Abstract

We investigate the effects of a floating ring electrode (FRE) on the electro-optical performance of a hole-patterned liquid crystal (LC) lens and successfully reveal the design criterion of the FRE-embedded LC lens. Results show that when the FRE is close to the hole-patterned electrode, the addressing voltage of the LC lens decreases due to the strengthened electric potential in the center of aperture hole (AH). The tunable focal length range of the LC lens is also broadened. On the contrary, when the FRE is close to the LC layer, the wavefront aberration of the LC lens is suppressed because the embedded FRE increases the gradients of the fringing electric field and the associated phase profile near the AH periphery. The suppressed wavefront aberration exhibits a low root-mean-square error and an excellent modulation transfer function curve. However, the FRE close to the LC layer inevitably increases the addressing voltage of the LC lens because the FRE near the AH periphery gathers the fringing electric field around the AH periphery.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large aperture liquid crystal lens with an imbedded floating ring electrode

Che-Ju Hsu, Jyun-Jia Jhang, and Chi-Yen Huang
Opt. Express 24(15) 16722-16731 (2016)

An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes

Hung-Chun Lin and Yi-Hsin Lin
Opt. Express 20(3) 2045-2052 (2012)

A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths

Yung-Yuan Kao, Paul C.-P. Chao, and Chieh-Wen Hsueh
Opt. Express 18(18) 18506-18518 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [Crossref]
  2. C.-W. Chiu, Y.-C. Lin, P. C. P. Chao, and A. Y. G. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Opt. Express 16(23), 19277–19284 (2008).
    [Crossref]
  3. H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
    [Crossref]
  4. W. Bin, Y. Mao, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technol. Lett. 18(1), 79–81 (2006).
    [Crossref]
  5. H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (John Wiley & Sons, 2012), Vol. 75.
  6. Y.-H. Lin, Y.-J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
    [Crossref]
  7. J. F. Algorri, D. C. Zografopoulos, V. Urruchi, and J. M. Sánchez-Pena, “Recent Advances in Adaptive Liquid Crystal Lenses,” Crystals 9(5), 272 (2019).
    [Crossref]
  8. S. Susumu, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  9. S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6(6), 471–485 (1999).
    [Crossref]
  10. J. Prost, The Physics of Liquid Crystals (Oxford university press, 1995), Vol. 83.
  11. D.-K. Yang, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2014).
  12. H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” IEEE Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
    [Crossref]
  13. J. Tan, Y. Song, J.-L. Zhu, S.-B. Ni, Y.-J. Wang, X.-Y. Sun, J.-G. Lu, B.-R. Yang, and H.-P. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
    [Crossref]
  14. S.-H. Lin, B.-Y. Huang, C.-Y. Li, K.-Y. Yu, J.-L. Chen, and C.-T. Kuo, “Electrically and optically tunable Fresnel lens in a liquid crystal cell with a rewritable photoconductive layer,” Opt. Mater. Express 6(7), 2229–2235 (2016).
    [Crossref]
  15. Y.-Y. Kao and P. C.-P. Chao, “A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors 11(5), 5402–5415 (2011).
    [Crossref]
  16. H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
    [Crossref]
  17. F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
    [Crossref]
  18. P. Popov, L. W. Honaker, M. Mirheydari, E. K. Mann, and A. Jákli, “Chiral nematic liquid crystal microlenses,” Sci. Rep. 7(1), 1603 (2017).
    [Crossref]
  19. W. Duan, P. Chen, S.-j. Ge, B.-y. Wei, W. Hu, and Y.-q. Lu, “Helicity-dependent forked vortex lens based on photo-patterned liquid crystals,” Opt. Express 25(13), 14059–14064 (2017).
    [Crossref]
  20. W. Duan, P. Chen, S.-J. Ge, X. Liang, and W. Hu, “A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals,” Crystals 9(2), 111 (2019).
    [Crossref]
  21. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2), L1232–L1233 (2002).
    [Crossref]
  22. M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(9A), 6108–6111 (2004).
    [Crossref]
  23. T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1), 1643–1646 (1992).
    [Crossref]
  24. Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
    [Crossref]
