Abstract

Individual or arrayed microlenses offer remarkable opportunities in optics and photonics. However, their usage is currently limited by the lack of manufacturing technologies capable of tailoring the lens geometry to target devices. Here, we demonstrate how laser catapulting (LCP), a recent laser-based additive manufacturing technique, enables the preparation of microlenses with controlled geometry and curvature. LCP exploits single laser pulses to catapult polymeric microdisks into user-selectable positions on a substrate, which are converted into microlenses following a thermal reflow treatment. By shaping the irradiance distribution of the incident laser beam, we obtained arrays of circular, triangular, and cylindrical microlenses with a radius between 50-250 µm and 100% fill-factor. The good quantitative agreement between beam shape and microlens geometry, combined with the in-situ fabrication capabilities and high-throughput of LCP, can help the consolidation of laser additive methods for micro-optics in scientific and industrial applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Organic-inorganic-hybrid-polymer microlens arrays with tailored optical characteristics and multi-focal properties

Loïc Jacot-Descombes, Victor J. Cadarso, Arne Schleunitz, Susanne Grützner, Jan J. Klein, Jürgen Brugger, Helmut Schift, and Gabi Grützner
Opt. Express 23(19) 25365-25376 (2015)

Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces

Bian Hao, Hewei Liu, Feng Chen, Qing Yang, Pubo Qu, Guangqing Du, Jinhai Si, Xianhua Wang, and Xun Hou
Opt. Express 20(12) 12939-12948 (2012)

Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method

Feng Chen, Hewei Liu, Qing Yang, Xianhua Wang, Cong Hou, Hao Bian, Weiwei Liang, Jinhai Si, and Xun Hou
Opt. Express 18(19) 20334-20343 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. P. Herzig, Micro-Optics : Elements, Systems And Applications (CRC Press2014).
  2. M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer: from theory to application,” in Laser Beam Shaping VIII6663, 666302 (2007).
  3. Y. Saita, H. Shinto, and T. Nomura, “Holographic Shack–Hartmann wavefront sensor based on the correlation peak displacement detection method for wavefront sensing with large dynamic range,” Optica 2(5), 411 (2015).
    [Crossref]
  4. A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
    [Crossref]
  5. C. Domínguez, N. Jost, S. Askins, M. Victoria, and I. Antón, “A review of the promises and challenges of micro-concentrator photovoltaics,” AIP Conf. Proc. 1881, 080003 (2017).
    [Crossref]
  6. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
    [Crossref]
  7. C. T. Pan and C. H. Su, “Fabrication of gapless triangular micro-lens array,” Sens. Actuators, A 134(2), 631–640 (2007).
    [Crossref]
  8. T. H. Lin, H. Yang, C. K. Chao, and S. Y. Hung, “New high fill-factor triangular microlens array fabrication method using UV proximity printing,” Microsyst. Technol. 15(8), 1255–1261 (2009).
    [Crossref]
  9. Z. Luo, J. Duan, and C. Guo, “Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica,” Opt. Lett. 42(12), 2358 (2017).
    [Crossref]
  10. J. Qiu, M. Li, H. Ye, C. Yang, and C. Shi, “Fabrication of high fill factor cylindrical microlens array with isolated thermal reflow,” Appl. Opt. 57(25), 7296 (2018).
    [Crossref]
  11. I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26(3), 2280 (2018).
    [Crossref]
  12. A. Piqué, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and S. A. Mathews, “Laser 3D micro-manufacturing,” J. Phys. D: Appl. Phys. 49(22), 223001 (2016).
    [Crossref]
  13. A. Camposeo, L. Persano, M. Farsari, and D. Pisignano, “Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics,” Adv. Opt. Mater. 7(1), 1800419 (2019).
    [Crossref]
  14. B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet Printing of Polymers: State of the Art and Future Developments,” Adv. Mater. 16(3), 203–213 (2004).
    [Crossref]
  15. C. H. Tien, C. H. Hung, and T. H. Yu, “Microlens arrays by direct-writing inkjet print for LCD backlighting applications,” J. Disp. Technol. 5(5), 147–151 (2009).
    [Crossref]
  16. W.-L. Liang, J.-G. Pan, and G.-D. J. Su, “One-lens camera using a biologically based artificial compound eye with multiple focal lengths,” Optica 6(3), 326 (2019).
    [Crossref]
  17. M. Duocastella, C. Florian, P. Serra, and A. Diaspro, “Sub-wavelength Laser Nanopatterning using Droplet Lenses,” Sci. Rep. 5(1), 16199 (2015).
    [Crossref]
  18. C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
    [Crossref]
  19. S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554–558 (2017).
    [Crossref]
  20. J. Xing, W. Rong, D. Sun, L. Wang, and L. Sun, “Extrusion printing for fabrication of spherical and cylindrical microlens arrays,” Appl. Opt. 55(25), 6947 (2016).
    [Crossref]
  21. J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
    [Crossref]
  22. R. M. Vázquez, S. M. Eaton, R. Ramponi, G. Cerullo, and R. Osellame, “Fabrication of binary Fresnel lenses in PMMA by femtosecond laser surface ablation,” Opt. Express 19(12), 11597 (2011).
    [Crossref]
  23. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
    [Crossref]
  24. P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
    [Crossref]
  25. D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light: Sci. Appl. 4(1), e228 (2015).
    [Crossref]
  26. S. Surdo, R. Carzino, A. Diaspro, and M. Duocastella, “Single-Shot Laser Additive Manufacturing of High Fill-Factor Microlens Arrays,” Adv. Opt. Mater. 6(5), 1701190 (2018).
    [Crossref]
  27. P. Delaporte and A. Alloncle, “Laser-induced forward transfer : A high resolution additive manufacturing technology,” Opt. Laser Technol. 78, 33–41 (2016).
    [Crossref]
  28. C. B. Arnold, P. Serra, and A. Piqué, “Laser Direct-Write Techniques for Printing of Complex Materials,” MRS Bull. 32(1), 23–31 (2007).
    [Crossref]
  29. P. Serra and A. Piqué, “Laser-Induced Forward Transfer: Fundamentals and Applications,” Adv. Mater. Technol. 4(1), 1800099 (2019).
    [Crossref]
  30. M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
    [Crossref]
  31. R. Kirchner and H. Schift, “Thermal reflow of polymers for innovative and smart 3D structures: A review,” Mater. Sci. Semicond. Process. 92, 58–72 (2019).
    [Crossref]
  32. P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16(9), 1556–1560 (2016).
    [Crossref]
  33. M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
    [Crossref]
  34. T. L. Anderson, Fracture Mechanics : Fundamentals and Applications (Taylor & Francis, 2017).
  35. R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys. A: Mater. Sci. Process. 102(1), 21–26 (2011).
    [Crossref]
  36. S. Surdo and M. Duocastella, “Fast Acoustic Light Sculpting for On-demand Maskless Lithography,” Adv. Sci., 10.1002/advs.201900304 (2019)
    [Crossref]

2019 (4)

A. Camposeo, L. Persano, M. Farsari, and D. Pisignano, “Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics,” Adv. Opt. Mater. 7(1), 1800419 (2019).
[Crossref]

W.-L. Liang, J.-G. Pan, and G.-D. J. Su, “One-lens camera using a biologically based artificial compound eye with multiple focal lengths,” Optica 6(3), 326 (2019).
[Crossref]

P. Serra and A. Piqué, “Laser-Induced Forward Transfer: Fundamentals and Applications,” Adv. Mater. Technol. 4(1), 1800099 (2019).
[Crossref]

R. Kirchner and H. Schift, “Thermal reflow of polymers for innovative and smart 3D structures: A review,” Mater. Sci. Semicond. Process. 92, 58–72 (2019).
[Crossref]

2018 (5)

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

S. Surdo, R. Carzino, A. Diaspro, and M. Duocastella, “Single-Shot Laser Additive Manufacturing of High Fill-Factor Microlens Arrays,” Adv. Opt. Mater. 6(5), 1701190 (2018).
[Crossref]

