Abstract

KY(WO4)2 is an attractive material for integrated photonics due to its high refractive index and excellent non-linear and gain characteristics. High refractive index contrast structures increase light-matter interaction, reducing the threshold for lasing and non-linear effects. Furthermore, high refractive index contrast permits dispersion engineering for non-linear optics. In this work, we present a novel fabrication method to realize pedestal microdisk resonators in crystalline KY(WO4)2 material. The fabrication process includes swift heavy ion irradiation of the KY(WO4)2 with 9 MeV carbon ions and sufficient fluence (>2.7·1014 ion/cm2) to create a buried amorphous layer. After annealing at 350° C, microdisks are defined by means of focused ion beam milling. A wet etching step in hydrochloric acid selectively etches the amorphized barrier producing a pedestal structure. The roughness of the bottom surface of the disk is characterized by atomic force microscopy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High index contrast passive potassium double tungstate waveguides

Mustafa Akin Sefunc, Frans B. Segerink, and Sonia M. García-Blanco
Opt. Mater. Express 8(3) 629-638 (2018)

Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy

Western Bolaños, Joan J. Carvajal, Xavier Mateos, Ganapathy Senthil Murugan, Ananth Z. Subramanian, James S. Wilkinson, Eugenio Cantelar, Daniel Jaque, Ginés Lifante, Magdalena Aguiló, and Francisco Díaz
Opt. Express 18(26) 26937-26945 (2010)

Temperature-dependent absorption and emission of potassium double tungstates with high ytterbium content

Yean-Sheng Yong, Shanmugam Aravazhi, Sergio A. Vázquez-Córdova, Joan J. Carjaval, Francesc Díaz, Jennifer L. Herek, Sonia M. García-Blanco, and Markus Pollnau
Opt. Express 24(23) 26825-26837 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
    [Crossref]
  2. A. A. Lagatsky, F. Fusari, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Passive mode locking of a Tm,Ho:KY(WO4)2 laser around 2 µm,” Opt. Lett. 34(17), 2587–2589 (2009).
    [Crossref]
  3. F. Brunner, G. J. Spühler, J. A. Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A. A. Lagatsky, A. Abdolvand, N. V. Kuleshov, and U. Keller, “Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1-W average power,” Opt. Lett. 25(15), 1119–1121 (2000).
    [Crossref]
  4. U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
    [Crossref]
  5. V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
    [Crossref]
  6. A. A. Kaminskii, P. V. Klevtsov, L. Li, and A. A. Pavlyuk, “Stimulated emission from KY(WO4)2: Nd3+ crystal laser,” Phys. Status Solidi A 5(2), K79–K81 (1971).
    [Crossref]
  7. S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. Garcia-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
    [Crossref]
  8. N. Thilmann, G. Strömqvist, M. C. Pujol, V. Pasiskevicius, V. Petrov, and F. Díaz, “Nonlinear refractive indices in Yb3+-doped and undoped monoclinic double tungstates KRE(WO4)2 where RE = Gd, Y, Yb, Lu,” Appl. Phys. B: Lasers Opt. 96(2-3), 385–392 (2009).
    [Crossref]
  9. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref]
  10. C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23(20), 25827–25837 (2015).
    [Crossref]
  11. J. A. Piper and H. M. Pask, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
    [Crossref]
  12. Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
    [Crossref]
  13. Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carvajal, F. Díaz, J. L. Herek, S. M. Garcia-Blanco, and M. Pollnau, “Direct confocal lifetime measurements on rare-earth-doped media exhibiting radiation trapping,” Opt. Mater. Express 7(2), 527–532 (2017).
    [Crossref]
  14. S. A. Vázquez-Córdova, S. Aravazhi, C. Grivas, Y.-S. Yong, S. M. Garcia-Blanco, J. L. Herek, and M. Pollnau, “High optical gain in erbium-doped potassium double tungstate channel waveguide amplifiers,” Opt. Express 26(5), 6260–6266 (2018).
    [Crossref]
  15. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. Garcia-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
    [Crossref]
  16. D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853 (2010).
    [Crossref]
  17. G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photonics 9(4), 828–890 (2017).
    [Crossref]
  18. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
    [Crossref]
  19. B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
    [Crossref]
  20. C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. Garcia-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc SPIE10535, 105350U (2018).
  21. M. A. Sefunc, F. B. Segerink, and S. M. Garcia-Blanco, “High index contrast passive potassium double tungstate waveguides,” Opt. Mater. Express 8(3), 629–638 (2018).
    [Crossref]
  22. R. N. Frentrop, V. Tormo-Márquez, J. Olivares, and S. M. García-Blanco, “High-contrast slab waveguide fabrication in KY(WO4)2 by swift heavy ion irradiation,” Proc SPIE 10535, 105350O (2018).
  23. F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res., Sect. B 250(1-2), 164–168 (2006).
    [Crossref]
  24. A. Crunteanu, G. Jänchen, P. Hoffmann, M. Pollnau, C. Buchal, A. Petraru, R. W. Eason, and D. P. Shepherd, “Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etching,” Appl. Phys. A 76(7), 1109–1112 (2003).
    [Crossref]
  25. L. Capuano, R. Pohl, R. M. Tiggelaar, J. W. Berenschot, J. G. E. Gardeniers, and G. R. B. E. Römer, “Morphology of single picosecond pulse subsurface laser-induced modifications of sapphire and subsequent selective etching,” Opt. Express 26(22), 29283–29295 (2018).
    [Crossref]
  26. S. Lee, K. Jo, H. Keum, S. Chae, Y. Kim, J. Choi, H. H. Lee, and H. J. Kim, “Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface,” Appl. Surf. Sci. 437, 190–194 (2018).
    [Crossref]
  27. R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
    [Crossref]
  28. K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photonics Rev. 4(3), 386–400 (2010).
    [Crossref]
  29. P. D. Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
    [Crossref]
  30. L. a. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 27(6), 2979–2981 (2009).
    [Crossref]
  31. Y. Romanyuk, “Liquid-phase epitaxy of doped KY(WO4)2 layers for waveguide lasers,” Thesis, École Polytechnique Fédérale de Lausanne (2005).
  32. M. Boulova and G. Lucazeau, “Crystallite Nanosize Effect on the Structural Transitions of WO3 Studied by Raman Spectroscopy,” J. Solid State Chem. 167(2), 425–434 (2002).
    [Crossref]
  33. D. R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC-Press, 1995).
  34. R. Legtenberg and H. A. C. Tilmans, “Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication,” Sens. Actuators, A 45(1), 57–66 (1994).
    [Crossref]
  35. S. M. Martinussen, R. N. Frentrop, M. Dijkstra, F. Segerink, V. Tormo-Márquez, J. Olivares, and S. M. Garcia-Blanco, “Pedestal disk resonator in potassium yttrium double tungstate,” Proc SPIE 10535, 105350Q (2018).

