Abstract

Bulk bismuth presents outstanding optical properties, such as a giant infrared refractive index (n∼10) and a negative ultraviolet-visible permittivity induced by giant interband electronic transitions. Although such properties are very appealing for applications in nanophotonics, the dielectric function of bismuth nanostructures has been scarcely studied. Here, we determine by spectroscopic ellipsometry the far infrared-to-ultraviolet dielectric function of pulsed laser deposited bismuth thin films with nominal thickness tBi varied from near 10 nm to several tens of nm. For tBi > 15 nm, the films display a continuous structure and their dielectric function is comparable with that of bulk bismuth. For tBi < 15 nm, the film structure is discontinuous, and the dielectric function differs markedly from that of bulk bismuth. It is proposed from FDTD simulations that this marked difference arises mainly from effective medium effects induced by the discontinuous film structure, where quantum electronic confinement does not play a dominant role. This suggests that ultrathin and continuous bismuth films should present the same outstanding optical properties as bulk bismuth for high performance nanophotonic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultraviolet-visible interband plasmonics with p-block elements

Johann Toudert and Rosalía Serna
Opt. Mater. Express 6(7) 2434-2447 (2016)

Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions

Wenjun Zhou, David J. Mandia, Seán T. Barry, and Jacques Albert
Opt. Express 22(26) 31665-31676 (2014)

Optical constants and structural properties of thin gold films

Dmitry I. Yakubovsky, Aleksey V. Arsenin, Yury V. Stebunov, Dmitry Yu. Fedyanin, and Valentyn S. Volkov
Opt. Express 25(21) 25574-25587 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
    [Crossref]
  2. J. Toudert, R. Serna, M. García Pardo, N. Ramos, R. J. Peláez, and B. Maté, “Mid-to-far infrared perfect absorption by a sub-(λ/100 nanofilm in a fractal phasor resonant cavity,” Opt. Express 26(26), 34043–34059 (2018).
    [Crossref]
  3. J. Toudert and R. Serna, “Interband transitions in semi-metal, semiconductors, and topological insulators: a new driving force for plasmonics and nanophotonics,” Opt. Mater. Express 7(7), 2299–2325 (2017).
    [Crossref]
  4. A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
    [Crossref]
  5. J. Toudert, M. J. de Castro, and R. Serna, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. CF 116(38), 20530–20539 (2012).
    [Crossref]
  6. J. Toudert and R. Serna, “Ultraviolet-visible interband plasmonics with p-block elements,” Opt. Mater. Express 6(7), 2434–2447 (2016).
    [Crossref]
  7. Y. Tian and J. Toudert, “Nanobismuth: fabrication, optical, and plasmonic properties – emerging applications,” J. Nanotechnol. 2018, 1–23 (2018).
    [Crossref]
  8. X. Yang and D. Wang, “Photocatalysis: from fundamental principles to materials and applications,” ACS Appl. Energy Mater. 1(12), 6657–6693 (2018).
    [Crossref]
  9. S.-S. Yi, X.-B. Zhang, B.-R. Wulan, J.-M. Yan, and Q. Jiang, “Non-noble metals applied to solar water splitting,” Energy Environ. Sci. 11(11), 3128–3156 (2018).
    [Crossref]
  10. F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. 50(72), 10386–10389 (2014).
    [Crossref]
  11. J. D. Yao, J. M. Shao, and G. W. Yang, “Ultra-broadband and high-responsive photodetectors based on bismuth films at room temperature,” Sci. Rep. 5(1), 12320 (2015).
    [Crossref]
  12. J. Yao, Z. Zheng, J. Shao, and G. Yang, “Promoting photosensitivity of the Bi/Si heterojunction photodetector by inserting a WS2 layer,” ACS Appl. Mater. Interfaces 7(48), 26701–26708 (2015).
    [Crossref]
  13. M. J. de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
    [Crossref]
  14. A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in optically resonant bismuth nanospheres for high-contrast switchable ultraviolet meta-filters,” IEEE Photonics J. 8(3), 1–11 (2016).
    [Crossref]
  15. M. R. Black, M. Padi, S. B. Cronin, Y.-M. Lin, O. Rabin, T. McClure, G. Dresselhaus, P. L. Hagstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
    [Crossref]
  16. T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, G. Fahsold, R. Lovrincic, A. Pucci, and S. Karim, “Quantum size effects manifest in infrared spectra of single bismuth nanowires,” Appl. Phys. Lett. 88(10), 103114 (2006).
    [Crossref]
  17. Y. W. Wang, J. S. Kim, and K. S. Kim, “Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy,” Appl. Phys. Lett. 88(14), 143106 (2006).
    [Crossref]
  18. D. Velasco-Arias, I. Zumeta-Dubé, D. Diaz, P. Santiago-Jacinto, V.-F. Ruiz-Ruiz, S.-E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined coloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
    [Crossref]
  19. L. Harris and J. Piper, “Optical and electrical properties of bismuth deposits,” J. Opt. Soc. Am. 53(11), 1271–1275 (1963).
    [Crossref]
  20. M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
    [Crossref]
  21. C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
    [Crossref]
  22. M. Eddrief, F. Vidal, and B. Gallas, “Optical properties of Bi2Se3: from bulk to ultrathin films,” J. Phys. D: Appl. Phys. 49(50), 505304 (2016).
    [Crossref]
  23. Y. R. Sapkota, A. Alkabsh, A. Walber, H. Samassekou, and D. Mazumdar, “Optical evidence for blue shift in topological insulator bismuth selenide in the few-layer limit,” Appl. Phys. Lett. 110(18), 181901 (2017).
    [Crossref]
  24. S. E. Rodil, O. Garcia-Zarco, E. Camps, H. Estrada, M. Lejeune, L. Bourja, and A. Zeinert, “Preferential orientation in bismuth thin films as a function of growth conditions,” Thin Solid Films 636, 384–391 (2017).
    [Crossref]
  25. G.-H. Jung, S. Yoo, J.-S. Kim, and Q.-H. Park, “Maximal visible light energy transfer to ultrathin semiconductor films enabled by dispersion control,” Adv. Opt. Mater. 7(7), 1801229 (2019).
    [Crossref]
  26. Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, and Z. Wang, “Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity,” J. Alloys Compd. 651, 114–120 (2015).
    [Crossref]
  27. Y. Gao, Y. Huang, Y. Li, Q. Zhang, J.-J. Cao, W. Ho, and S. C. Lee, “Plasmonic Bi/ZnWO4 microspheres with improved photocatalytic activity on NO removal with visible light,” ACS Sustainable Chem. Eng. 4(12), 6912–6920 (2016).
    [Crossref]