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

J. Qiu, M. Li, H. Ye, C. Yang, and C. Shi, “Fabrication of high fill factor cylindrical microlens array with isolated thermal reflow,” Appl. Opt. 57(25), 7296 (2018).
[Crossref]

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26(3), 2280 (2018).
[Crossref]

2017 (5)

C. Domínguez, N. Jost, S. Askins, M. Victoria, and I. Antón, “A review of the promises and challenges of micro-concentrator photovoltaics,” AIP Conf. Proc. 1881, 080003 (2017).
[Crossref]

Z. Luo, J. Duan, and C. Guo, “Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica,” Opt. Lett. 42(12), 2358 (2017).
[Crossref]

S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554–558 (2017).
[Crossref]

M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
[Crossref]

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

2016 (6)

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16(9), 1556–1560 (2016).
[Crossref]

P. Delaporte and A. Alloncle, “Laser-induced forward transfer : A high resolution additive manufacturing technology,” Opt. Laser Technol. 78, 33–41 (2016).
[Crossref]

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

J. Xing, W. Rong, D. Sun, L. Wang, and L. Sun, “Extrusion printing for fabrication of spherical and cylindrical microlens arrays,” Appl. Opt. 55(25), 6947 (2016).
[Crossref]

A. Piqué, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and S. A. Mathews, “Laser 3D micro-manufacturing,” J. Phys. D: Appl. Phys. 49(22), 223001 (2016).
[Crossref]

2015 (3)

Y. Saita, H. Shinto, and T. Nomura, “Holographic Shack–Hartmann wavefront sensor based on the correlation peak displacement detection method for wavefront sensing with large dynamic range,” Optica 2(5), 411 (2015).
[Crossref]

M. Duocastella, C. Florian, P. Serra, and A. Diaspro, “Sub-wavelength Laser Nanopatterning using Droplet Lenses,” Sci. Rep. 5(1), 16199 (2015).
[Crossref]

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light: Sci. Appl. 4(1), e228 (2015).
[Crossref]

2013 (2)

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref]

2011 (2)

R. M. Vázquez, S. M. Eaton, R. Ramponi, G. Cerullo, and R. Osellame, “Fabrication of binary Fresnel lenses in PMMA by femtosecond laser surface ablation,” Opt. Express 19(12), 11597 (2011).
[Crossref]

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys. A: Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

2009 (2)

C. H. Tien, C. H. Hung, and T. H. Yu, “Microlens arrays by direct-writing inkjet print for LCD backlighting applications,” J. Disp. Technol. 5(5), 147–151 (2009).
[Crossref]

T. H. Lin, H. Yang, C. K. Chao, and S. Y. Hung, “New high fill-factor triangular microlens array fabrication method using UV proximity printing,” Microsyst. Technol. 15(8), 1255–1261 (2009).
[Crossref]

2007 (2)

C. T. Pan and C. H. Su, “Fabrication of gapless triangular micro-lens array,” Sens. Actuators, A 134(2), 631–640 (2007).
[Crossref]

C. B. Arnold, P. Serra, and A. Piqué, “Laser Direct-Write Techniques for Printing of Complex Materials,” MRS Bull. 32(1), 23–31 (2007).
[Crossref]

2004 (1)

B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet Printing of Polymers: State of the Art and Future Developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

Alloncle, A.

P. Delaporte and A. Alloncle, “Laser-induced forward transfer : A high resolution additive manufacturing technology,” Opt. Laser Technol. 78, 33–41 (2016).
[Crossref]

Anderson, T. L.

T. L. Anderson, Fracture Mechanics : Fundamentals and Applications (Taylor & Francis, 2017).

Antón, I.

C. Domínguez, N. Jost, S. Askins, M. Victoria, and I. Antón, “A review of the promises and challenges of micro-concentrator photovoltaics,” AIP Conf. Proc. 1881, 080003 (2017).
[Crossref]

Arnold, C. B.

C. B. Arnold, P. Serra, and A. Piqué, “Laser Direct-Write Techniques for Printing of Complex Materials,” MRS Bull. 32(1), 23–31 (2007).
[Crossref]

Askins, S.