2018 (4)

2017 (2)

2015 (2)

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23(20), 25827–25837 (2015).
[Crossref]

2014 (1)

2013 (2)

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. Garcia-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

P. D. Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

2011 (2)

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

2010 (2)

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853 (2010).
[Crossref]

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photonics Rev. 4(3), 386–400 (2010).
[Crossref]

2009 (3)

L. a. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 27(6), 2979–2981 (2009).
[Crossref]

A. A. Lagatsky, F. Fusari, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Passive mode locking of a Tm,Ho:KY(WO4)2 laser around 2 µm,” Opt. Lett. 34(17), 2587–2589 (2009).
[Crossref]

N. Thilmann, G. Strömqvist, M. C. Pujol, V. Pasiskevicius, V. Petrov, and F. Díaz, “Nonlinear refractive indices in Yb3+-doped and undoped monoclinic double tungstates KRE(WO4)2 where RE = Gd, Y, Yb, Lu,” Appl. Phys. B: Lasers Opt. 96(2-3), 385–392 (2009).
[Crossref]

2008 (1)

2007 (2)

J. A. Piper and H. M. Pask, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

2006 (1)

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res., Sect. B 250(1-2), 164–168 (2006).
[Crossref]

2005 (1)

2003 (2)

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
[Crossref]

A. Crunteanu, G. Jänchen, P. Hoffmann, M. Pollnau, C. Buchal, A. Petraru, R. W. Eason, and D. P. Shepherd, “Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etching,” Appl. Phys. A 76(7), 1109–1112 (2003).
[Crossref]

2002 (2)