2019 (1)

G.-H. Jung, S. Yoo, J.-S. Kim, and Q.-H. Park, “Maximal visible light energy transfer to ultrathin semiconductor films enabled by dispersion control,” Adv. Opt. Mater. 7(7), 1801229 (2019).
[Crossref]

2018 (6)

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

J. Toudert, R. Serna, M. García Pardo, N. Ramos, R. J. Peláez, and B. Maté, “Mid-to-far infrared perfect absorption by a sub-(λ/100 nanofilm in a fractal phasor resonant cavity,” Opt. Express 26(26), 34043–34059 (2018).
[Crossref]

Y. Tian and J. Toudert, “Nanobismuth: fabrication, optical, and plasmonic properties – emerging applications,” J. Nanotechnol. 2018, 1–23 (2018).
[Crossref]

X. Yang and D. Wang, “Photocatalysis: from fundamental principles to materials and applications,” ACS Appl. Energy Mater. 1(12), 6657–6693 (2018).
[Crossref]

S.-S. Yi, X.-B. Zhang, B.-R. Wulan, J.-M. Yan, and Q. Jiang, “Non-noble metals applied to solar water splitting,” Energy Environ. Sci. 11(11), 3128–3156 (2018).
[Crossref]

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

2017 (4)

Y. R. Sapkota, A. Alkabsh, A. Walber, H. Samassekou, and D. Mazumdar, “Optical evidence for blue shift in topological insulator bismuth selenide in the few-layer limit,” Appl. Phys. Lett. 110(18), 181901 (2017).
[Crossref]

S. E. Rodil, O. Garcia-Zarco, E. Camps, H. Estrada, M. Lejeune, L. Bourja, and A. Zeinert, “Preferential orientation in bismuth thin films as a function of growth conditions,” Thin Solid Films 636, 384–391 (2017).
[Crossref]

J. Toudert and R. Serna, “Interband transitions in semi-metal, semiconductors, and topological insulators: a new driving force for plasmonics and nanophotonics,” Opt. Mater. Express 7(7), 2299–2325 (2017).
[Crossref]

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

2016 (4)

Y. Gao, Y. Huang, Y. Li, Q. Zhang, J.-J. Cao, W. Ho, and S. C. Lee, “Plasmonic Bi/ZnWO4 microspheres with improved photocatalytic activity on NO removal with visible light,” ACS Sustainable Chem. Eng. 4(12), 6912–6920 (2016).
[Crossref]

J. Toudert and R. Serna, “Ultraviolet-visible interband plasmonics with p-block elements,” Opt. Mater. Express 6(7), 2434–2447 (2016).
[Crossref]

M. Eddrief, F. Vidal, and B. Gallas, “Optical properties of Bi2Se3: from bulk to ultrathin films,” J. Phys. D: Appl. Phys. 49(50), 505304 (2016).
[Crossref]

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in optically resonant bismuth nanospheres for high-contrast switchable ultraviolet meta-filters,” IEEE Photonics J. 8(3), 1–11 (2016).
[Crossref]

2015 (3)

J. D. Yao, J. M. Shao, and G. W. Yang, “Ultra-broadband and high-responsive photodetectors based on bismuth films at room temperature,” Sci. Rep. 5(1), 12320 (2015).
[Crossref]

J. Yao, Z. Zheng, J. Shao, and G. Yang, “Promoting photosensitivity of the Bi/Si heterojunction photodetector by inserting a WS2 layer,” ACS Appl. Mater. Interfaces 7(48), 26701–26708 (2015).
[Crossref]

Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, and Z. Wang, “Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity,” J. Alloys Compd. 651, 114–120 (2015).
[Crossref]

2014 (2)

M. J. de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
[Crossref]

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. 50(72), 10386–10389 (2014).
[Crossref]

2012 (2)

D. Velasco-Arias, I. Zumeta-Dubé, D. Diaz, P. Santiago-Jacinto, V.-F. Ruiz-Ruiz, S.-E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined coloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

J. Toudert, M. J. de Castro, and R. Serna, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. CF 116(38), 20530–20539 (2012).
[Crossref]

2010 (1)

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

2006 (2)

T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, G. Fahsold, R. Lovrincic, A. Pucci, and S. Karim, “Quantum size effects manifest in infrared spectra of single bismuth nanowires,” Appl. Phys. Lett. 88(10), 103114 (2006).
[Crossref]

Y. W. Wang, J. S. Kim, and K. S. Kim, “Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy,” Appl. Phys. Lett. 88(14), 143106 (2006).
[Crossref]

2000 (1)

M. R. Black, M. Padi, S. B. Cronin, Y.-M. Lin, O. Rabin, T. McClure, G. Dresselhaus, P. L. Hagstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

1963 (1)

Alkabsh, A.

