosensitivity,” Opt. Lett. 34(16), 2414–2416 (2009).
    [CrossRef] [PubMed]

2009 (2)

I. Michelakaki and S. Pissadakis, “Atypical behaviour of the surface hardness and the elastic modulus of a phosphate glass matrix under 193 nm laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 453–456 (2009).
[CrossRef]

R. Aashia, K. V. Madhav, U. Ramamurty, and S. Asokan, “Nanoindentation study on germania-doped silica glass preforms: evidence for the compaction-densification model of photosensitivity,” Opt. Lett. 34(16), 2414–2416 (2009).
[CrossRef] [PubMed]

2008 (3)

J. Canning, “Fibre gratings and devices for sensors and lasers,” Lasers Photonics Rev. 4(2), 275–289 (2008).
[CrossRef]

M. Livitziis and S. Pissadakis, “Bragg grating recording in low-defect optical fibers using ultraviolet femtosecond radiation and a double-phase mask interferometer,” Opt. Lett. 33(13), 1449–1451 (2008).
[CrossRef] [PubMed]

S. Pissadakis and I. Michelakaki, “Photosensitivity of the Er/Yb-codoped Schott IOG1 phosphate glass using 248nm, femtosecond and picosecond laser radiation,” Laser Chem. 2008, 868767 (2008).
[CrossRef]

2007 (2)

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er–Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
[CrossRef] [PubMed]

2006 (3)

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89(10), 101127 (2006).
[CrossRef]

S. Yliniemi, S. Honkanen, A. Ianoul, A. Laronche, and J. Albert, “Photosensitivity and volume gratings in phosphate glasses for rare-earth-doped ion-exchanged optical waveguide lasers,” J. Opt. Soc. Am. B 23(12), 2470–2478 (2006).
[CrossRef]

C. Pappas and S. Pissadakis, “Periodic nanostructuring of Er/Yb-codoped IOG1 phosphate glass by using ultraviolet laser-assisted selective chemical etching,” J. Appl. Phys. 100(11), 114308 (2006).
[CrossRef]

2004 (2)

2003 (2)

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
[CrossRef]

2000 (1)

D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,” J. Non-Cryst. Solids 263-264(1-2), 240–250 (2000).
[CrossRef]

1999 (1)

B. C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35(12), 1007–1009 (1999).
[CrossRef]

1995 (1)

1982 (1)

D. B. Marshall, T. Noma, and A. G. Evans, “A simple method for determining elastic-modulus-to-hardness ratios using knoop indentation technique,” J. Am. Ceram. Soc. 65(10), c175–c176 (1982).
[CrossRef]

Aashia, R.

Albert, J.

S. Yliniemi, S. Honkanen, A. Ianoul, A. Laronche, and J. Albert, “Photosensitivity and volume gratings in phosphate glasses for rare-earth-doped ion-exchanged optical waveguide lasers,” J. Opt. Soc. Am. B 23(12), 2470–2478 (2006).
[CrossRef]

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89(10), 101127 (2006).
[CrossRef]

Androz, G.

Asokan, S.

Bernier, M.

Canning, J.

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
[CrossRef]

Chin, S. L.

Cochet, F.

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
[CrossRef]

Croteau, A.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er–Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

Dong, L.

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
[CrossRef]

Ebeling, P.

D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,” J. Non-Cryst. Solids 263-264(1-2), 240–250 (2000).
[CrossRef]

Ehrt, D.

D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,” J. Non-Cryst. Solids 263-264(1-2), 240–250 (2000).
[CrossRef]

Evans, A. G.

D. B. Marshall, T. Noma, and A. G. Evans, “A simple method for determining elastic-modulus-to-hardness ratios using knoop indentation technique,” J. Am. Ceram. Soc. 65(10), c175–c176 (1982).
[CrossRef]

Faucher, D.

Grobnic, D.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er–Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

Groothoff, N.

Hayden, J. S.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
[CrossRef]

Hill, P.

Honkanen, S.