M. Boulova and G. Lucazeau, “Crystallite Nanosize Effect on the Structural Transitions of WO3 Studied by Raman Spectroscopy,” J. Solid State Chem. 167(2), 425–434 (2002).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref]

2000 (1)

1994 (1)

R. Legtenberg and H. A. C. Tilmans, “Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication,” Sens. Actuators, A 45(1), 57–66 (1994).
[Crossref]

1971 (1)

A. A. Kaminskii, P. V. Klevtsov, L. Li, and A. A. Pavlyuk, “Stimulated emission from KY(WO4)2: Nd3+ crystal laser,” Phys. Status Solidi A 5(2), K79–K81 (1971).
[Crossref]

Abdolvand, A.

Aguiló, M.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
[Crossref]

Alic, N.

Andrekson, P. A.

Aravazhi, S.

Astolfi, M.

Au, J. A.

Barea, L. a. M.

L. a. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 27(6), 2979–2981 (2009).
[Crossref]

Bengtsson, J.

Bentini, G. G.

Berenschot, J. W.

Bianconi, M.

Borsetto, M.

Boulova, M.

M. Boulova and G. Lucazeau, “Crystallite Nanosize Effect on the Structural Transitions of WO3 Studied by Raman Spectroscopy,” J. Solid State Chem. 167(2), 425–434 (2002).
[Crossref]

Brown, C. T. A.

Brunner, F.

Buchal, C.

A. Crunteanu, G. Jänchen, P. Hoffmann, M. Pollnau, C. Buchal, A. Petraru, R. W. Eason, and D. P. Shepherd, “Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etching,” Appl. Phys. A 76(7), 1109–1112 (2003).
[Crossref]

Calvez, S.

Capuano, L.

Carvajal, J. J.

Cerullo, G.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Chae, S.

S. Lee, K. Jo, H. Keum, S. Chae, Y. Kim, J. Choi, H. H. Lee, and H. J. Kim, “Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface,” Appl. Surf. Sci. 437, 190–194 (2018).
[Crossref]

Chembo, Y. K.

G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photonics 9(4), 828–890 (2017).
[Crossref]

Chiarini, M.

Choi, J.

S. Lee, K. Jo, H. Keum, S. Chae, Y. Kim, J. Choi, H. H. Lee, and H. J. Kim, “Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface,” Appl. Surf. Sci. 437, 190–194 (2018).
[Crossref]

Cinta Pujol, M.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Coillet, A.

G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photonics 9(4), 828–890 (2017).
[Crossref]

Cong, Z.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Consonni, G.

Crunteanu, A.

A. Crunteanu, G. Jänchen, P. Hoffmann, M. Pollnau, C. Buchal, A. Petraru, R. W. Eason, and D. P. Shepherd, “Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etching,” Appl. Phys. A 76(7), 1109–1112 (2003).
[Crossref]

Dawson, M. D.

Díaz, F.

Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carvajal, F. Díaz, J. L. Herek, S. M. Garcia-Blanco, and M. Pollnau, “Direct confocal lifetime measurements on rare-earth-doped media exhibiting radiation trapping,” Opt. Mater. Express 7(2), 527–532 (2017).
[Crossref]

N. Thilmann, G. Strömqvist, M. C. Pujol, V. Pasiskevicius, V. Petrov, and F. Díaz, “Nonlinear refractive indices in Yb3+-doped and undoped monoclinic double tungstates KRE(WO4)2 where RE = Gd, Y, Yb, Lu,” Appl. Phys. B: Lasers Opt. 96(2-3), 385–392 (2009).
[Crossref]

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
[Crossref]

Dijkstra, M.

C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. Garcia-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc SPIE10535, 105350U (2018).

S. M. Martinussen, R. N. Frentrop, M. Dijkstra, F. Segerink, V. Tormo-Márquez, J. Olivares, and S. M. Garcia-Blanco, “Pedestal disk resonator in potassium yttrium double tungstate,” Proc SPIE 10535, 105350Q (2018).

Eason, R. W.

A. Crunteanu, G. Jänchen, P. Hoffmann, M. Pollnau, C. Buchal, A. Petraru, R. W. Eason, and D. P. Shepherd, “Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etching,” Appl. Phys. A 76(7), 1109–1112 (2003).
[Crossref]

Erbert, G.

Fainman, Y.