Y. R. Sapkota, A. Alkabsh, A. Walber, H. Samassekou, and D. Mazumdar, “Optical evidence for blue shift in topological insulator bismuth selenide in the few-layer limit,” Appl. Phys. Lett. 110(18), 181901 (2017).
[Crossref]

Beignet, C.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Black, M. R.

M. R. Black, M. Padi, S. B. Cronin, Y.-M. Lin, O. Rabin, T. McClure, G. Dresselhaus, P. L. Hagstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Bottegoni, F.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Bourja, L.

S. E. Rodil, O. Garcia-Zarco, E. Camps, H. Estrada, M. Lejeune, L. Bourja, and A. Zeinert, “Preferential orientation in bismuth thin films as a function of growth conditions,” Thin Solid Films 636, 384–391 (2017).
[Crossref]

Brambilla, A.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Bussetti, G.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Butun, B.

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

Cabello, F.

M. J. de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
[Crossref]

Calloni, A.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Camps, E.

S. E. Rodil, O. Garcia-Zarco, E. Camps, H. Estrada, M. Lejeune, L. Bourja, and A. Zeinert, “Preferential orientation in bismuth thin films as a function of growth conditions,” Thin Solid Films 636, 384–391 (2017).
[Crossref]

Camps, I.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Cao, J.-J.

Y. Gao, Y. Huang, Y. Li, Q. Zhang, J.-J. Cao, W. Ho, and S. C. Lee, “Plasmonic Bi/ZnWO4 microspheres with improved photocatalytic activity on NO removal with visible light,” ACS Sustainable Chem. Eng. 4(12), 6912–6920 (2016).
[Crossref]

Castillo-Blum, S.-E.

D. Velasco-Arias, I. Zumeta-Dubé, D. Diaz, P. Santiago-Jacinto, V.-F. Ruiz-Ruiz, S.-E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined coloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

Chen, D.

Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, and Z. Wang, “Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity,” J. Alloys Compd. 651, 114–120 (2015).
[Crossref]

Chen, J.

Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, and Z. Wang, “Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity,” J. Alloys Compd. 651, 114–120 (2015).
[Crossref]

Chen, Y.

Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, and Z. Wang, “Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity,” J. Alloys Compd. 651, 114–120 (2015).
[Crossref]

Ciccacci, F.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Cornelius, T. W.

T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, G. Fahsold, R. Lovrincic, A. Pucci, and S. Karim, “Quantum size effects manifest in infrared spectra of single bismuth nanowires,” Appl. Phys. Lett. 88(10), 103114 (2006).
[Crossref]

Cronin, S. B.

M. R. Black, M. Padi, S. B. Cronin, Y.-M. Lin, O. Rabin, T. McClure, G. Dresselhaus, P. L. Hagstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Cuadrado, A.

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in optically resonant bismuth nanospheres for high-contrast switchable ultraviolet meta-filters,” IEEE Photonics J. 8(3), 1–11 (2016).
[Crossref]

Das, P. K.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Dau, M.-T.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

de Castro, M. J.

M. J. de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
[Crossref]

J. Toudert, M. J. de Castro, and R. Serna, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. CF 116(38), 20530–20539 (2012).
[Crossref]

Diaz, D.

D. Velasco-Arias, I. Zumeta-Dubé, D. Diaz, P. Santiago-Jacinto, V.-F. Ruiz-Ruiz, S.-E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined coloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

Dong, F.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. 50(72), 10386–10389 (2014).
[Crossref]

Dressel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

Dresselhaus, G.

M. R. Black, M. Padi, S. B. Cronin, Y.-M. Lin, O. Rabin, T. McClure, G. Dresselhaus, P. L. Hagstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Dresselhaus, M. S.

M. R. Black, M. Padi, S. B. Cronin, Y.-M. Lin, O. Rabin, T. McClure, G. Dresselhaus, P. L. Hagstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Duò, L.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Eddrief, M.

M. Eddrief, F. Vidal, and B. Gallas, “Optical properties of Bi2Se3: from bulk to ultrathin films,” J. Phys. D: Appl. Phys. 49(50), 505304 (2016).
[Crossref]

Estrada, H.

S. E. Rodil, O. Garcia-Zarco, E. Camps, H. Estrada, M. Lejeune, L. Bourja, and A. Zeinert, “Preferential orientation in bismuth thin films as a function of growth conditions,” Thin Solid Films 636, 384–391 (2017).
[Crossref]

Ezquerra, T. A.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Fahsold, G.

T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, G. Fahsold, R. Lovrincic, A. Pucci, and S. Karim, “Quantum size effects manifest in infrared spectra of single bismuth nanowires,” Appl. Phys. Lett. 88(10), 103114 (2006).
[Crossref]

Feng, X.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. 50(72), 10386–10389 (2014).
[Crossref]

Finazzi, M.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Fujii, J.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Gallas, B.

M. Eddrief, F. Vidal, and B. Gallas, “Optical properties of Bi2Se3: from bulk to ultrathin films,” J. Phys. D: Appl. Phys. 49(50), 505304 (2016).
[Crossref]

Gambarelli, S.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Gao, Y.