  25. G. Li, P. Valley, M. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
    [Crossref]
  26. Y. Lou, L. Chen, C. Wang, and S. Shen, “Tunable-focus liquid crystal Fresnel zone lens based on harmonic diffraction,” Appl. Phys. Lett. 101(22), 221121 (2012).
    [Crossref]
  27. H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
    [Crossref]
  28. B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
    [Crossref]
  29. O. Sova, V. Reshetnyak, T. Galstian, and K. Asatryan, “Electrically variable liquid crystal lens based on the dielectric dividing principle,” J. Opt. Soc. Am. A 32(5), 803–808 (2015).
    [Crossref]
  30. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
    [Crossref]
  31. H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
    [Crossref]
  32. L. Li, D. Bryant, T. Van Heugten, and P. J. Bos, “Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings,” Appl. Opt. 52(9), 1978–1986 (2013).
    [Crossref]
  33. X.-Q. Wang, A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Switchable Fresnel lens based on micropatterned alignment,” Opt. Lett. 38(11), 1775–1777 (2013).
    [Crossref]
  34. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
    [Crossref]
  35. C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
    [Crossref]
  36. C.-J. Hsu, J.-J. Jhang, and C.-Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
    [Crossref]
  37. H. Dou, F. Chu, Y.-Q. Guo, L.-L. Tian, Q.-H. Wang, and Y.-B. Sun, “Large aperture liquid crystal lens array using a composited alignment layer,” Opt. Express 26(7), 9254–9262 (2018).
    [Crossref]
  38. M.-S. Chen, P.-J. Chen, M. Chen, and Y.-H. Lin, “An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses,” Opt. Express 22(10), 11427–11435 (2014).
    [Crossref]
  39. Y.-H. Lin and H.-S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
    [Crossref]
  40. Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
    [Crossref]
  41. J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral Imaging Capture System With Tunable Field of View Based on Liquid Crystal Microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
    [Crossref]
  42. Y.-J. Wang, X. Shen, Y.-H. Lin, and B. Javidi, “Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens,” Opt. Lett. 40(15), 3564–3567 (2015).
    [Crossref]
  43. A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system,” Opt. Express 24(8), 8527–8538 (2016).
    [Crossref]
  44. T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Opt. Lett. 41(14), 3265–3268 (2016).
    [Crossref]
  45. T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
    [Crossref]
  46. O. Sova and T. Galstian, “Liquid crystal lens with optimized wavefront across the entire clear aperture,” Opt. Commun. 433, 290–296 (2019).
    [Crossref]
  47. C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of floating-ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst. 45(1), 40–48 (2018).
    [Crossref]
  48. M. Ye and S. Sato, “Optical Properties of Liquid Crystal Lens of Any Size,” Jpn. J. Appl. Phys. 41(Part 2), L571–L573 (2002).
    [Crossref]
  49. T. B. Jones and N. G. Nenadic, Electromechanics and MEMS (Cambridge University Press, 2013).
  50. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2008).
  51. M. Honma, T. Nose, and S. Sato, “Optimization of Device Parameters for Minimizing Spherical Aberration and Astigmatism in Liquid Crystal Microlenses,” Opt. Rev. 6(2), 139–143 (1999).
    [Crossref]
  52. S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36(20), 4772–4778 (1997).
    [Crossref]
  53. Y.-Y. Kao, P. C. P. Chao, and C.-W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
    [Crossref]
  54. C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
    [Crossref]

2019 (4)

J. F. Algorri, D. C. Zografopoulos, V. Urruchi, and J. M. Sánchez-Pena, “Recent Advances in Adaptive Liquid Crystal Lenses,” Crystals 9(5), 272 (2019).
[Crossref]

W. Duan, P. Chen, S.-J. Ge, X. Liang, and W. Hu, “A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals,” Crystals 9(2), 111 (2019).
[Crossref]

O. Sova and T. Galstian, “Liquid crystal lens with optimized wavefront across the entire clear aperture,” Opt. Commun. 433, 290–296 (2019).
[Crossref]

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

2018 (2)

C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of floating-ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst. 45(1), 40–48 (2018).
[Crossref]