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89(10), 101127 (2006).
[CrossRef]

S. Yliniemi, S. Honkanen, A. Ianoul, A. Laronche, and J. Albert, “Photosensitivity and volume gratings in phosphate glasses for rare-earth-doped ion-exchanged optical waveguide lasers,” J. Opt. Soc. Am. B 23(12), 2470–2478 (2006).
[CrossRef]

B. C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35(12), 1007–1009 (1999).
[CrossRef]

Hu, Y.

B. C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35(12), 1007–1009 (1999).
[CrossRef]

Hua, P.

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
[CrossRef]

Hwang, B. C.

B. C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35(12), 1007–1009 (1999).
[CrossRef]

Ianoul, A.

Ikiades, A.

Inglis, H. G.

Jiang, S.

B. C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35(12), 1007–1009 (1999).
[CrossRef]

Krol, D. M.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
[CrossRef]

Ky, N. H.

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
[CrossRef]

Lafond, C.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er–Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

Laronche, A.

Limberger, H. G.

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
[CrossRef]

Livitziis, M.

Lucas, J.

B. C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35(12), 1007–1009 (1999).
[CrossRef]

Luo, T.

B. C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35(12), 1007–1009 (1999).
[CrossRef]

Madhav, K. V.

Marshall, D. B.

D. B. Marshall, T. Noma, and A. G. Evans, “A simple method for determining elastic-modulus-to-hardness ratios using knoop indentation technique,” J. Am. Ceram. Soc. 65(10), c175–c176 (1982).
[CrossRef]

Michelakaki, I.

I. Michelakaki and S. Pissadakis, “Atypical behaviour of the surface hardness and the elastic modulus of a phosphate glass matrix under 193 nm laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 453–456 (2009).
[CrossRef]

S. Pissadakis and I. Michelakaki, “Photosensitivity of the Er/Yb-codoped Schott IOG1 phosphate glass using 248nm, femtosecond and picosecond laser radiation,” Laser Chem. 2008, 868767 (2008).
[CrossRef]

Mihailov, S. J.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er–Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

Natura, U.

D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,” J. Non-Cryst. Solids 263-264(1-2), 240–250 (2000).
[CrossRef]

Noma, T.

D. B. Marshall, T. Noma, and A. G. Evans, “A simple method for determining elastic-modulus-to-hardness ratios using knoop indentation technique,” J. Am. Ceram. Soc. 65(10), c175–c176 (1982).
[CrossRef]

Pappas, C.

C. Pappas and S. Pissadakis, “Periodic nanostructuring of Er/Yb-codoped IOG1 phosphate glass by using ultraviolet laser-assisted selective chemical etching,” J. Appl. Phys. 100(11), 114308 (2006).
[CrossRef]

Peyghambarian, N.

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89(10), 101127 (2006).
[CrossRef]

B. C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35(12), 1007–1009 (1999).
[CrossRef]

Pissadakis, S.

I. Michelakaki and S. Pissadakis, “Atypical behaviour of the surface hardness and the elastic modulus of a phosphate glass matrix under 193 nm laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 453–456 (2009).
[CrossRef]

M. Livitziis and S. Pissadakis, “Bragg grating recording in low-defect optical fibers using ultraviolet femtosecond radiation and a double-phase mask interferometer,” Opt. Lett. 33(13), 1449–1451 (2008).
[CrossRef] [PubMed]

S. Pissadakis and I. Michelakaki, “Photosensitivity of the Er/Yb-codoped Schott IOG1 phosphate glass using 248nm, femtosecond and picosecond laser radiation,” Laser Chem. 2008, 868767 (2008).
[CrossRef]

C. Pappas and S. Pissadakis, “Periodic nanostructuring of Er/Yb-codoped IOG1 phosphate glass by using ultraviolet laser-assisted selective chemical etching,” J. Appl. Phys. 100(11), 114308 (2006).
[CrossRef]

S. Pissadakis, A. Ikiades, P. Hua, A. Sheridan, and J. Wilkinson, “Photosensitivity of ion-exchanged Er-doped phosphate glass using 248nm excimer laser radiation,” Opt. Express 12(14), 3131–3136 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-14-3131 .
[CrossRef] [PubMed]

Ramamurty, U.