Y. Gao, Y. Huang, Y. Li, Q. Zhang, J.-J. Cao, W. Ho, and S. C. Lee, “Plasmonic Bi/ZnWO4 microspheres with improved photocatalytic activity on NO removal with visible light,” ACS Sustainable Chem. Eng. 4(12), 6912–6920 (2016).
[Crossref]

García Pardo, M.

Garcia-Zarco, O.

S. E. Rodil, O. Garcia-Zarco, E. Camps, H. Estrada, M. Lejeune, L. Bourja, and A. Zeinert, “Preferential orientation in bismuth thin films as a function of growth conditions,” Thin Solid Films 636, 384–391 (2017).
[Crossref]

Ghobadi, A.

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

Gompf, B.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

Guillet, T.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Hagstein, P. L.

M. R. Black, M. Padi, S. B. Cronin, Y.-M. Lin, O. Rabin, T. McClure, G. Dresselhaus, P. L. Hagstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Hajian, H.

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

Haro-Poniatowski, E.

M. J. de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
[Crossref]

Harris, L.

Ho, W.

Y. Gao, Y. Huang, Y. Li, Q. Zhang, J.-J. Cao, W. Ho, and S. C. Lee, “Plasmonic Bi/ZnWO4 microspheres with improved photocatalytic activity on NO removal with visible light,” ACS Sustainable Chem. Eng. 4(12), 6912–6920 (2016).
[Crossref]

Hövel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

Huang, Y.

Y. Gao, Y. Huang, Y. Li, Q. Zhang, J.-J. Cao, W. Ho, and S. C. Lee, “Plasmonic Bi/ZnWO4 microspheres with improved photocatalytic activity on NO removal with visible light,” ACS Sustainable Chem. Eng. 4(12), 6912–6920 (2016).
[Crossref]

Jamet, M.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Jiang, Q.

S.-S. Yi, X.-B. Zhang, B.-R. Wulan, J.-M. Yan, and Q. Jiang, “Non-noble metals applied to solar water splitting,” Energy Environ. Sci. 11(11), 3128–3156 (2018).
[Crossref]

Jung, G.-H.

G.-H. Jung, S. Yoo, J.-S. Kim, and Q.-H. Park, “Maximal visible light energy transfer to ultrathin semiconductor films enabled by dispersion control,” Adv. Opt. Mater. 7(7), 1801229 (2019).
[Crossref]

Karim, S.

T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, G. Fahsold, R. Lovrincic, A. Pucci, and S. Karim, “Quantum size effects manifest in infrared spectra of single bismuth nanowires,” Appl. Phys. Lett. 88(10), 103114 (2006).
[Crossref]

Kim, J. S.

Y. W. Wang, J. S. Kim, and K. S. Kim, “Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy,” Appl. Phys. Lett. 88(14), 143106 (2006).
[Crossref]

Kim, J.-S.

G.-H. Jung, S. Yoo, J.-S. Kim, and Q.-H. Park, “Maximal visible light energy transfer to ultrathin semiconductor films enabled by dispersion control,” Adv. Opt. Mater. 7(7), 1801229 (2019).
[Crossref]

Kim, K. S.

Y. W. Wang, J. S. Kim, and K. S. Kim, “Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy,” Appl. Phys. Lett. 88(14), 143106 (2006).
[Crossref]

Lee, S. C.

Y. Gao, Y. Huang, Y. Li, Q. Zhang, J.-J. Cao, W. Ho, and S. C. Lee, “Plasmonic Bi/ZnWO4 microspheres with improved photocatalytic activity on NO removal with visible light,” ACS Sustainable Chem. Eng. 4(12), 6912–6920 (2016).
[Crossref]

Lejeune, M.

S. E. Rodil, O. Garcia-Zarco, E. Camps, H. Estrada, M. Lejeune, L. Bourja, and A. Zeinert, “Preferential orientation in bismuth thin films as a function of growth conditions,” Thin Solid Films 636, 384–391 (2017).
[Crossref]

Li, Y.

Y. Gao, Y. Huang, Y. Li, Q. Zhang, J.-J. Cao, W. Ho, and S. C. Lee, “Plasmonic Bi/ZnWO4 microspheres with improved photocatalytic activity on NO removal with visible light,” ACS Sustainable Chem. Eng. 4(12), 6912–6920 (2016).
[Crossref]

Lin, Y.-M.

M. R. Black, M. Padi, S. B. Cronin, Y.-M. Lin, O. Rabin, T. McClure, G. Dresselhaus, P. L. Hagstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Liu, B.

Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, and Z. Wang, “Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity,” J. Alloys Compd. 651, 114–120 (2015).
[Crossref]

Lovrincic, R.

T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, G. Fahsold, R. Lovrincic, A. Pucci, and S. Karim, “Quantum size effects manifest in infrared spectra of single bismuth nanowires,” Appl. Phys. Lett. 88(10), 103114 (2006).
[Crossref]

Lu, Q.

Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, and Z. Wang, “Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity,” J. Alloys Compd. 651, 114–120 (2015).
[Crossref]

Marty, A.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Mascher, P.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Maté, B.

Mazumdar, D.

Y. R. Sapkota, A. Alkabsh, A. Walber, H. Samassekou, and D. Mazumdar, “Optical evidence for blue shift in topological insulator bismuth selenide in the few-layer limit,” Appl. Phys. Lett. 110(18), 181901 (2017).
[Crossref]

McClure, T.