H. Dou, F. Chu, Y.-Q. Guo, L.-L. Tian, Q.-H. Wang, and Y.-B. Sun, “Large aperture liquid crystal lens array using a composited alignment layer,” Opt. Express 26(7), 9254–9262 (2018).
[Crossref]

2017 (4)

P. Popov, L. W. Honaker, M. Mirheydari, E. K. Mann, and A. Jákli, “Chiral nematic liquid crystal microlenses,” Sci. Rep. 7(1), 1603 (2017).
[Crossref]

W. Duan, P. Chen, S.-j. Ge, B.-y. Wei, W. Hu, and Y.-q. Lu, “Helicity-dependent forked vortex lens based on photo-patterned liquid crystals,” Opt. Express 25(13), 14059–14064 (2017).
[Crossref]

Y.-H. Lin, Y.-J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
[Crossref]

2016 (5)

2015 (4)

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

O. Sova, V. Reshetnyak, T. Galstian, and K. Asatryan, “Electrically variable liquid crystal lens based on the dielectric dividing principle,” J. Opt. Soc. Am. A 32(5), 803–808 (2015).
[Crossref]

Y.-J. Wang, X. Shen, Y.-H. Lin, and B. Javidi, “Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens,” Opt. Lett. 40(15), 3564–3567 (2015).
[Crossref]

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref]

2014 (2)

M.-S. Chen, P.-J. Chen, M. Chen, and Y.-H. Lin, “An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses,” Opt. Express 22(10), 11427–11435 (2014).
[Crossref]

J. Tan, Y. Song, J.-L. Zhu, S.-B. Ni, Y.-J. Wang, X.-Y. Sun, J.-G. Lu, B.-R. Yang, and H.-P. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

2013 (3)

2012 (4)

2011 (2)

H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” IEEE Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Y.-Y. Kao and P. C.-P. Chao, “A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors 11(5), 5402–5415 (2011).
[Crossref]

2010 (2)

2008 (1)

2007 (1)

2006 (3)

W. Bin, Y. Mao, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technol. Lett. 18(1), 79–81 (2006).
[Crossref]

H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
[Crossref]

G. Li, P. Valley, M. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

2005 (1)

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[Crossref]

2004 (2)

M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(9A), 6108–6111 (2004).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[Crossref]

2003 (2)

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

2002 (2)

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2), L1232–L1233 (2002).
[Crossref]

M. Ye and S. Sato, “Optical Properties of Liquid Crystal Lens of Any Size,” Jpn. J. Appl. Phys. 41(Part 2), L571–L573 (2002).
[Crossref]

1999 (2)

M. Honma, T. Nose, and S. Sato, “Optimization of Device Parameters for Minimizing Spherical Aberration and Astigmatism in Liquid Crystal Microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6(6), 471–485 (1999).
[Crossref]

1997 (1)

1992 (1)

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1), 1643–1646 (1992).
[Crossref]

1979 (1)

S. Susumu, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Agrahari, K.

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

Algorri, J. F.

J. F. Algorri, D. C. Zografopoulos, V. Urruchi, and J. M. Sánchez-Pena, “Recent Advances in Adaptive Liquid Crystal Lenses,” Crystals 9(5), 272 (2019).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral Imaging Capture System With Tunable Field of View Based on Liquid Crystal Microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

Asatryan, K.

Bade, N. D.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Bagramyan, A.

Bennis, N.

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral Imaging Capture System With Tunable Field of View Based on Liquid Crystal Microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

Bin, W.

W. Bin, Y. Mao, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technol. Lett. 18(1), 79–81 (2006).
[Crossref]

Bos, P. J.

Bryant, D.

Careau, S.

Chao, P. C. P.

Chao, P. C.-P.

Y.-Y. Kao and P. C.-P. Chao, “A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors 11(5), 5402–5415 (2011).
[Crossref]

Chen, H.-S.

Chen, J.-L.

Chen, L.

Y. Lou, L. Chen, C. Wang, and S. Shen, “Tunable-focus liquid crystal Fresnel zone lens based on harmonic diffraction,” Appl. Phys. Lett. 101(22), 221121 (2012).
[Crossref]

Chen, M.

Chen, M.-S.