C. Domínguez, N. Jost, S. Askins, M. Victoria, and I. Antón, “A review of the promises and challenges of micro-concentrator photovoltaics,” AIP Conf. Proc. 1881, 080003 (2017).
[Crossref]

Auyeung, R. C. Y.

A. Piqué, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and S. A. Mathews, “Laser 3D micro-manufacturing,” J. Phys. D: Appl. Phys. 49(22), 223001 (2016).
[Crossref]

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys. A: Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

Bassi, A.

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16(9), 1556–1560 (2016).
[Crossref]

Bian, H.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref]

Bianchini, P.

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

Billah, M.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Birnbaum, A. J.

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys. A: Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

Blaicher, M.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Bragheri, F.

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16(9), 1556–1560 (2016).
[Crossref]

Caer, C.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Camposeo, A.

A. Camposeo, L. Persano, M. Farsari, and D. Pisignano, “Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics,” Adv. Opt. Mater. 7(1), 1800419 (2019).
[Crossref]

Carzino, R.

S. Surdo, R. Carzino, A. Diaspro, and M. Duocastella, “Single-Shot Laser Additive Manufacturing of High Fill-Factor Microlens Arrays,” Adv. Opt. Mater. 6(5), 1701190 (2018).
[Crossref]

Cerullo, G.

Chao, C. K.

T. H. Lin, H. Yang, C. K. Chao, and S. Y. Hung, “New high fill-factor triangular microlens array fabrication method using UV proximity printing,” Microsyst. Technol. 15(8), 1255–1261 (2009).
[Crossref]

Charipar, N. A.

A. Piqué, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and S. A. Mathews, “Laser 3D micro-manufacturing,” J. Phys. D: Appl. Phys. 49(22), 223001 (2016).
[Crossref]

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys. A: Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

Chen, F.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref]

Choi, K. J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Crozier, K. B.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Dalgarno, P. A.

Dangel, R.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Davies, A.

de Gans, B.-J.

B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet Printing of Polymers: State of the Art and Future Developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

Delaporte, P.

P. Delaporte and A. Alloncle, “Laser-induced forward transfer : A high resolution additive manufacturing technology,” Opt. Laser Technol. 78, 33–41 (2016).
[Crossref]

Diaspro, A.

S. Surdo, R. Carzino, A. Diaspro, and M. Duocastella, “Single-Shot Laser Additive Manufacturing of High Fill-Factor Microlens Arrays,” Adv. Opt. Mater. 6(5), 1701190 (2018).
[Crossref]

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554–558 (2017).
[Crossref]

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

M. Duocastella, C. Florian, P. Serra, and A. Diaspro, “Sub-wavelength Laser Nanopatterning using Droplet Lenses,” Sci. Rep. 5(1), 16199 (2015).
[Crossref]

Dietrich, P. I.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Domínguez, C.

C. Domínguez, N. Jost, S. Askins, M. Victoria, and I. Antón, “A review of the promises and challenges of micro-concentrator photovoltaics,” AIP Conf. Proc. 1881, 080003 (2017).
[Crossref]

Du, G.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref]

Duan, J.

Duineveld, P. C.

B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet Printing of Polymers: State of the Art and Future Developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

Duncan, R. R.

Duocastella, M.

S. Surdo, R. Carzino, A. Diaspro, and M. Duocastella, “Single-Shot Laser Additive Manufacturing of High Fill-Factor Microlens Arrays,” Adv. Opt. Mater. 6(5), 1701190 (2018).
[Crossref]

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554–558 (2017).
[Crossref]

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

M. Duocastella, C. Florian, P. Serra, and A. Diaspro, “Sub-wavelength Laser Nanopatterning using Droplet Lenses,” Sci. Rep. 5(1), 16199 (2015).
[Crossref]

S. Surdo and M. Duocastella, “Fast Acoustic Light Sculpting for On-demand Maskless Lithography,” Adv. Sci., 10.1002/advs.201900304 (2019)
[Crossref]

Dutton, N. A. W.

Eason, R. W.

M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
[Crossref]

Eaton, S. M.