M. R. Black, M. Padi, S. B. Cronin, Y.-M. Lin, O. Rabin, T. McClure, G. Dresselhaus, P. L. Hagstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Neumann, R.

T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, G. Fahsold, R. Lovrincic, A. Pucci, and S. Karim, “Quantum size effects manifest in infrared spectra of single bismuth nanowires,” Appl. Phys. Lett. 88(10), 103114 (2006).
[Crossref]

Ozbay, E.

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

Padi, M.

M. R. Black, M. Padi, S. B. Cronin, Y.-M. Lin, O. Rabin, T. McClure, G. Dresselhaus, P. L. Hagstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Park, Q.-H.

G.-H. Jung, S. Yoo, J.-S. Kim, and Q.-H. Park, “Maximal visible light energy transfer to ultrathin semiconductor films enabled by dispersion control,” Adv. Opt. Mater. 7(7), 1801229 (2019).
[Crossref]

Peláez, R. J.

Picone, A.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Piper, J.

Pucci, A.

T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, G. Fahsold, R. Lovrincic, A. Pucci, and S. Karim, “Quantum size effects manifest in infrared spectra of single bismuth nanowires,” Appl. Phys. Lett. 88(10), 103114 (2006).
[Crossref]

Rabin, O.

M. R. Black, M. Padi, S. B. Cronin, Y.-M. Lin, O. Rabin, T. McClure, G. Dresselhaus, P. L. Hagstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Ramos, N.

Rebollar, E.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Rendón, L.

D. Velasco-Arias, I. Zumeta-Dubé, D. Diaz, P. Santiago-Jacinto, V.-F. Ruiz-Ruiz, S.-E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined coloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

Rodil, S. E.

S. E. Rodil, O. Garcia-Zarco, E. Camps, H. Estrada, M. Lejeune, L. Bourja, and A. Zeinert, “Preferential orientation in bismuth thin films as a function of growth conditions,” Thin Solid Films 636, 384–391 (2017).
[Crossref]

Ruiz-Ruiz, V.-F.

D. Velasco-Arias, I. Zumeta-Dubé, D. Diaz, P. Santiago-Jacinto, V.-F. Ruiz-Ruiz, S.-E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined coloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

Samassekou, H.

Y. R. Sapkota, A. Alkabsh, A. Walber, H. Samassekou, and D. Mazumdar, “Optical evidence for blue shift in topological insulator bismuth selenide in the few-layer limit,” Appl. Phys. Lett. 110(18), 181901 (2017).
[Crossref]

Santiago-Jacinto, P.

D. Velasco-Arias, I. Zumeta-Dubé, D. Diaz, P. Santiago-Jacinto, V.-F. Ruiz-Ruiz, S.-E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined coloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

Sapkota, Y. R.

Y. R. Sapkota, A. Alkabsh, A. Walber, H. Samassekou, and D. Mazumdar, “Optical evidence for blue shift in topological insulator bismuth selenide in the few-layer limit,” Appl. Phys. Lett. 110(18), 181901 (2017).
[Crossref]

Serna, R.

J. Toudert, R. Serna, M. García Pardo, N. Ramos, R. J. Peláez, and B. Maté, “Mid-to-far infrared perfect absorption by a sub-(λ/100 nanofilm in a fractal phasor resonant cavity,” Opt. Express 26(26), 34043–34059 (2018).
[Crossref]

J. Toudert and R. Serna, “Interband transitions in semi-metal, semiconductors, and topological insulators: a new driving force for plasmonics and nanophotonics,” Opt. Mater. Express 7(7), 2299–2325 (2017).
[Crossref]

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

J. Toudert and R. Serna, “Ultraviolet-visible interband plasmonics with p-block elements,” Opt. Mater. Express 6(7), 2434–2447 (2016).
[Crossref]

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in optically resonant bismuth nanospheres for high-contrast switchable ultraviolet meta-filters,” IEEE Photonics J. 8(3), 1–11 (2016).
[Crossref]

M. J. de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
[Crossref]

J. Toudert, M. J. de Castro, and R. Serna, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. CF 116(38), 20530–20539 (2012).
[Crossref]

Shao, J.

J. Yao, Z. Zheng, J. Shao, and G. Yang, “Promoting photosensitivity of the Bi/Si heterojunction photodetector by inserting a WS2 layer,” ACS Appl. Mater. Interfaces 7(48), 26701–26708 (2015).
[Crossref]

Shao, J. M.

J. D. Yao, J. M. Shao, and G. W. Yang, “Ultra-broadband and high-responsive photodetectors based on bismuth films at room temperature,” Sci. Rep. 5(1), 12320 (2015).
[Crossref]

Sun, Y.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. 50(72), 10386–10389 (2014).
[Crossref]

Tian, Y.

Y. Tian and J. Toudert, “Nanobismuth: fabrication, optical, and plasmonic properties – emerging applications,” J. Nanotechnol. 2018, 1–23 (2018).
[Crossref]

Toimil-Molares, M. E.

T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, G. Fahsold, R. Lovrincic, A. Pucci, and S. Karim, “Quantum size effects manifest in infrared spectra of single bismuth nanowires,” Appl. Phys. Lett. 88(10), 103114 (2006).
[Crossref]

Toudert, J.

