Abstract

We proposed a bulk Dirac semimetal (BDS) based metamaterial that consists of two identical vertical BDS rods and two horizontal BDS rods with different lengths. Numerical simulation results show that the proposed structure can realize the tunable multiple plasmon-induced transparency (multi-PIT) effect. The multi-PIT effect is mainly attributed to the introduction of the bonding mode simply by manipulating the lengths of horizontal rods. By changing the Fermi energy of the BDS, the tunable multi-PIT spectrum and tunable multi-band group delay can be achieved. The multi-PIT peaks are also sensitive to the background refractive index and can lead high FOM values of 16, 50.9 and 10.6, respectively. The proposed structure is desirable for designing tunable THz sensors, modulators and slow light devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial

Huan Chen, Huiyun Zhang, Xiaohan Guo, Shande Liu, and Yuping Zhang
Appl. Opt. 57(4) 752-756 (2018)

Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals

Huan Chen, Huiyun Zhang, Maodong Liu, Yunkun Zhao, Xiaohan Guo, and Yuping Zhang
Opt. Mater. Express 7(9) 3397-3407 (2017)

Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies

Tongling Wang, Maoyong Cao, Yuping Zhang, and Huiyun Zhang
Opt. Mater. Express 9(4) 1562-1576 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref]
  2. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  3. M. Mesch, T. Weiss, M. Schaferling, M. Hentschel, E. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
    [Crossref]
  4. A. Keshavarz and Z. Vafapour, “Sensing Avian Influenza viruses using Terahertz metamaterial Reflector,” IEEE Sens. J. 19(13), 5161–5166 (2019).
    [Crossref]
  5. Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” J. Opt. Soc. Am. B 35(5), 1192–1199 (2018).
    [Crossref]
  6. Z. Vafapour, “Slow light modulator using semiconductor metamaterial,” Proc. SPIE 10535, 105352A (2018).
  7. S. Xiao, T. Liu, C. Zhou, X. Jiang, L. Cheng, and C. Xu, “Tailoring slow light with a metal–graphene hybrid metasurface in the terahertz regime,” J. Opt. Soc. Am. B 36(7), E48–E54 (2019).
    [Crossref]
  8. C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
    [Crossref]
  9. Z. Vafapour, “Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance,” J. Opt. Soc. Am. A 35(3), 417–422 (2018).
    [Crossref]
  10. T. Kim, H. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
    [Crossref]
  11. X. Zhao, J. Zhang, K. Fan, G. Duan, J. Schalch, G. R. Kerser, R. D. Averitt, and X. Zhang, “Real-time tunable phase response and group delay in broadside coupled split-ring resonators,” Phys. Rev. B 99(24), 245111 (2019).
    [Crossref]
  12. Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57(4), 722–729 (2018).
    [Crossref]
  13. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref]
  14. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref]
  15. J. Hu, T. Lang, Z. Hong, C. Shen, and G. Shi, “Comparison of Electromagnetically Induced Transparency Performance in Metallic and All-dielectric Metamaterials,” J. Lightwave Technol. 36(11), 2083–2093 (2018).
    [Crossref]
  16. H. Li, “Polarization-insensitive electromagnetically induced transparency based on ultra-thin coupling planar metamaterials,” Opt. Mater. Express 8(2), 348–355 (2018).
    [Crossref]
  17. C. Liu, P. Liu, C. Yang, Y. Lin, and S. Zha, “Dynamic electromagnetically induced transparency based on a metal-graphene hybrid metamaterial,” Opt. Mater. Express 8(5), 1132–1142 (2018).
    [Crossref]
  18. T. Ma, Q. Huang, H. He, Y. Zhao, X. Lin, and Y. Lu, “All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range,” Opt. Express 27(12), 16624–16634 (2019).
    [Crossref]
  19. W. Li, X. Zhai, X. Shang, S. Xia, M. Qing, and L. Wang, “Multi-spectral plasmon induced transparency based on three-dimensional metamaterials,” Opt. Mater. Express 7(12), 4269–4276 (2017).
    [Crossref]
  20. H. Chen, H. Zhang, M. Liu, Y. Zhao, S. Liu, and Y. Zhang, “Tunable multiple plasmon-induced transparency in three-dimensional Dirac semimetal metamaterials,” Opt. Commun. 423, 57–62 (2018).
    [Crossref]
  21. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
    [Crossref]
  22. H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
    [Crossref]
  23. H. Chen, H. Zhang, X. Guo, S. Liu, and Y. Zhang, “Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial,” Appl. Opt. 57(4), 752–756 (2018).
    [Crossref]
  24. L. Dai, Y. Zhang, X. Guo, Y. Zhao, S. Liu, and H. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on Dirac Semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
    [Crossref]
  25. H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in Dirac Semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
    [Crossref]
  26. T. Wang, M. Cao, Y. Zhang, and H. Zhang, “Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies,” Opt. Mater. Express 9(4), 1562–1576 (2019).
    [Crossref]
  27. Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
    [Crossref]
  28. Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
    [Crossref]
  29. O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
    [Crossref]
  30. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-Coupled Plasmon-Induced Transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
    [Crossref]
  31. X. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Rhee, K. Kim, H. S. Cheong, and W. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
    [Crossref]
  32. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
    [Crossref]