Farsari, M.

A. Camposeo, L. Persano, M. Farsari, and D. Pisignano, “Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics,” Adv. Opt. Mater. 7(1), 1800419 (2019).
[Crossref]

Feinaeugle, M.

M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
[Crossref]

Fischbach, S.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Florian, C.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

M. Duocastella, C. Florian, P. Serra, and A. Diaspro, “Sub-wavelength Laser Nanopatterning using Droplet Lenses,” Sci. Rep. 5(1), 16199 (2015).
[Crossref]

Freude, W.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Gallinet, B.

Giessen, H.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Gissibl, T.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Gregorcic, P.

M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
[Crossref]

Guo, C.

Gyongy, I.

Heath, D. J.

M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
[Crossref]

Heindel, T.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Henderson, R. K.

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Herzig, H. P.

H. P. Herzig, Micro-Optics : Elements, Systems And Applications (CRC Press2014).

Hofmann, A.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Hoose, T.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Hou, X.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref]

Huang, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Hung, C. H.

C. H. Tien, C. H. Hung, and T. H. Yu, “Microlens arrays by direct-writing inkjet print for LCD backlighting applications,” J. Disp. Technol. 5(5), 147–151 (2009).
[Crossref]

Hung, S. Y.

T. H. Lin, H. Yang, C. K. Chao, and S. Y. Hung, “New high fill-factor triangular microlens array fabrication method using UV proximity printing,” Microsyst. Technol. 15(8), 1255–1261 (2009).
[Crossref]

Jost, N.

C. Domínguez, N. Jost, S. Askins, M. Victoria, and I. Antón, “A review of the promises and challenges of micro-concentrator photovoltaics,” AIP Conf. Proc. 1881, 080003 (2017).
[Crossref]

Jung, I.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Kaganskiy, A.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Kim, H.

A. Piqué, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and S. A. Mathews, “Laser 3D micro-manufacturing,” J. Phys. D: Appl. Phys. 49(22), 223001 (2016).
[Crossref]

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys. A: Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

Kim, R. H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Kirchner, R.

R. Kirchner and H. Schift, “Thermal reflow of polymers for innovative and smart 3D structures: A review,” Mater. Sci. Semicond. Process. 92, 58–72 (2019).
[Crossref]

Koos, C.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Li, M.

Li, R.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Liang, W.-L.

Lin, T. H.

T. H. Lin, H. Yang, C. K. Chao, and S. Y. Hung, “New high fill-factor triangular microlens array fabrication method using UV proximity printing,” Microsyst. Technol. 15(8), 1255–1261 (2009).
[Crossref]

Lindlein, N.

M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer: from theory to application,” in Laser Beam Shaping VIII6663, 666302 (2007).

Liu, Z.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Lu, C.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Luo, Z.

Malyarchuk, V.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Mathews, S. A.

A. Piqué, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and S. A. Mathews, “Laser 3D micro-manufacturing,” J. Phys. D: Appl. Phys. 49(22), 223001 (2016).
[Crossref]

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys. A: Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

Midorikawa, K.

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light: Sci. Appl. 4(1), e228 (2015).
[Crossref]

Mills, B.

M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
[Crossref]

Moehrle, M.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Niu, L. G.

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light: Sci. Appl. 4(1), e228 (2015).
[Crossref]

Nomura, T.

Offrein, B.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Osellame, R.

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16(9), 1556–1560 (2016).
[Crossref]

R. M. Vázquez, S. M. Eaton, R. Ramponi, G. Cerullo, and R. Osellame, “Fabrication of binary Fresnel lenses in PMMA by femtosecond laser surface ablation,” Opt. Express 19(12), 11597 (2011).
[Crossref]

Paiè, P.

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16(9), 1556–1560 (2016).
[Crossref]

Pan, C. T.

C. T. Pan and C. H. Su, “Fabrication of gapless triangular micro-lens array,” Sens. Actuators, A 134(2), 631–640 (2007).
[Crossref]

Pan, J.-G.

Park, H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Persano, L.