Y. Tian and J. Toudert, “Nanobismuth: fabrication, optical, and plasmonic properties – emerging applications,” J. Nanotechnol. 2018, 1–23 (2018).
[Crossref]

J. Toudert, R. Serna, M. García Pardo, N. Ramos, R. J. Peláez, and B. Maté, “Mid-to-far infrared perfect absorption by a sub-(λ/100 nanofilm in a fractal phasor resonant cavity,” Opt. Express 26(26), 34043–34059 (2018).
[Crossref]

J. Toudert and R. Serna, “Interband transitions in semi-metal, semiconductors, and topological insulators: a new driving force for plasmonics and nanophotonics,” Opt. Mater. Express 7(7), 2299–2325 (2017).
[Crossref]

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

J. Toudert and R. Serna, “Ultraviolet-visible interband plasmonics with p-block elements,” Opt. Mater. Express 6(7), 2434–2447 (2016).
[Crossref]

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in optically resonant bismuth nanospheres for high-contrast switchable ultraviolet meta-filters,” IEEE Photonics J. 8(3), 1–11 (2016).
[Crossref]

M. J. de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
[Crossref]

J. Toudert, M. J. de Castro, and R. Serna, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. CF 116(38), 20530–20539 (2012).
[Crossref]

Velasco-Arias, D.

D. Velasco-Arias, I. Zumeta-Dubé, D. Diaz, P. Santiago-Jacinto, V.-F. Ruiz-Ruiz, S.-E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined coloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

Vergnaud, C.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Vidal, F.

M. Eddrief, F. Vidal, and B. Gallas, “Optical properties of Bi2Se3: from bulk to ultrathin films,” J. Phys. D: Appl. Phys. 49(50), 505304 (2016).
[Crossref]

Vobornik, I.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Walber, A.

Y. R. Sapkota, A. Alkabsh, A. Walber, H. Samassekou, and D. Mazumdar, “Optical evidence for blue shift in topological insulator bismuth selenide in the few-layer limit,” Appl. Phys. Lett. 110(18), 181901 (2017).
[Crossref]

Wang, D.

X. Yang and D. Wang, “Photocatalysis: from fundamental principles to materials and applications,” ACS Appl. Energy Mater. 1(12), 6657–6693 (2018).
[Crossref]

Wang, Q.

Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, and Z. Wang, “Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity,” J. Alloys Compd. 651, 114–120 (2015).
[Crossref]

Wang, Y. W.

Y. W. Wang, J. S. Kim, and K. S. Kim, “Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy,” Appl. Phys. Lett. 88(14), 143106 (2006).
[Crossref]

Wang, Z.

Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, and Z. Wang, “Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity,” J. Alloys Compd. 651, 114–120 (2015).
[Crossref]

Wojcik, J.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Wu, Z.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. 50(72), 10386–10389 (2014).
[Crossref]

Wulan, B.-R.

S.-S. Yi, X.-B. Zhang, B.-R. Wulan, J.-M. Yan, and Q. Jiang, “Non-noble metals applied to solar water splitting,” Energy Environ. Sci. 11(11), 3128–3156 (2018).
[Crossref]

Xiong, T.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. 50(72), 10386–10389 (2014).
[Crossref]

Yan, J.-M.

S.-S. Yi, X.-B. Zhang, B.-R. Wulan, J.-M. Yan, and Q. Jiang, “Non-noble metals applied to solar water splitting,” Energy Environ. Sci. 11(11), 3128–3156 (2018).
[Crossref]

Yang, G.

J. Yao, Z. Zheng, J. Shao, and G. Yang, “Promoting photosensitivity of the Bi/Si heterojunction photodetector by inserting a WS2 layer,” ACS Appl. Mater. Interfaces 7(48), 26701–26708 (2015).
[Crossref]

Yang, G. W.

J. D. Yao, J. M. Shao, and G. W. Yang, “Ultra-broadband and high-responsive photodetectors based on bismuth films at room temperature,” Sci. Rep. 5(1), 12320 (2015).
[Crossref]

Yang, X.

X. Yang and D. Wang, “Photocatalysis: from fundamental principles to materials and applications,” ACS Appl. Energy Mater. 1(12), 6657–6693 (2018).
[Crossref]

Yao, J.

J. Yao, Z. Zheng, J. Shao, and G. Yang, “Promoting photosensitivity of the Bi/Si heterojunction photodetector by inserting a WS2 layer,” ACS Appl. Mater. Interfaces 7(48), 26701–26708 (2015).
[Crossref]

Yao, J. D.

J. D. Yao, J. M. Shao, and G. W. Yang, “Ultra-broadband and high-responsive photodetectors based on bismuth films at room temperature,” Sci. Rep. 5(1), 12320 (2015).
[Crossref]

Yi, S.-S.

S.-S. Yi, X.-B. Zhang, B.-R. Wulan, J.-M. Yan, and Q. Jiang, “Non-noble metals applied to solar water splitting,” Energy Environ. Sci. 11(11), 3128–3156 (2018).
[Crossref]

Yoo, S.

G.-H. Jung, S. Yoo, J.-S. Kim, and Q.-H. Park, “Maximal visible light energy transfer to ultrathin semiconductor films enabled by dispersion control,” Adv. Opt. Mater. 7(7), 1801229 (2019).
[Crossref]

Zeinert, A.

S. E. Rodil, O. Garcia-Zarco, E. Camps, H. Estrada, M. Lejeune, L. Bourja, and A. Zeinert, “Preferential orientation in bismuth thin films as a function of growth conditions,” Thin Solid Films 636, 384–391 (2017).
[Crossref]

Zhang, M.

Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, and Z. Wang, “Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity,” J. Alloys Compd. 651, 114–120 (2015).
[Crossref]

Zhang, Q.