2019 (6)

A. Keshavarz and Z. Vafapour, “Sensing Avian Influenza viruses using Terahertz metamaterial Reflector,” IEEE Sens. J. 19(13), 5161–5166 (2019).
[Crossref]

S. Xiao, T. Liu, C. Zhou, X. Jiang, L. Cheng, and C. Xu, “Tailoring slow light with a metal–graphene hybrid metasurface in the terahertz regime,” J. Opt. Soc. Am. B 36(7), E48–E54 (2019).
[Crossref]

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

X. Zhao, J. Zhang, K. Fan, G. Duan, J. Schalch, G. R. Kerser, R. D. Averitt, and X. Zhang, “Real-time tunable phase response and group delay in broadside coupled split-ring resonators,” Phys. Rev. B 99(24), 245111 (2019).
[Crossref]

T. Ma, Q. Huang, H. He, Y. Zhao, X. Lin, and Y. Lu, “All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range,” Opt. Express 27(12), 16624–16634 (2019).
[Crossref]

T. Wang, M. Cao, Y. Zhang, and H. Zhang, “Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies,” Opt. Mater. Express 9(4), 1562–1576 (2019).
[Crossref]

2018 (13)

H. Chen, H. Zhang, M. Liu, Y. Zhao, S. Liu, and Y. Zhang, “Tunable multiple plasmon-induced transparency in three-dimensional Dirac semimetal metamaterials,” Opt. Commun. 423, 57–62 (2018).
[Crossref]

H. Chen, H. Zhang, X. Guo, S. Liu, and Y. Zhang, “Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial,” Appl. Opt. 57(4), 752–756 (2018).
[Crossref]

L. Dai, Y. Zhang, X. Guo, Y. Zhao, S. Liu, and H. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on Dirac Semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
[Crossref]

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in Dirac Semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

J. Hu, T. Lang, Z. Hong, C. Shen, and G. Shi, “Comparison of Electromagnetically Induced Transparency Performance in Metallic and All-dielectric Metamaterials,” J. Lightwave Technol. 36(11), 2083–2093 (2018).
[Crossref]

H. Li, “Polarization-insensitive electromagnetically induced transparency based on ultra-thin coupling planar metamaterials,” Opt. Mater. Express 8(2), 348–355 (2018).
[Crossref]

C. Liu, P. Liu, C. Yang, Y. Lin, and S. Zha, “Dynamic electromagnetically induced transparency based on a metal-graphene hybrid metamaterial,” Opt. Mater. Express 8(5), 1132–1142 (2018).
[Crossref]

Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57(4), 722–729 (2018).
[Crossref]

M. Mesch, T. Weiss, M. Schaferling, M. Hentschel, E. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

Z. Vafapour, “Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance,” J. Opt. Soc. Am. A 35(3), 417–422 (2018).
[Crossref]

T. Kim, H. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” J. Opt. Soc. Am. B 35(5), 1192–1199 (2018).
[Crossref]

2017 (2)

2016 (1)

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

2014 (2)

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

2011 (2)

2010 (1)

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-Coupled Plasmon-Induced Transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref]

2009 (1)

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

2008 (1)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

1991 (1)

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref]

Averitt, R. D.