A. Camposeo, L. Persano, M. Farsari, and D. Pisignano, “Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics,” Adv. Opt. Mater. 7(1), 1800419 (2019).
[Crossref]

Piazza, S.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

Piqué, A.

P. Serra and A. Piqué, “Laser-Induced Forward Transfer: Fundamentals and Applications,” Adv. Mater. Technol. 4(1), 1800099 (2019).
[Crossref]

A. Piqué, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and S. A. Mathews, “Laser 3D micro-manufacturing,” J. Phys. D: Appl. Phys. 49(22), 223001 (2016).
[Crossref]

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys. A: Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

C. B. Arnold, P. Serra, and A. Piqué, “Laser Direct-Write Techniques for Printing of Complex Materials,” MRS Bull. 32(1), 23–31 (2007).
[Crossref]

Pisignano, D.

A. Camposeo, L. Persano, M. Farsari, and D. Pisignano, “Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics,” Adv. Opt. Mater. 7(1), 1800419 (2019).
[Crossref]

Qiu, J.

Ramoino, P.

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

Ramponi, R.

Reitzenstein, S.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Reuter, I.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Rickman, C.

Rodt, S.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Rogers, J. A.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Rong, W.

Saggau, P.

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

Saita, Y.

Sancataldo, G.

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

Schift, H.

R. Kirchner and H. Schift, “Thermal reflow of polymers for innovative and smart 3D structures: A review,” Mater. Sci. Semicond. Process. 92, 58–72 (2019).
[Crossref]

Schlehahn, A.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Schmidt, R.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Schubert, U. S.

B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet Printing of Polymers: State of the Art and Future Developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

Serra, P.

P. Serra and A. Piqué, “Laser-Induced Forward Transfer: Fundamentals and Applications,” Adv. Mater. Technol. 4(1), 1800099 (2019).
[Crossref]

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

M. Duocastella, C. Florian, P. Serra, and A. Diaspro, “Sub-wavelength Laser Nanopatterning using Droplet Lenses,” Sci. Rep. 5(1), 16199 (2015).
[Crossref]

C. B. Arnold, P. Serra, and A. Piqué, “Laser Direct-Write Techniques for Printing of Complex Materials,” MRS Bull. 32(1), 23–31 (2007).
[Crossref]

Shi, C.

Shinto, H.

Si, J.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref]

Song, Y. M.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Strittmatter, A.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Su, C. H.

C. T. Pan and C. H. Su, “Fabrication of gapless triangular micro-lens array,” Sens. Actuators, A 134(2), 631–640 (2007).
[Crossref]

Su, G.-D. J.

Sugioka, K.

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light: Sci. Appl. 4(1), e228 (2015).
[Crossref]

Sun, D.

Sun, L.

Surdo, S.

S. Surdo, R. Carzino, A. Diaspro, and M. Duocastella, “Single-Shot Laser Additive Manufacturing of High Fill-Factor Microlens Arrays,” Adv. Opt. Mater. 6(5), 1701190 (2018).
[Crossref]

S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554–558 (2017).
[Crossref]

S. Surdo and M. Duocastella, “Fast Acoustic Light Sculpting for On-demand Maskless Lithography,” Adv. Sci., 10.1002/advs.201900304 (2019)
[Crossref]

Thiele, S.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Tien, C. H.

C. H. Tien, C. H. Hung, and T. H. Yu, “Microlens arrays by direct-writing inkjet print for LCD backlighting applications,” J. Disp. Technol. 5(5), 147–151 (2009).
[Crossref]

Troppenz, U.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Vázquez, R. M.

Victoria, M.

C. Domínguez, N. Jost, S. Askins, M. Victoria, and I. Antón, “A review of the promises and challenges of micro-concentrator photovoltaics,” AIP Conf. Proc. 1881, 080003 (2017).
[Crossref]

Voelkel, R.

M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer: from theory to application,” in Laser Beam Shaping VIII6663, 666302 (2007).

Wang, L.

Weible, K. J.

M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer: from theory to application,” in Laser Beam Shaping VIII6663, 666302 (2007).

Wu, D.