M.-S. Chen, P.-J. Chen, M. Chen, and Y.-H. Lin, “An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses,” Opt. Express 22(10), 11427–11435 (2014).
[Crossref]

H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” IEEE Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Chen, P.

W. Duan, P. Chen, S.-J. Ge, X. Liang, and W. Hu, “A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals,” Crystals 9(2), 111 (2019).
[Crossref]

W. Duan, P. Chen, S.-j. Ge, B.-y. Wei, W. Hu, and Y.-q. Lu, “Helicity-dependent forked vortex lens based on photo-patterned liquid crystals,” Opt. Express 25(13), 14059–14064 (2017).
[Crossref]

Chen, P.-J.

Chiang, W. F.

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

Chigrinov, V. G.

Chiu, C.-W.

Choi, W.-K.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[Crossref]

Chu, F.

Cotovanu, M.

Dou, H.

Duan, W.

W. Duan, P. Chen, S.-J. Ge, X. Liang, and W. Hu, “A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals,” Crystals 9(2), 111 (2019).
[Crossref]

W. Duan, P. Chen, S.-j. Ge, B.-y. Wei, W. Hu, and Y.-q. Lu, “Helicity-dependent forked vortex lens based on photo-patterned liquid crystals,” Opt. Express 25(13), 14059–14064 (2017).
[Crossref]

Evensen, M.

Fan, Y.-H.

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

Fan-Chiang, K.-H.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[Crossref]

Fox, D. W.

Fuh, A. Y. G.

Galstian, T.

Gauza, S.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[Crossref]

Ge, S.-J.

W. Duan, P. Chen, S.-J. Ge, X. Liang, and W. Hu, “A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals,” Crystals 9(2), 111 (2019).
[Crossref]

W. Duan, P. Chen, S.-j. Ge, B.-y. Wei, W. Hu, and Y.-q. Lu, “Helicity-dependent forked vortex lens based on photo-patterned liquid crystals,” Opt. Express 25(13), 14059–14064 (2017).
[Crossref]

Gharbi, M. A.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Giridhar, M.

G. Li, P. Valley, M. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Goodman, J.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2008).

Guo, Y.-Q.

Haddock, J. N.

G. Li, P. Valley, M. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Hassanfiroozi, A.

Hayasaka, S.

M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(9A), 6108–6111 (2004).
[Crossref]

Honaker, L. W.

P. Popov, L. W. Honaker, M. Mirheydari, E. K. Mann, and A. Jákli, “Chiral nematic liquid crystal microlenses,” Sci. Rep. 7(1), 1603 (2017).
[Crossref]

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2), L1232–L1233 (2002).
[Crossref]

M. Honma, T. Nose, and S. Sato, “Optimization of Device Parameters for Minimizing Spherical Aberration and Astigmatism in Liquid Crystal Microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

Hsu, C. J.

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
[Crossref]

Hsu, C.-J.

C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of floating-ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst. 45(1), 40–48 (2018).
[Crossref]

C.-J. Hsu, J.-J. Jhang, and C.-Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
[Crossref]

Hsueh, C.-W.

Hu, W.

W. Duan, P. Chen, S.-J. Ge, X. Liang, and W. Hu, “A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals,” Crystals 9(2), 111 (2019).
[Crossref]

W. Duan, P. Chen, S.-j. Ge, B.-y. Wei, W. Hu, and Y.-q. Lu, “Helicity-dependent forked vortex lens based on photo-patterned liquid crystals,” Opt. Express 25(13), 14059–14064 (2017).
[Crossref]

Huang, B.-Y.

Huang, C. Y.

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

Huang, C.-Y.

C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of floating-ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst. 45(1), 40–48 (2018).
[Crossref]

C.-J. Hsu, J.-J. Jhang, and C.-Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
[Crossref]

Huang, Y.-P.

Ito, H.

Jákli, A.

P. Popov, L. W. Honaker, M. Mirheydari, E. K. Mann, and A. Jákli, “Chiral nematic liquid crystal microlenses,” Sci. Rep. 7(1), 1603 (2017).
[Crossref]

Javidi, B.

Jhang, J.-C.

C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of floating-ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst. 45(1), 40–48 (2018).
[Crossref]

Jhang, J.-J.