Frateschi, N. C.

L. a. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 27(6), 2979–2981 (2009).
[Crossref]

Frentrop, R. N.

S. M. Martinussen, R. N. Frentrop, M. Dijkstra, F. Segerink, V. Tormo-Márquez, J. Olivares, and S. M. Garcia-Blanco, “Pedestal disk resonator in potassium yttrium double tungstate,” Proc SPIE 10535, 105350Q (2018).

R. N. Frentrop, V. Tormo-Márquez, J. Olivares, and S. M. García-Blanco, “High-contrast slab waveguide fabrication in KY(WO4)2 by swift heavy ion irradiation,” Proc SPIE 10535, 105350O (2018).

Fülöp, A.

Fusari, F.

Garcia-Blanco, S. M.

M. A. Sefunc, F. B. Segerink, and S. M. Garcia-Blanco, “High index contrast passive potassium double tungstate waveguides,” Opt. Mater. Express 8(3), 629–638 (2018).
[Crossref]

S. A. Vázquez-Córdova, S. Aravazhi, C. Grivas, Y.-S. Yong, S. M. Garcia-Blanco, J. L. Herek, and M. Pollnau, “High optical gain in erbium-doped potassium double tungstate channel waveguide amplifiers,” Opt. Express 26(5), 6260–6266 (2018).
[Crossref]

Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carvajal, F. Díaz, J. L. Herek, S. M. Garcia-Blanco, and M. Pollnau, “Direct confocal lifetime measurements on rare-earth-doped media exhibiting radiation trapping,” Opt. Mater. Express 7(2), 527–532 (2017).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. Garcia-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. Garcia-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

S. M. Martinussen, R. N. Frentrop, M. Dijkstra, F. Segerink, V. Tormo-Márquez, J. Olivares, and S. M. Garcia-Blanco, “Pedestal disk resonator in potassium yttrium double tungstate,” Proc SPIE 10535, 105350Q (2018).

C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. Garcia-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc SPIE10535, 105350U (2018).

García-Blanco, S. M.

R. N. Frentrop, V. Tormo-Márquez, J. Olivares, and S. M. García-Blanco, “High-contrast slab waveguide fabrication in KY(WO4)2 by swift heavy ion irradiation,” Proc SPIE 10535, 105350O (2018).

Gardeniers, J. G. E.

Geskus, D.

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. Garcia-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853 (2010).
[Crossref]

Gischkat, T.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res., Sect. B 250(1-2), 164–168 (2006).
[Crossref]

Griebner, U.

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. Garcia-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
[Crossref]

Grivas, C.

Gupta, J. A.

Hanada, Y.

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photonics Rev. 4(3), 386–400 (2010).
[Crossref]

Harder, C.

Hartung, H.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res., Sect. B 250(1-2), 164–168 (2006).
[Crossref]

Herek, J. L.

Hoekstra, H. J. W. M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Hoffmann, P.

A. Crunteanu, G. Jänchen, P. Hoffmann, M. Pollnau, C. Buchal, A. Petraru, R. W. Eason, and D. P. Shepherd, “Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etching,” Appl. Phys. A 76(7), 1109–1112 (2003).
[Crossref]

Ikeda, K.

Jänchen, G.

A. Crunteanu, G. Jänchen, P. Hoffmann, M. Pollnau, C. Buchal, A. Petraru, R. W. Eason, and D. P. Shepherd, “Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etching,” Appl. Phys. A 76(7), 1109–1112 (2003).
[Crossref]

Jo, K.

S. Lee, K. Jo, H. Keum, S. Chae, Y. Kim, J. Choi, H. H. Lee, and H. J. Kim, “Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface,” Appl. Surf. Sci. 437, 190–194 (2018).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, P. V. Klevtsov, L. Li, and A. A. Pavlyuk, “Stimulated emission from KY(WO4)2: Nd3+ crystal laser,” Phys. Status Solidi A 5(2), K79–K81 (1971).
[Crossref]

Keller, U.

Keum, H.

S. Lee, K. Jo, H. Keum, S. Chae, Y. Kim, J. Choi, H. H. Lee, and H. J. Kim, “Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface,” Appl. Surf. Sci. 437, 190–194 (2018).
[Crossref]

Kim, H. J.