X. Zhao, J. Zhang, K. Fan, G. Duan, J. Schalch, G. R. Kerser, R. D. Averitt, and X. Zhang, “Real-time tunable phase response and group delay in broadside coupled split-ring resonators,” Phys. Rev. B 99(24), 245111 (2019).
[Crossref]

Barnard, E. S.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-Coupled Plasmon-Induced Transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref]

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Brongersma, M. L.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-Coupled Plasmon-Induced Transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref]

Cai, W.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-Coupled Plasmon-Induced Transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref]

Cao, M.

T. Wang, M. Cao, Y. Zhang, and H. Zhang, “Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies,” Opt. Mater. Express 9(4), 1562–1576 (2019).
[Crossref]

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in Dirac Semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

Chen, H.

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in Dirac Semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

H. Chen, H. Zhang, X. Guo, S. Liu, and Y. Zhang, “Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial,” Appl. Opt. 57(4), 752–756 (2018).
[Crossref]

H. Chen, H. Zhang, M. Liu, Y. Zhao, S. Liu, and Y. Zhang, “Tunable multiple plasmon-induced transparency in three-dimensional Dirac semimetal metamaterials,” Opt. Commun. 423, 57–62 (2018).
[Crossref]

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

Chen, Y. L.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Cheng, L.

Cheong, H. S.

Chung, D.

T. Kim, H. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Dai, L.

Dai, X.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Duan, G.

X. Zhao, J. Zhang, K. Fan, G. Duan, J. Schalch, G. R. Kerser, R. D. Averitt, and X. Zhang, “Real-time tunable phase response and group delay in broadside coupled split-ring resonators,” Phys. Rev. B 99(24), 245111 (2019).
[Crossref]

Dudin, P.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Fan, K.

X. Zhao, J. Zhang, K. Fan, G. Duan, J. Schalch, G. R. Kerser, R. D. Averitt, and X. Zhang, “Real-time tunable phase response and group delay in broadside coupled split-ring resonators,” Phys. Rev. B 99(24), 245111 (2019).
[Crossref]

Fang, Z.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Feng, D. L.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Ghahraloud, H.

Giessen, H.

M. Mesch, T. Weiss, M. Schaferling, M. Hentschel, E. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Guo, X.

Ha, T.

T. Kim, H. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

He, H.

Hegde, E. S.

M. Mesch, T. Weiss, M. Schaferling, M. Hentschel, E. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

Hentschel, M.

M. Mesch, T. Weiss, M. Schaferling, M. Hentschel, E. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref]

Hoesch, M.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Hong, Z.

Hu, J.

Huang, Q.

Hussain, Z.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Imamoglu, A.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Jang, W.

Jiang, J.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Jiang, X.

Jin, X.

Kastel, J.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Kekatpure, R. D.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-Coupled Plasmon-Induced Transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref]

Kerser, G. R.

X. Zhao, J. Zhang, K. Fan, G. Duan, J. Schalch, G. R. Kerser, R. D. Averitt, and X. Zhang, “Real-time tunable phase response and group delay in broadside coupled split-ring resonators,” Phys. Rev. B 99(24), 245111 (2019).
[Crossref]

Keshavarz, A.

A. Keshavarz and Z. Vafapour, “Sensing Avian Influenza viruses using Terahertz metamaterial Reflector,” IEEE Sens. J. 19(13), 5161–5166 (2019).
[Crossref]

Kim, H.

T. Kim, H. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Kim, K.

Kim, T.

T. Kim, H. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Kotov, O. V.

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Lang, T.

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Lee, S.

Lee, Y.

T. Kim, H. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

X. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Rhee, K. Kim, H. S. Cheong, and W. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
[Crossref]

Li, H.

Li, W.

Li, Z.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Lin, X.

Lin, Y.

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

C. Liu, P. Liu, C. Yang, Y. Lin, and S. Zha, “Dynamic electromagnetically induced transparency based on a metal-graphene hybrid metamaterial,” Opt. Mater. Express 8(5), 1132–1142 (2018).
[Crossref]

Liu, C.

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

C. Liu, P. Liu, C. Yang, Y. Lin, and S. Zha, “Dynamic electromagnetically induced transparency based on a metal-graphene hybrid metamaterial,” Opt. Mater. Express 8(5), 1132–1142 (2018).
[Crossref]

Liu, H.

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

Liu, M.