C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of floating-ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst. 45(1), 40–48 (2018).
[Crossref]

C.-J. Hsu, J.-J. Jhang, and C.-Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
[Crossref]

Ji, A.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref]

Jones, T. B.

T. B. Jones and N. G. Nenadic, Electromechanics and MEMS (Cambridge University Press, 2013).

Kamien, R. D.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Kao, Y.-Y.

Y.-Y. Kao and P. C.-P. Chao, “A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors 11(5), 5402–5415 (2011).
[Crossref]

Y.-Y. Kao, P. C. P. Chao, and C.-W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
[Crossref]

Kippelen, B.

G. Li, P. Valley, M. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Kuo, C.-T.

Kwok, H.-S.

Lei, Y.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref]

Li, C.-Y.

Li, G.

G. Li, P. Valley, M. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Li, L.

Liang, X.

W. Duan, P. Chen, S.-J. Ge, X. Liang, and W. Hu, “A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals,” Crystals 9(2), 111 (2019).
[Crossref]

Lin, H.-C.

H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref]

H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” IEEE Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Lin, S.-H.

Lin, Y.-C.

Lin, Y.-H.

Liu, I. B.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Lou, Y.

Y. Lou, L. Chen, C. Wang, and S. Shen, “Tunable-focus liquid crystal Fresnel zone lens based on harmonic diffraction,” Appl. Phys. Lett. 101(22), 221121 (2012).
[Crossref]

Lu, J.-G.

J. Tan, Y. Song, J.-L. Zhu, S.-B. Ni, Y.-J. Wang, X.-Y. Sun, J.-G. Lu, B.-R. Yang, and H.-P. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Lu, Y.-q.

Luo, Y.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Mann, E. K.

P. Popov, L. W. Honaker, M. Mirheydari, E. K. Mann, and A. Jákli, “Chiral nematic liquid crystal microlenses,” Sci. Rep. 7(1), 1603 (2017).
[Crossref]

Manohar, R.

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

Mao, Y.

W. Bin, Y. Mao, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technol. Lett. 18(1), 79–81 (2006).
[Crossref]

Masuda, S.

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36(20), 4772–4778 (1997).
[Crossref]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1), 1643–1646 (1992).
[Crossref]

Mathine, D. L.

G. Li, P. Valley, M. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Meredith, G.

G. Li, P. Valley, M. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Mirheydari, M.

P. Popov, L. W. Honaker, M. Mirheydari, E. K. Mann, and A. Jákli, “Chiral nematic liquid crystal microlenses,” Sci. Rep. 7(1), 1603 (2017).
[Crossref]

Morawiak, P.

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral Imaging Capture System With Tunable Field of View Based on Liquid Crystal Microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

Nenadic, N. G.

T. B. Jones and N. G. Nenadic, Electromechanics and MEMS (Cambridge University Press, 2013).

Ni, S.-B.

J. Tan, Y. Song, J.-L. Zhu, S.-B. Ni, Y.-J. Wang, X.-Y. Sun, J.-G. Lu, B.-R. Yang, and H.-P. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2), L1232–L1233 (2002).
[Crossref]

M. Honma, T. Nose, and S. Sato, “Optimization of Device Parameters for Minimizing Spherical Aberration and Astigmatism in Liquid Crystal Microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36(20), 4772–4778 (1997).
[Crossref]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1), 1643–1646 (1992).
[Crossref]

Otón, J. M.

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral Imaging Capture System With Tunable Field of View Based on Liquid Crystal Microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

Peyghambarian, N.

G. Li, P. Valley, M. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Popov, P.

P. Popov, L. W. Honaker, M. Mirheydari, E. K. Mann, and A. Jákli, “Chiral nematic liquid crystal microlenses,” Sci. Rep. 7(1), 1603 (2017).
[Crossref]

Presniakov, V.

Presnyakov, V.

Prost, J.

J. Prost, The Physics of Liquid Crystals (Oxford university press, 1995), Vol. 83.

Ren, H.

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref]

H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
[Crossref]

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (John Wiley & Sons, 2012), Vol. 75.

Reshetnyak, V.