S. Lee, K. Jo, H. Keum, S. Chae, Y. Kim, J. Choi, H. H. Lee, and H. J. Kim, “Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface,” Appl. Surf. Sci. 437, 190–194 (2018).
[Crossref]

Kim, Y.

S. Lee, K. Jo, H. Keum, S. Chae, Y. Kim, J. Choi, H. H. Lee, and H. J. Kim, “Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface,” Appl. Surf. Sci. 437, 190–194 (2018).
[Crossref]

Kippenberg, T. J.

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref]

Kisel, V. E.

Kisel’, V. E.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Klevtsov, P. V.

A. A. Kaminskii, P. V. Klevtsov, L. Li, and A. A. Pavlyuk, “Stimulated emission from KY(WO4)2: Nd3+ crystal laser,” Phys. Status Solidi A 5(2), K79–K81 (1971).
[Crossref]

Kley, E.-B.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res., Sect. B 250(1-2), 164–168 (2006).
[Crossref]

Klintberg, T.

Kooijman, R.

C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. Garcia-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc SPIE10535, 105350U (2018).

Kovalyov, A. A.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Krainer, L.

Krückel, C. J.

Kuleshov, N. V.

Kuril’chik, S. V.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Lagatsky, A. A.

Lee, H. H.

S. Lee, K. Jo, H. Keum, S. Chae, Y. Kim, J. Choi, H. H. Lee, and H. J. Kim, “Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface,” Appl. Surf. Sci. 437, 190–194 (2018).
[Crossref]

Lee, S.

S. Lee, K. Jo, H. Keum, S. Chae, Y. Kim, J. Choi, H. H. Lee, and H. J. Kim, “Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface,” Appl. Surf. Sci. 437, 190–194 (2018).
[Crossref]

Legtenberg, R.

R. Legtenberg and H. A. C. Tilmans, “Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication,” Sens. Actuators, A 45(1), 57–66 (1994).
[Crossref]

Li, J.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Li, L.

A. A. Kaminskii, P. V. Klevtsov, L. Li, and A. A. Pavlyuk, “Stimulated emission from KY(WO4)2: Nd3+ crystal laser,” Phys. Status Solidi A 5(2), K79–K81 (1971).
[Crossref]

Lichtenstein, N.

Lide, D. R.

D. R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC-Press, 1995).

Lin, G.

G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photonics 9(4), 828–890 (2017).
[Crossref]

Liu, J.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Liu, Z.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Longone, R.

Lucazeau, G.

M. Boulova and G. Lucazeau, “Crystallite Nanosize Effect on the Structural Transitions of WO3 Studied by Raman Spectroscopy,” J. Solid State Chem. 167(2), 425–434 (2002).
[Crossref]

Martinussen, S. M.

S. M. Martinussen, R. N. Frentrop, M. Dijkstra, F. Segerink, V. Tormo-Márquez, J. Olivares, and S. M. Garcia-Blanco, “Pedestal disk resonator in potassium yttrium double tungstate,” Proc SPIE 10535, 105350Q (2018).

C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. Garcia-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc SPIE10535, 105350U (2018).

Massons, J.

Mateos, X.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
[Crossref]

Menin, A.

Meroni, A.

Mialichi, J. R.

L. a. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 27(6), 2979–2981 (2009).
[Crossref]

Midorikawa, K.

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photonics Rev. 4(3), 386–400 (2010).
[Crossref]

Min, B.

Montanari, G. B.

Morier-Genoud, F.

Mu, J.

C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. Garcia-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc SPIE10535, 105350U (2018).

Nicola, P. D.

Nubile, A.

Olivares, J.

R. N. Frentrop, V. Tormo-Márquez, J. Olivares, and S. M. García-Blanco, “High-contrast slab waveguide fabrication in KY(WO4)2 by swift heavy ion irradiation,” Proc SPIE 10535, 105350O (2018).

S. M. Martinussen, R. N. Frentrop, M. Dijkstra, F. Segerink, V. Tormo-Márquez, J. Olivares, and S. M. Garcia-Blanco, “Pedestal disk resonator in potassium yttrium double tungstate,” Proc SPIE 10535, 105350Q (2018).

Osellame, R.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Paschotta, R.

Pasiskevicius, V.