H. Chen, H. Zhang, M. Liu, Y. Zhao, S. Liu, and Y. Zhang, “Tunable multiple plasmon-induced transparency in three-dimensional Dirac semimetal metamaterials,” Opt. Commun. 423, 57–62 (2018).
[Crossref]

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Liu, P.

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

C. Liu, P. Liu, C. Yang, Y. Lin, and S. Zha, “Dynamic electromagnetically induced transparency based on a metal-graphene hybrid metamaterial,” Opt. Mater. Express 8(5), 1132–1142 (2018).
[Crossref]

Liu, S.

L. Dai, Y. Zhang, X. Guo, Y. Zhao, S. Liu, and H. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on Dirac Semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
[Crossref]

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in Dirac Semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

H. Chen, H. Zhang, M. Liu, Y. Zhao, S. Liu, and Y. Zhang, “Tunable multiple plasmon-induced transparency in three-dimensional Dirac semimetal metamaterials,” Opt. Commun. 423, 57–62 (2018).
[Crossref]

H. Chen, H. Zhang, X. Guo, S. Liu, and Y. Zhang, “Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial,” Appl. Opt. 57(4), 752–756 (2018).
[Crossref]

Liu, T.

S. Xiao, T. Liu, C. Zhou, X. Jiang, L. Cheng, and C. Xu, “Tailoring slow light with a metal–graphene hybrid metasurface in the terahertz regime,” J. Opt. Soc. Am. B 36(7), E48–E54 (2019).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liu, Z. K.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Lozovik, Y. E.

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Lu, Y.

Ma, T.

Mesch, M.

M. Mesch, T. Weiss, M. Schaferling, M. Hentschel, E. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

Min, B.

T. Kim, H. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Mo, S.-K.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Oh, S.

T. Kim, H. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Park, J.

Peng, H.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Prabhakaran, D.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Qing, M.

Rhee, J.

Schaferling, M.

M. Mesch, T. Weiss, M. Schaferling, M. Hentschel, E. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

Schalch, J.

X. Zhao, J. Zhang, K. Fan, G. Duan, J. Schalch, G. R. Kerser, R. D. Averitt, and X. Zhang, “Real-time tunable phase response and group delay in broadside coupled split-ring resonators,” Phys. Rev. B 99(24), 245111 (2019).
[Crossref]

Shang, X.

Shen, C.

Shen, Z. X.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Shi, G.

Vafapour, Z.

Wang, L.

Wang, T.

T. Wang, M. Cao, Y. Zhang, and H. Zhang, “Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies,” Opt. Mater. Express 9(4), 1562–1576 (2019).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Wang, Z. J.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Weiss, T.

M. Mesch, T. Weiss, M. Schaferling, M. Hentschel, E. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Weng, H. M.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Xia, S.

Xiao, S.

S. Xiao, T. Liu, C. Zhou, X. Jiang, L. Cheng, and C. Xu, “Tailoring slow light with a metal–graphene hybrid metasurface in the terahertz regime,” J. Opt. Soc. Am. B 36(7), E48–E54 (2019).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xu, C.

S. Xiao, T. Liu, C. Zhou, X. Jiang, L. Cheng, and C. Xu, “Tailoring slow light with a metal–graphene hybrid metasurface in the terahertz regime,” J. Opt. Soc. Am. B 36(7), E48–E54 (2019).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Yan, X.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Yang, C.

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

C. Liu, P. Liu, C. Yang, Y. Lin, and S. Zha, “Dynamic electromagnetically induced transparency based on a metal-graphene hybrid metamaterial,” Opt. Mater. Express 8(5), 1132–1142 (2018).
[Crossref]

Zha, S.

Zhai, X.

Zhang, H.

Zhang, J.

X. Zhao, J. Zhang, K. Fan, G. Duan, J. Schalch, G. R. Kerser, R. D. Averitt, and X. Zhang, “Real-time tunable phase response and group delay in broadside coupled split-ring resonators,” Phys. Rev. B 99(24), 245111 (2019).
[Crossref]

Zhang, S.

T. Kim, H. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, X.

X. Zhao, J. Zhang, K. Fan, G. Duan, J. Schalch, G. R. Kerser, R. D. Averitt, and X. Zhang, “Real-time tunable phase response and group delay in broadside coupled split-ring resonators,” Phys. Rev. B 99(24), 245111 (2019).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, Y.