Sánchez-Pena, J. M.

J. F. Algorri, D. C. Zografopoulos, V. Urruchi, and J. M. Sánchez-Pena, “Recent Advances in Adaptive Liquid Crystal Lenses,” Crystals 9(5), 272 (2019).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral Imaging Capture System With Tunable Field of View Based on Liquid Crystal Microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

Sang, H.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref]

Sato, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref]

W. Bin, Y. Mao, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technol. Lett. 18(1), 79–81 (2006).
[Crossref]

M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(9A), 6108–6111 (2004).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[Crossref]

M. Ye and S. Sato, “Optical Properties of Liquid Crystal Lens of Any Size,” Jpn. J. Appl. Phys. 41(Part 2), L571–L573 (2002).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2), L1232–L1233 (2002).
[Crossref]

S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6(6), 471–485 (1999).
[Crossref]

M. Honma, T. Nose, and S. Sato, “Optimization of Device Parameters for Minimizing Spherical Aberration and Astigmatism in Liquid Crystal Microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36(20), 4772–4778 (1997).
[Crossref]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1), 1643–1646 (1992).
[Crossref]

Selvaraj, P.

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

Serra, F.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Shen, S.

Y. Lou, L. Chen, C. Wang, and S. Shen, “Tunable-focus liquid crystal Fresnel zone lens based on harmonic diffraction,” Appl. Phys. Lett. 101(22), 221121 (2012).
[Crossref]

Shen, X.

Sheu, C. R.

Shieh, H.-P. D.

A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system,” Opt. Express 24(8), 8527–8538 (2016).
[Crossref]

J. Tan, Y. Song, J.-L. Zhu, S.-B. Ni, Y.-J. Wang, X.-Y. Sun, J.-G. Lu, B.-R. Yang, and H.-P. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Song, Y.

J. Tan, Y. Song, J.-L. Zhu, S.-B. Ni, Y.-J. Wang, X.-Y. Sun, J.-G. Lu, B.-R. Yang, and H.-P. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Sova, O.

Srivastava, A. K.

Stebe, K. J.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Sun, X.-Y.

J. Tan, Y. Song, J.-L. Zhu, S.-B. Ni, Y.-J. Wang, X.-Y. Sun, J.-G. Lu, B.-R. Yang, and H.-P. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Sun, Y.-B.

Susumu, S.

S. Susumu, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Takahashi, S.

Tan, J.

J. Tan, Y. Song, J.-L. Zhu, S.-B. Ni, Y.-J. Wang, X.-Y. Sun, J.-G. Lu, B.-R. Yang, and H.-P. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Thiboutot, M.

Tian, L.-L.

Tong, Q.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref]

Tork, A.

Uchida, M.

Urruchi, V.

J. F. Algorri, D. C. Zografopoulos, V. Urruchi, and J. M. Sánchez-Pena, “Recent Advances in Adaptive Liquid Crystal Lenses,” Crystals 9(5), 272 (2019).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral Imaging Capture System With Tunable Field of View Based on Liquid Crystal Microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

Valley, P.

G. Li, P. Valley, M. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Van Heugten, T.

Wang, B.

Wang, C.

Y. Lou, L. Chen, C. Wang, and S. Shen, “Tunable-focus liquid crystal Fresnel zone lens based on harmonic diffraction,” Appl. Phys. Lett. 101(22), 221121 (2012).
[Crossref]

Wang, Q.-H.

Wang, X.-Q.

Wang, Y.-J.

Y.-H. Lin, Y.-J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Y.-J. Wang, X. Shen, Y.-H. Lin, and B. Javidi, “Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens,” Opt. Lett. 40(15), 3564–3567 (2015).
[Crossref]

J. Tan, Y. Song, J.-L. Zhu, S.-B. Ni, Y.-J. Wang, X.-Y. Sun, J.-G. Lu, B.-R. Yang, and H.-P. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Wei, B.-y.

Wu, B.

Wu, S.-T.

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref]

H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
[Crossref]

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (John Wiley & Sons, 2012), Vol. 75.

Xie, C.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref]

Yanase, S.

Yang, B.-R.