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light: Sci. Appl. 4(1), e228 (2015).
[Crossref]

Wu, S. Z.

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light: Sci. Appl. 4(1), e228 (2015).
[Crossref]

Xiao, J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Xie, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Xing, J.

Xu, J.

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light: Sci. Appl. 4(1), e228 (2015).
[Crossref]

Yang, C.

Yang, H.

T. H. Lin, H. Yang, C. K. Chao, and S. Y. Hung, “New high fill-factor triangular microlens array fabrication method using UV proximity printing,” Microsyst. Technol. 15(8), 1255–1261 (2009).
[Crossref]

Yang, Q.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref]

Ye, H.

Yong, J.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref]

Yu, T. H.

C. H. Tien, C. H. Hung, and T. H. Yu, “Microlens arrays by direct-writing inkjet print for LCD backlighting applications,” J. Disp. Technol. 5(5), 147–151 (2009).
[Crossref]

Yun, F.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref]

Zhang, D.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref]

Zimmermann, M.

M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer: from theory to application,” in Laser Beam Shaping VIII6663, 666302 (2007).

ACS Appl. Mater. Interfaces (2)

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref]

ACS Photonics (1)

M. Duocastella, G. Sancataldo, P. Saggau, P. Ramoino, P. Bianchini, and A. Diaspro, “Fast Inertia-Free Volumetric Light-Sheet Microscope,” ACS Photonics 4(7), 1797–1804 (2017).
[Crossref]

Adv. Mater. (1)

B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet Printing of Polymers: State of the Art and Future Developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

Adv. Mater. Technol. (1)

P. Serra and A. Piqué, “Laser-Induced Forward Transfer: Fundamentals and Applications,” Adv. Mater. Technol. 4(1), 1800099 (2019).
[Crossref]

Adv. Opt. Mater. (2)

A. Camposeo, L. Persano, M. Farsari, and D. Pisignano, “Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics,” Adv. Opt. Mater. 7(1), 1800419 (2019).
[Crossref]

S. Surdo, R. Carzino, A. Diaspro, and M. Duocastella, “Single-Shot Laser Additive Manufacturing of High Fill-Factor Microlens Arrays,” Adv. Opt. Mater. 6(5), 1701190 (2018).
[Crossref]

AIP Conf. Proc. (1)

C. Domínguez, N. Jost, S. Askins, M. Victoria, and I. Antón, “A review of the promises and challenges of micro-concentrator photovoltaics,” AIP Conf. Proc. 1881, 080003 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. A: Mater. Sci. Process. (1)

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys. A: Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

Appl. Surf. Sci. (2)

M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
[Crossref]

S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554–558 (2017).
[Crossref]

J. Disp. Technol. (1)

C. H. Tien, C. H. Hung, and T. H. Yu, “Microlens arrays by direct-writing inkjet print for LCD backlighting applications,” J. Disp. Technol. 5(5), 147–151 (2009).
[Crossref]

J. Phys. D: Appl. Phys. (1)

A. Piqué, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and S. A. Mathews, “Laser 3D micro-manufacturing,” J. Phys. D: Appl. Phys. 49(22), 223001 (2016).
[Crossref]

Lab Chip (1)

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16(9), 1556–1560 (2016).
[Crossref]

Light: Sci. Appl. (1)

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light: Sci. Appl. 4(1), e228 (2015).
[Crossref]

Mater. Sci. Semicond. Process. (1)

R. Kirchner and H. Schift, “Thermal reflow of polymers for innovative and smart 3D structures: A review,” Mater. Sci. Semicond. Process. 92, 58–72 (2019).
[Crossref]

Microsyst. Technol. (1)

T. H. Lin, H. Yang, C. K. Chao, and S. Y. Hung, “New high fill-factor triangular microlens array fabrication method using UV proximity printing,” Microsyst. Technol. 15(8), 1255–1261 (2009).
[Crossref]

MRS Bull. (1)

C. B. Arnold, P. Serra, and A. Piqué, “Laser Direct-Write Techniques for Printing of Complex Materials,” MRS Bull. 32(1), 23–31 (2007).
[Crossref]