N. Thilmann, G. Strömqvist, M. C. Pujol, V. Pasiskevicius, V. Petrov, and F. Díaz, “Nonlinear refractive indices in Yb3+-doped and undoped monoclinic double tungstates KRE(WO4)2 where RE = Gd, Y, Yb, Lu,” Appl. Phys. B: Lasers Opt. 96(2-3), 385–392 (2009).
[Crossref]

Pask, H. M.

J. A. Piper and H. M. Pask, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

Pavlyuk, A. A.

A. A. Kaminskii, P. V. Klevtsov, L. Li, and A. A. Pavlyuk, “Stimulated emission from KY(WO4)2: Nd3+ crystal laser,” Phys. Status Solidi A 5(2), K79–K81 (1971).
[Crossref]

Pchelyakov, O. P.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Petraru, A.

A. Crunteanu, G. Jänchen, P. Hoffmann, M. Pollnau, C. Buchal, A. Petraru, R. W. Eason, and D. P. Shepherd, “Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etching,” Appl. Phys. A 76(7), 1109–1112 (2003).
[Crossref]

Petrov, V.

N. Thilmann, G. Strömqvist, M. C. Pujol, V. Pasiskevicius, V. Petrov, and F. Díaz, “Nonlinear refractive indices in Yb3+-doped and undoped monoclinic double tungstates KRE(WO4)2 where RE = Gd, Y, Yb, Lu,” Appl. Phys. B: Lasers Opt. 96(2-3), 385–392 (2009).
[Crossref]

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
[Crossref]

Piper, J. A.

J. A. Piper and H. M. Pask, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

Pohl, R.

Pollnau, M.

S. A. Vázquez-Córdova, S. Aravazhi, C. Grivas, Y.-S. Yong, S. M. Garcia-Blanco, J. L. Herek, and M. Pollnau, “High optical gain in erbium-doped potassium double tungstate channel waveguide amplifiers,” Opt. Express 26(5), 6260–6266 (2018).
[Crossref]

Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carvajal, F. Díaz, J. L. Herek, S. M. Garcia-Blanco, and M. Pollnau, “Direct confocal lifetime measurements on rare-earth-doped media exhibiting radiation trapping,” Opt. Mater. Express 7(2), 527–532 (2017).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. Garcia-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. Garcia-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853 (2010).
[Crossref]

A. Crunteanu, G. Jänchen, P. Hoffmann, M. Pollnau, C. Buchal, A. Petraru, R. W. Eason, and D. P. Shepherd, “Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etching,” Appl. Phys. A 76(7), 1109–1112 (2003).
[Crossref]

Preobrazhenskii, V. V.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Pujol, M. C.

N. Thilmann, G. Strömqvist, M. C. Pujol, V. Pasiskevicius, V. Petrov, and F. Díaz, “Nonlinear refractive indices in Yb3+-doped and undoped monoclinic double tungstates KRE(WO4)2 where RE = Gd, Y, Yb, Lu,” Appl. Phys. B: Lasers Opt. 96(2-3), 385–392 (2009).
[Crossref]

Putyato, M. A.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Qin, Z.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Rivier, S.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
[Crossref]

Romanyuk, Y.

Y. Romanyuk, “Liquid-phase epitaxy of doped KY(WO4)2 layers for waveguide lasers,” Thesis, École Polytechnique Fédérale de Lausanne (2005).

Römer, G. R. B. E.

Rubtsova, N. N.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Saperstein, R. E.

Schrempel, F.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res., Sect. B 250(1-2), 164–168 (2006).
[Crossref]

Sefunc, M. A.

Segerink, F.

S. M. Martinussen, R. N. Frentrop, M. Dijkstra, F. Segerink, V. Tormo-Márquez, J. Olivares, and S. M. Garcia-Blanco, “Pedestal disk resonator in potassium yttrium double tungstate,” Proc SPIE 10535, 105350Q (2018).

Segerink, F. B.

Semyagin, B. R.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Shepherd, D. P.

A. Crunteanu, G. Jänchen, P. Hoffmann, M. Pollnau, C. Buchal, A. Petraru, R. W. Eason, and D. P. Shepherd, “Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etching,” Appl. Phys. A 76(7), 1109–1112 (2003).
[Crossref]

Sibbett, W.

Silvestre, Ò.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Solé, R. M.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref]

Spühler, G. J.