J. Tan, Y. Song, J.-L. Zhu, S.-B. Ni, Y.-J. Wang, X.-Y. Sun, J.-G. Lu, B.-R. Yang, and H.-P. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Yang, D.-K.

D.-K. Yang, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2014).

Yang, S.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Ye, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[Crossref]

M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(9A), 6108–6111 (2004).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2), L1232–L1233 (2002).
[Crossref]

M. Ye and S. Sato, “Optical Properties of Liquid Crystal Lens of Any Size,” Jpn. J. Appl. Phys. 41(Part 2), L571–L573 (2002).
[Crossref]

Yu, K.-Y.

Zhang, X.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref]

Zhu, J.-L.

J. Tan, Y. Song, J.-L. Zhu, S.-B. Ni, Y.-J. Wang, X.-Y. Sun, J.-G. Lu, B.-R. Yang, and H.-P. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

Zhu, X.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[Crossref]

Zografopoulos, D. C.

J. F. Algorri, D. C. Zografopoulos, V. Urruchi, and J. M. Sánchez-Pena, “Recent Advances in Adaptive Liquid Crystal Lenses,” Crystals 9(5), 272 (2019).
[Crossref]

Zohrabyan, A.

Adv. Opt. Mater. (1)

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (4)

G. Li, P. Valley, M. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Y. Lou, L. Chen, C. Wang, and S. Shen, “Tunable-focus liquid crystal Fresnel zone lens based on harmonic diffraction,” Appl. Phys. Lett. 101(22), 221121 (2012).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

Crystals (2)

J. F. Algorri, D. C. Zografopoulos, V. Urruchi, and J. M. Sánchez-Pena, “Recent Advances in Adaptive Liquid Crystal Lenses,” Crystals 9(5), 272 (2019).
[Crossref]

W. Duan, P. Chen, S.-J. Ge, X. Liang, and W. Hu, “A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals,” Crystals 9(2), 111 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (2)

W. Bin, Y. Mao, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technol. Lett. 18(1), 79–81 (2006).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral Imaging Capture System With Tunable Field of View Based on Liquid Crystal Microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

IEEE Trans. Electr. Electron. Mater. (1)

H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” IEEE Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

J. Disp. Technol. (1)

J. Tan, Y. Song, J.-L. Zhu, S.-B. Ni, Y.-J. Wang, X.-Y. Sun, J.-G. Lu, B.-R. Yang, and H.-P. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Technol. 10(2), 157–161 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (6)

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2), L1232–L1233 (2002).
[Crossref]

M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(9A), 6108–6111 (2004).
[Crossref]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1), 1643–1646 (1992).
[Crossref]

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44(1A), 243–244 (2005).
[Crossref]

S. Susumu, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

M. Ye and S. Sato, “Optical Properties of Liquid Crystal Lens of Any Size,” Jpn. J. Appl. Phys. 41(Part 2), L571–L573 (2002).
[Crossref]

Liq. Cryst. (1)

C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of floating-ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst. 45(1), 40–48 (2018).
[Crossref]

Liq. Cryst. Rev. (1)

Y.-H. Lin, Y.-J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Opt. Commun. (1)

O. Sova and T. Galstian, “Liquid crystal lens with optimized wavefront across the entire clear aperture,” Opt. Commun. 433, 290–296 (2019).
[Crossref]

Opt. Express (14)

W. Duan, P. Chen, S.-j. Ge, B.-y. Wei, W. Hu, and Y.-q. Lu, “Helicity-dependent forked vortex lens based on photo-patterned liquid crystals,” Opt. Express 25(13), 14059–14064 (2017).
[Crossref]

T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
[Crossref]

A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system,” Opt. Express 24(8), 8527–8538 (2016).
[Crossref]

Y.-Y. Kao, P. C. P. Chao, and C.-W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
[Crossref]

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref]

C.-W. Chiu, Y.-C. Lin, P. C. P. Chao, and A. Y. G. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Opt. Express 16(23), 19277–19284 (2008).
[Crossref]

K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
[Crossref]

H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref]

H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
[Crossref]

C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
[Crossref]

C.-J. Hsu, J.-J. Jhang, and C.-Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
[Crossref]