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
[CrossRef]

Salathé, R. P.

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
[CrossRef]

Saliminia, A.

Sceats, M. G.

Schülzgen, A.

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89(10), 101127 (2006).
[CrossRef]

Sheng, Y.

Sheridan, A.

Smektala, F.

B. C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35(12), 1007–1009 (1999).
[CrossRef]

Smelser, C. W.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er–Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

Temyanko, V. L.

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89(10), 101127 (2006).
[CrossRef]

Vallée, R.

Walker, R. B.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er–Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

Watson, J.

B. C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35(12), 1007–1009 (1999).
[CrossRef]

Wilkinson, J.

Yliniemi, S.

Appl. Phys. Lett. (2)

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
[CrossRef]

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89(10), 101127 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

I. Michelakaki and S. Pissadakis, “Atypical behaviour of the surface hardness and the elastic modulus of a phosphate glass matrix under 193 nm laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 453–456 (2009).
[CrossRef]

Electron. Lett. (1)

B. C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35(12), 1007–1009 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er–Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

J. Am. Ceram. Soc. (1)

D. B. Marshall, T. Noma, and A. G. Evans, “A simple method for determining elastic-modulus-to-hardness ratios using knoop indentation technique,” J. Am. Ceram. Soc. 65(10), c175–c176 (1982).
[CrossRef]

J. Appl. Phys. (1)

C. Pappas and S. Pissadakis, “Periodic nanostructuring of Er/Yb-codoped IOG1 phosphate glass by using ultraviolet laser-assisted selective chemical etching,” J. Appl. Phys. 100(11), 114308 (2006).
[CrossRef]

J. Non-Cryst. Solids (1)

D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,” J. Non-Cryst. Solids 263-264(1-2), 240–250 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Chem. (1)

S. Pissadakis and I. Michelakaki, “Photosensitivity of the Er/Yb-codoped Schott IOG1 phosphate glass using 248nm, femtosecond and picosecond laser radiation,” Laser Chem. 2008, 868767 (2008).
[CrossRef]

Lasers Photonics Rev. (1)

J. Canning, “Fibre gratings and devices for sensors and lasers,” Lasers Photonics Rev. 4(2), 275–289 (2008).
[CrossRef]

Opt. Commun. (1)

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Other (2)

R. Matei Rogojan, A. Schülzgen, N. Peyghambarian, A. Laronche, and J. Albert, “Photo-thermal gratings in Er3+/Yb3+-doped core phosphate glass single mode fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (Optical Society of America, 2007), paper BTuC3.

J. E. Shelby, Introduction to Glass Science and Technology (RSC, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Index modulation Δnmod (red points) and average refractive index Δnave changes (purple points) versus accumulated energy density, for grating exposure of the phosphate glass fibre using 248-nm 500-fs excimer laser radiation. The blue cross-points denote the exposure instances (number of pulses for fixed energy density) where Knoop micro-indentation measurements were performed.

Fig. 2
Fig. 2

Transmission (black line) and reflection (red line) spectra of a 4mm long Bragg grating fabricated in a phosphate glass fibre using 248-nm, 500-fs excimer laser radiation, for an accumulated energy density of 6.5KJ/cm2.

Fig. 3
Fig. 3

Isochronal annealing results for Bragg gratings recorded in the phosphate glass fibre, using 248-nm, 500fs laser radiation. Red circles: 93mJ/cm2 energy density, 6.5kJ/cm2 accumulated energy dose. Blue triangles: 78mJ/cm2 energy density, 3.6kJ/cm2 accumulated energy dose.

Fig. 4
Fig. 4

Knoop micro-hardness indentation measurements performed in the core of the exposed phosphate glass fibres, for different number of irradiation pulses, and 186mJ/cm2 energy density per pulse.

Tables (1)

Tables Icon

Table 1 Summary of the Bragg Wavelength Shift and Erased Average Refractive Index for Different Annealing and Cooling Cycles of the Phosphate Glass Fibre Bragg Reflector for 93mJ/cm2 Energy Density Exposure

Metrics