Y. Gao, Y. Huang, Y. Li, Q. Zhang, J.-J. Cao, W. Ho, and S. C. Lee, “Plasmonic Bi/ZnWO4 microspheres with improved photocatalytic activity on NO removal with visible light,” ACS Sustainable Chem. Eng. 4(12), 6912–6920 (2016).
[Crossref]

Zhang, X.-B.

S.-S. Yi, X.-B. Zhang, B.-R. Wulan, J.-M. Yan, and Q. Jiang, “Non-noble metals applied to solar water splitting,” Energy Environ. Sci. 11(11), 3128–3156 (2018).
[Crossref]

Zhao, Z.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. 50(72), 10386–10389 (2014).
[Crossref]

Zheng, Z.

J. Yao, Z. Zheng, J. Shao, and G. Yang, “Promoting photosensitivity of the Bi/Si heterojunction photodetector by inserting a WS2 layer,” ACS Appl. Mater. Interfaces 7(48), 26701–26708 (2015).
[Crossref]

Zhou, Y.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. 50(72), 10386–10389 (2014).
[Crossref]

Zucchetti, C.

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Zumeta-Dubé, I.

D. Velasco-Arias, I. Zumeta-Dubé, D. Diaz, P. Santiago-Jacinto, V.-F. Ruiz-Ruiz, S.-E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined coloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

ACS Appl. Energy Mater. (1)

X. Yang and D. Wang, “Photocatalysis: from fundamental principles to materials and applications,” ACS Appl. Energy Mater. 1(12), 6657–6693 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (1)

J. Yao, Z. Zheng, J. Shao, and G. Yang, “Promoting photosensitivity of the Bi/Si heterojunction photodetector by inserting a WS2 layer,” ACS Appl. Mater. Interfaces 7(48), 26701–26708 (2015).
[Crossref]

ACS Photonics (1)

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

ACS Sustainable Chem. Eng. (1)

Y. Gao, Y. Huang, Y. Li, Q. Zhang, J.-J. Cao, W. Ho, and S. C. Lee, “Plasmonic Bi/ZnWO4 microspheres with improved photocatalytic activity on NO removal with visible light,” ACS Sustainable Chem. Eng. 4(12), 6912–6920 (2016).
[Crossref]

Adv. Opt. Mater. (1)

G.-H. Jung, S. Yoo, J.-S. Kim, and Q.-H. Park, “Maximal visible light energy transfer to ultrathin semiconductor films enabled by dispersion control,” Adv. Opt. Mater. 7(7), 1801229 (2019).
[Crossref]

Appl. Phys. Lett. (5)

Y. R. Sapkota, A. Alkabsh, A. Walber, H. Samassekou, and D. Mazumdar, “Optical evidence for blue shift in topological insulator bismuth selenide in the few-layer limit,” Appl. Phys. Lett. 110(18), 181901 (2017).
[Crossref]

M. J. de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
[Crossref]

M. R. Black, M. Padi, S. B. Cronin, Y.-M. Lin, O. Rabin, T. McClure, G. Dresselhaus, P. L. Hagstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, G. Fahsold, R. Lovrincic, A. Pucci, and S. Karim, “Quantum size effects manifest in infrared spectra of single bismuth nanowires,” Appl. Phys. Lett. 88(10), 103114 (2006).
[Crossref]

Y. W. Wang, J. S. Kim, and K. S. Kim, “Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy,” Appl. Phys. Lett. 88(14), 143106 (2006).
[Crossref]

Chem. Commun. (1)

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. 50(72), 10386–10389 (2014).
[Crossref]

Energy Environ. Sci. (1)

S.-S. Yi, X.-B. Zhang, B.-R. Wulan, J.-M. Yan, and Q. Jiang, “Non-noble metals applied to solar water splitting,” Energy Environ. Sci. 11(11), 3128–3156 (2018).
[Crossref]

IEEE Photonics J. (1)

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in optically resonant bismuth nanospheres for high-contrast switchable ultraviolet meta-filters,” IEEE Photonics J. 8(3), 1–11 (2016).
[Crossref]

J. Alloys Compd. (1)

Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, and Z. Wang, “Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity,” J. Alloys Compd. 651, 114–120 (2015).
[Crossref]

J. Nanotechnol. (1)

Y. Tian and J. Toudert, “Nanobismuth: fabrication, optical, and plasmonic properties – emerging applications,” J. Nanotechnol. 2018, 1–23 (2018).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (2)

D. Velasco-Arias, I. Zumeta-Dubé, D. Diaz, P. Santiago-Jacinto, V.-F. Ruiz-Ruiz, S.-E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined coloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

J. Phys. Chem. CF (1)

J. Toudert, M. J. de Castro, and R. Serna, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. CF 116(38), 20530–20539 (2012).
[Crossref]

J. Phys. D: Appl. Phys. (1)

M. Eddrief, F. Vidal, and B. Gallas, “Optical properties of Bi2Se3: from bulk to ultrathin films,” J. Phys. D: Appl. Phys. 49(50), 505304 (2016).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (2)

Phys. Rev. B (2)

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

C. Zucchetti, M.-T. Dau, F. Bottegoni, C. Vergnaud, T. Guillet, A. Marty, C. Beignet, S. Gambarelli, A. Picone, A. Calloni, G. Bussetti, A. Brambilla, L. Duò, F. Ciccacci, P. K. Das, J. Fujii, I. Vobornik, M. Finazzi, and M. Jamet, “Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films,” Phys. Rev. B 98(18), 184418 (2018).
[Crossref]