T. Wang, M. Cao, Y. Zhang, and H. Zhang, “Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies,” Opt. Mater. Express 9(4), 1562–1576 (2019).
[Crossref]

L. Dai, Y. Zhang, X. Guo, Y. Zhao, S. Liu, and H. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on Dirac Semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
[Crossref]

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in Dirac Semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

H. Chen, H. Zhang, X. Guo, S. Liu, and Y. Zhang, “Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial,” Appl. Opt. 57(4), 752–756 (2018).
[Crossref]

H. Chen, H. Zhang, M. Liu, Y. Zhao, S. Liu, and Y. Zhang, “Tunable multiple plasmon-induced transparency in three-dimensional Dirac semimetal metamaterials,” Opt. Commun. 423, 57–62 (2018).
[Crossref]

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Zhao, R.

T. Kim, H. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Zhao, X.

X. Zhao, J. Zhang, K. Fan, G. Duan, J. Schalch, G. R. Kerser, R. D. Averitt, and X. Zhang, “Real-time tunable phase response and group delay in broadside coupled split-ring resonators,” Phys. Rev. B 99(24), 245111 (2019).
[Crossref]

Zhao, Y.

Zheng, H.

Zhou, B.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

Zhou, C.

ACS Photonics (1)

T. Kim, H. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

ACS Sens. (1)

M. Mesch, T. Weiss, M. Schaferling, M. Hentschel, E. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

Appl. Opt. (2)

Carbon (2)

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

IEEE Sens. J. (1)

A. Keshavarz and Z. Vafapour, “Sensing Avian Influenza viruses using Terahertz metamaterial Reflector,” IEEE Sens. J. 19(13), 5161–5166 (2019).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nat. Mater. (2)

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Opt. Commun. (1)

H. Chen, H. Zhang, M. Liu, Y. Zhao, S. Liu, and Y. Zhang, “Tunable multiple plasmon-induced transparency in three-dimensional Dirac semimetal metamaterials,” Opt. Commun. 423, 57–62 (2018).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in Dirac Semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

Opt. Mater. Express (6)

Phys. Rev. B (2)

X. Zhao, J. Zhang, K. Fan, G. Duan, J. Schalch, G. R. Kerser, R. D. Averitt, and X. Zhang, “Real-time tunable phase response and group delay in broadside coupled split-ring resonators,” Phys. Rev. B 99(24), 245111 (2019).
[Crossref]

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Phys. Rev. Lett. (3)

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-Coupled Plasmon-Induced Transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Science (2)

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref]

Other (1)

Z. Vafapour, “Slow light modulator using semiconductor metamaterial,” Proc. SPIE 10535, 105352A (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The unit cell of the proposed BDS metamaterial.
Fig. 2.
Fig. 2. (a) The transmission spectra of the proposed metamaterial with a1=34 μm (black solid line) and a2=38 µm (red dashed line). The z-component of electric field distributions at the frequencies of (b) 1.44 THz, (c) 1.51 THz, (d) 1.59 THz corresponding to the transmission spectrum for a1=34 µm.
Fig. 3.
Fig. 3. (a) The transmission spectrum of the structure with only the two parallel rods a1=34 µm and a2=38 µm, the inset show the unit cell of the corresponding structure. The z-component of electric field distributions at the frequencies of (b) 1.51 THz, (c) 1.58 THz, (d) 1.62 THz.
Fig. 4.
Fig. 4. Transmission spectra with different Fermi energies of (a) 70 meV, (b) 65 meV and (c) 60 meV.
Fig. 5.
Fig. 5. (a) The simulated transmission phase shift and (b) group delay of the multi-PIT metamaterial with the decreasing of the Fermi energy of BDS.
Fig. 6.
Fig. 6. The simulated transmission spectra with different background index of (a) 1.0, (b) 1.2 and (c) 1.4.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Re σ ( Ω ) = e 2 g k F 24 π Ω G ( Ω / Ω 2 2 ) ,
Im σ ( Ω ) = e 2 g k F 24 π 2 { 4 Ω [ 1 + π 2 3 ( T E F ) 2 ] + 8 Ω 0 ε c [ G ( ε ) G ( Ω / Ω 2 2 ) Ω 2 4 ε 2 ] ε d ε } ,
t g = d φ d ω ,
F O M = Δ f / Δ f Δ n Δ n F W H M ,