H. Dou, F. Chu, Y.-Q. Guo, L.-L. Tian, Q.-H. Wang, and Y.-B. Sun, “Large aperture liquid crystal lens array using a composited alignment layer,” Opt. Express 26(7), 9254–9262 (2018).
[Crossref]

M.-S. Chen, P.-J. Chen, M. Chen, and Y.-H. Lin, “An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses,” Opt. Express 22(10), 11427–11435 (2014).
[Crossref]

Y.-H. Lin and H.-S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref]

Opt. Laser Technol. (1)

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Opt. Rev. (2)

S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6(6), 471–485 (1999).
[Crossref]

M. Honma, T. Nose, and S. Sato, “Optimization of Device Parameters for Minimizing Spherical Aberration and Astigmatism in Liquid Crystal Microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

Rev. Sci. Instrum. (1)

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref]

Sci. Rep. (1)

P. Popov, L. W. Honaker, M. Mirheydari, E. K. Mann, and A. Jákli, “Chiral nematic liquid crystal microlenses,” Sci. Rep. 7(1), 1603 (2017).
[Crossref]

Sensors (1)

Y.-Y. Kao and P. C.-P. Chao, “A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors 11(5), 5402–5415 (2011).
[Crossref]

Other (5)

J. Prost, The Physics of Liquid Crystals (Oxford university press, 1995), Vol. 83.

D.-K. Yang, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2014).

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (John Wiley & Sons, 2012), Vol. 75.

T. B. Jones and N. G. Nenadic, Electromechanics and MEMS (Cambridge University Press, 2013).

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematics of (a) FRE-top, (b) FRE-inplane, (c) FRE-middle, and (c) FRE-bottom LC lenses. The red symbols indicate the FRE positions.
Fig. 2.
Fig. 2. Interference fringes of the FRE-top LC lens at (a) 20, (b) 38, (c) 70, and (d) 100 V; interference fringes of the FRE-inplane LC lens at (e) 20, (f) 30, (g) 50, and (h) 100 V; interference fringes of the FRE-middle LC lens at (i) 20, (j) 40, (k) 60, and (l) 100 V; interference fringes of the FRE-bottom LC lens at (m) 20, (n) 45, (o) 70, and (p) 100 V; interference fringes of the FRE-free LC lens at (q) 20, (r) 38, (s) 70, and (t) 100 V.
Fig. 3.
Fig. 3. Calculated potential distribution in the LC layers of (a) FRE-top, (b) FRE-inplane, (c) FRE-middle, and (d) FRE-bottom LC lenses. The color indicates the potential intensity. (e) Calculated capacitances of the lens cells. (f) Measured frequency-dependent capacitances of the FRE-top, FRE-inplane, FRE-middle, and FRE-bottom LC lenses.
Fig. 4.
Fig. 4. Voltage-dependent focal lengths of the FRE-top, FRE-inplane, FRE-middle, and FRE-bottom LC lenses.
Fig. 5.
Fig. 5. Measured focusing spot sizes and calculated diffraction-limited values of the FRE-top, FRE-inplane, FRE-middle, and FRE-bottom LC lenses addressed at MaxP.
Fig. 6.
Fig. 6. (a) Phase retardations of the FRE-top, FRE-inplane, FRE-middle, and FRE-bottom LC lenses addressed at MaxP. The symbols and solid lines represent the measured data and quadratic-fitting curve, respectively. (b) RMS errors of the FRE-top, FRE-inplane, FRE-middle, and FRE-bottom LC lenses at various supplied voltages.
Fig. 7.
Fig. 7. MTFs of FRE-top, FRE-inplane, FRE-middle, and FRE-bottom LC lenses. The inset indicates the edge pattern used as object.

Tables (2)

Tables Icon

Table 1. Estimated RMS error of LC lens at MaxP

Tables Icon

Table 2. Summary of the FRE-top, FRE-inplane, FRE-middle, and FRE-bottom LC lenses

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f = r 2 2 N λ ,
N A r f ,
d F W H M = 0.52 λ N A ,
M T F = ( I m a x     I m i n ) ( I m a x   +   I m i n ) ,

Metrics