Strömqvist, G.

N. Thilmann, G. Strömqvist, M. C. Pujol, V. Pasiskevicius, V. Petrov, and F. Díaz, “Nonlinear refractive indices in Yb3+-doped and undoped monoclinic double tungstates KRE(WO4)2 where RE = Gd, Y, Yb, Lu,” Appl. Phys. B: Lasers Opt. 96(2-3), 385–392 (2009).
[Crossref]

Sugioka, K.

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photonics Rev. 4(3), 386–400 (2010).
[Crossref]

Sugliani, S.

Thilmann, N.

N. Thilmann, G. Strömqvist, M. C. Pujol, V. Pasiskevicius, V. Petrov, and F. Díaz, “Nonlinear refractive indices in Yb3+-doped and undoped monoclinic double tungstates KRE(WO4)2 where RE = Gd, Y, Yb, Lu,” Appl. Phys. B: Lasers Opt. 96(2-3), 385–392 (2009).
[Crossref]

Tiggelaar, R. M.

Tilmans, H. A. C.

R. Legtenberg and H. A. C. Tilmans, “Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication,” Sens. Actuators, A 45(1), 57–66 (1994).
[Crossref]

Tormo-Márquez, V.

S. M. Martinussen, R. N. Frentrop, M. Dijkstra, F. Segerink, V. Tormo-Márquez, J. Olivares, and S. M. Garcia-Blanco, “Pedestal disk resonator in potassium yttrium double tungstate,” Proc SPIE 10535, 105350Q (2018).

R. N. Frentrop, V. Tormo-Márquez, J. Olivares, and S. M. García-Blanco, “High-contrast slab waveguide fabrication in KY(WO4)2 by swift heavy ion irradiation,” Proc SPIE 10535, 105350O (2018).

Torres-Company, V.

Vahala, K. J.

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref]

Vallini, F.

L. a. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 27(6), 2979–2981 (2009).
[Crossref]

van Dalfsen, K.

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. Garcia-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. Garcia-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

van Emmerik, C. I.

C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. Garcia-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc SPIE10535, 105350U (2018).

Vaz, A. R.

L. a. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 27(6), 2979–2981 (2009).
[Crossref]

Vázquez-Córdova, S. A.

Vergani, P.

Wang, W.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Weiss, S.

Wesch, W.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res., Sect. B 250(1-2), 164–168 (2006).
[Crossref]

Weyers, M.

Wörhoff, K.

Yong, Y.-S.

Yu, H.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Zhang, H.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Zhang, X.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Zorn, M.

Adv. Opt. Photonics (1)

G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photonics 9(4), 828–890 (2017).
[Crossref]

Appl. Phys. A (1)

A. Crunteanu, G. Jänchen, P. Hoffmann, M. Pollnau, C. Buchal, A. Petraru, R. W. Eason, and D. P. Shepherd, “Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etching,” Appl. Phys. A 76(7), 1109–1112 (2003).
[Crossref]

Appl. Phys. B: Lasers Opt. (2)

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. Garcia-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

N. Thilmann, G. Strömqvist, M. C. Pujol, V. Pasiskevicius, V. Petrov, and F. Díaz, “Nonlinear refractive indices in Yb3+-doped and undoped monoclinic double tungstates KRE(WO4)2 where RE = Gd, Y, Yb, Lu,” Appl. Phys. B: Lasers Opt. 96(2-3), 385–392 (2009).
[Crossref]

Appl. Surf. Sci. (1)

S. Lee, K. Jo, H. Keum, S. Chae, Y. Kim, J. Choi, H. H. Lee, and H. J. Kim, “Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface,” Appl. Surf. Sci. 437, 190–194 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Piper and H. M. Pask, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Solid State Chem. (1)

M. Boulova and G. Lucazeau, “Crystallite Nanosize Effect on the Structural Transitions of WO3 Studied by Raman Spectroscopy,” J. Solid State Chem. 167(2), 425–434 (2002).
[Crossref]

J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. (1)

L. a. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 27(6), 2979–2981 (2009).
[Crossref]

Laser Photonics Rev. (3)

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photonics Rev. 4(3), 386–400 (2010).
[Crossref]

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Laser Phys. Lett. (1)

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Nature (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. B (1)

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res., Sect. B 250(1-2), 164–168 (2006).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (2)

Phys. Status Solidi A (1)

A. A. Kaminskii, P. V. Klevtsov, L. Li, and A. A. Pavlyuk, “Stimulated emission from KY(WO4)2: Nd3+ crystal laser,” Phys. Status Solidi A 5(2), K79–K81 (1971).
[Crossref]

Sens. Actuators, A (1)

R. Legtenberg and H. A. C. Tilmans, “Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication,” Sens. Actuators, A 45(1), 57–66 (1994).
[Crossref]

Other (5)

D. R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC-Press, 1995).

C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. Garcia-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc SPIE10535, 105350U (2018).