Sci. Rep. (1)

J. D. Yao, J. M. Shao, and G. W. Yang, “Ultra-broadband and high-responsive photodetectors based on bismuth films at room temperature,” Sci. Rep. 5(1), 12320 (2015).
[Crossref]

Thin Solid Films (1)

S. E. Rodil, O. Garcia-Zarco, E. Camps, H. Estrada, M. Lejeune, L. Bourja, and A. Zeinert, “Preferential orientation in bismuth thin films as a function of growth conditions,” Thin Solid Films 636, 384–391 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Far infrared - to - ultraviolet ellipsometry characterization of the films and of their dielectric function. (a) Spectra of the ellipsometric angles Ψ and Δ at the angle of incidence of 70°: experimental spectra (dots) and the corresponding best-fit ones (lines). (b) Spectra of the real and imaginary part (ɛ1 and ɛ2) of the best-fit dielectric function of each film. The model used for the ellipsometry analysis is shown on the left panel.
Fig. 2.
Fig. 2. Structure of selected Bi films. (a) Top-view SEM images of the films with tBi = 11 nm, 21 nm, and 78 nm. (b) AFM images and profiles of these films. (c) Cross-section schematic representation of the film structure. The film with tBi = 11 nm has a discontinuous near-percolation structure. This structure is built from nanoparticles with a 20-50 nm in-plane size. They are arranged in clusters with a 50-150 nm in-plane size. The clusters are separated by voids with a near 10 nm width. Films with larger tBi have a continuous structure with few/no voids. The corresponding thicknesses t and trough are depicted for each film.
Fig. 3.
Fig. 3. FDTD simulations of the optical properties of discontinuous Bi thin films consisting of densely packed Bi nanospheroids. (a) Example of elementary simulation cell seen in cross-section across the meridional plane of the nanospheroid, with a map of the x-polarized electric field amplitude at E = 1.5 eV (lowest value = 0, highest value = 1.5 relative to the incident field amplitude). In this example, the cell width is 60 nm, the nanospheroid diameter D = 50 nm and height H = 17 nm, the separation gaps between nanospheroids is G = 10 nm. The incident light impinges downwards along the z axis and is x-polarized. (b) Simulated effective dielectric function (real part ɛ1 and imaginary part ɛ2) of discontinuous Bi films with different nanospheroid diameters D and separation gaps G (red and blue lines). The dielectric function of bulk Bi (black line) is shown for comparison. This dielectric function is the same as that of the film with tBi = 11 nm shown in Fig. 1b. For any value of D and G, the discontinuous film presents much smaller values of ɛ1 and ɛ2 than bulk Bi.
Fig. 4.
Fig. 4. Spectra of the ellipsometric angles Ψ and Δ at the angles of incidence of 50° and 70°: experimental spectra (red dots) and the corresponding best-fit ones (black lines), for all the films. The spectra of the film with tBi = 78 nm are shown in ref. [1]. MSE values of 5.6, 3.3, 1.8, and 2.2 have been obtained for the 11 nm, 17 nm, 21 nm and 28 nm, respectively.
Fig. 5.
Fig. 5. Bilayer structure used to model the Bi films for ellipsometry fitting.
Fig. 6.
Fig. 6. Schematics of the Bi film growth mechanisms with characteristic values of the nominal Bi thickness tBi. The thickness thresholds are estimated from our experiments. These are indicative (not exact) values.
Fig. 7.
Fig. 7. (a) Top view of the elementary cell used for the simulation, with the corresponding x-polarized electric field amplitude map in the equatorial plane of the Bi nanospheroid, for D = 50 nm, H = 17 nm and G = 10 nm. E is the incident electric field. (b) Cross-section of the elementary cell, showing the location of the input plane (incident field) and of the viewer plane (where the reflectance spectrum is measured). (c) Bilayer structure used to determine the effective dielectric function of the Bi discontinuous film from the FDTD – calculated reflectance spectra.
Fig. 8.
Fig. 8. FDTD reflectance spectra for discontinuous Bi films consisting of a square array of Bi truncated nanospheroids, with different diameter D and separation gap G, and a height H = 17 nm. These spectra are compared with that of a continuous Bi film with the same layer thicknesses (t = 11 nm, trough = 6 nm) as the film with tBi = 11 nm.
Fig. 9.
Fig. 9. Left panel: ɛ2 spectra simulated by FDTD for 6 different monodisperse arrays of Bi nanospheroids. Blue and red curves are the same as in Fig. 3(b) (truncated spheroids with different diameters D, 20 and 50 nm, and different separation gaps G, 0 and 10 nm). Green curves stand for untruncated spheroids (D = 20 and 50 nm, G = 1 nm). The spectrum of bulk Bi (black line) is shown for comparison. Right panel: Polydisperse ɛ2 spectra calculated by a linear superposition of the monodisperse ɛ2 shown in the left panel. “Polydisperse 1” was obtained with only the D = 50 nm monodisperse arrays (truncated spheroids: 40% G = 0, 10% G = 10 nm; untruncated spheroids: 50%). “Polydisperse 2” was obtained with the same weight for the 6 monodisperse arrays. The measured ɛ2 of the film with tBi = 11 nm (orange line) and the bulk reference (black line) are shown for comparison.

Tables (1)

Tables Icon

Table 1. Nominal thickness tBi of the films, layer thicknesses trough and t used for the ellipsometry analysis, and geometrical thickness of the films, t + trough.a

Metrics