R. N. Frentrop, V. Tormo-Márquez, J. Olivares, and S. M. García-Blanco, “High-contrast slab waveguide fabrication in KY(WO4)2 by swift heavy ion irradiation,” Proc SPIE 10535, 105350O (2018).

S. M. Martinussen, R. N. Frentrop, M. Dijkstra, F. Segerink, V. Tormo-Márquez, J. Olivares, and S. M. Garcia-Blanco, “Pedestal disk resonator in potassium yttrium double tungstate,” Proc SPIE 10535, 105350Q (2018).

Y. Romanyuk, “Liquid-phase epitaxy of doped KY(WO4)2 layers for waveguide lasers,” Thesis, École Polytechnique Fédérale de Lausanne (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Complete process flow. (a) Virgin KY(WO4)2 substrate. (b) Ion irradiation creates a refractive index gradient. The electronic barrier is marked by “el.” and the nuclear barrier is marked by “n.”. (c) Thermal annealing removes point defects and repairs the KY(WO4)2 that is only partially amorphized, which makes the refractive index profile more step-like. (d) Overgrowth with protective PECVD SiO2 (in blue) and AuPd SEM coating (in yellow). (e) FIB milling with 30 keV Ga+ ions and a current of 21 nA. (f) Wet etching with HCl and TMAH followed by SiO2 removal with HF. The top of the sample contains an unetched disk. Beneath it is an underetched region.
Fig. 2.
Fig. 2. a) Overlay of SEM image and FIB pattern. The green ring represents the material to be milled. b) Resulting FIB milled microdisk in KY(WO4)2.
Fig. 3.
Fig. 3. (a) FIB cross-section of a KY(WO4)2 disk etched in 20% HCl for 6 hours. The wet etching process is effective at reaching deep into the material. The etching is faster at the interfaces of the barrier, as indicated on the left edge of the cavity. A large amount of unetched material remains and has been artificially colored. (b) The same sample after 1 hour of etching in 25% TMAH. The residues have been completely removed, including the coating on the bottom side of the core as well as the wedge shape on the left.
Fig. 4.
Fig. 4. Raman spectrum of residues compared with crystalline KY(WO4)2 from the same sample with laser polarization E||c, differentiated by the depth of the focus. The Raman peaks associated with 16 nm WO3 nanocrystals are indicated with dashed lines at 265 cm−1, 705 cm−1, and 799 cm−1 [32].
Fig. 5.
Fig. 5. (a) SEM image of a 80 µm diameter pedestal disk in KY(WO4)2 after two rounds of 32% HCl for two hours, each of them followed by a 25% TMAH etching step for one hour. (b) Cross section of a KY(WO4)2 sample that has been etched for two rounds of two hours in 32% HCl and 1 hour in 25% TMAH. The horizontal depth of the underetch is 29 µm, the vertical depth is 3 µm and the disk is 1 µm thick throughout the outer 10 µm of the disk. The approximate boundaries between the initial etch, the transition region and the final etch are indicated by notches.
Fig. 6.
Fig. 6. Remaining KY(WO4)2 structures after transfer to adhesive tape. The center of the disk has not been transferred because it is firmly attached to the pedestal. The underetched area surrounding the disk, also visible in Fig. 5 a), has also been transferred. The area of main interest is indicated by the red circle, selected for its lack of cracks.
Fig. 7.
Fig. 7. AFM image of a 1.5 µm by 1.5 µm section of the underside of the disk in Fig. 2. The image was made close to the edge of the disk.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

KY ( W O 4 ) 2 + 4 HCl 100 C KCl + YC l 3 + 2 W O 3 + 2 H 2 O

Metrics