Nat. Photonics (2)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Nature (1)

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

P. Delaporte and A. Alloncle, “Laser-induced forward transfer : A high resolution additive manufacturing technology,” Opt. Laser Technol. 78, 33–41 (2016).
[Crossref]

Opt. Lett. (1)

Optica (2)

Sci. Rep. (2)

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

M. Duocastella, C. Florian, P. Serra, and A. Diaspro, “Sub-wavelength Laser Nanopatterning using Droplet Lenses,” Sci. Rep. 5(1), 16199 (2015).
[Crossref]

Sens. Actuators, A (1)

C. T. Pan and C. H. Su, “Fabrication of gapless triangular micro-lens array,” Sens. Actuators, A 134(2), 631–640 (2007).
[Crossref]

Other (4)

H. P. Herzig, Micro-Optics : Elements, Systems And Applications (CRC Press2014).

M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer: from theory to application,” in Laser Beam Shaping VIII6663, 666302 (2007).

S. Surdo and M. Duocastella, “Fast Acoustic Light Sculpting for On-demand Maskless Lithography,” Adv. Sci., 10.1002/advs.201900304 (2019)
[Crossref]

T. L. Anderson, Fracture Mechanics : Fundamentals and Applications (Taylor & Francis, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Practical implementation and operational principle of laser catapulting. a) Scheme of the experimental setup used for catapulting polymeric disks with a UV pulsed nanosecond laser. b) Working principle of the LCP process. First, polymeric disks are transferred onto a receiver substrate and second, microlenses are formed by thermal reflow, namely the heating of the polymer above its glass transition temperature (${{\boldsymbol T}_{\boldsymbol g}}$).
Fig. 2.
Fig. 2. Microlenses preparation with laser catapulting. Optical images showing circular (a), triangular (b), and rectangular (c) polymeric microdisks (top row) and corresponding microlenses (middle raw) obtained with laser catapulting and subsequent thermal reflow. The bottom row shows 3D maps of some representative circular, triangular, and cylindrical microlenses.
Fig. 3.
Fig. 3. Light focusing through geometry-controllable microlenses. a-c) PSFs, both 3D reconstructions and optical sections, of circular (a), triangular (b), and cylindrical (c) microlenses. d) Quantification of the on-lens and lens-to-lens PSF variability; (top) XZ PSFs of 15 nominally identical cylindrical microlenses and (bottom) average (symbols) and standard deviation (error bars) of the width (yellow bars) and extension (red bars) of the measured PSFs. The scale bars denote a length of 50µm.
Fig. 4.
Fig. 4. Geometry and curvature options with laser catapulting. a) Plot of the minimum laser fluence (mean value and standard deviation) required for catapulting squared microdisks with various aspect ratio. Blue and red both line and symbols denote 2-µm-thick and 10-µm-thick donor films. Histograms of the circularity coefficients, top base (b) and bottom base (c), for circular, triangular, and rectangular microdisks. The red dashed lines denote the expected circularity; the binary images are representative examples of the catapulted shapes. d) Topography map of a portion of a representative cylindrical microlens with a base diameter of ∼ 40 and height of 4µm. e) Plot of the average (yellow symbols) and standard deviation (yellow bars) cross-sectional profile extracted from (d). The blue line denotes the circle best fitting the lens cross-section. f) Plot of the average (blue symbols) and standard deviation (blue bars) radius of curvature of microlenses with various base widths. The yellow line is the best fitting model function (Eq. (2)) that applies only to the first six experimental points. The insets are topographic maps of the cylindrical lenses corresponding to the point enclosed with the dark dashed circles.
Fig. 5.
Fig. 5. High fill-factor cylindrical MLAs. a) Focusing of white light with an array of sparse and highly closed (fill-factor ∼100%) cylindrical microlenses (bottom: images acquired at the focal plane of the lenses; top, corresponding intensity profile). The dramatic suppression of the noise with the reduction of the lens spacing is evident. b) (top) Cross-section profiles of 5 microlenses with various geometries and (bottom) corresponding PSFs c) Bar plots of the average (symbols) and standard deviation (error bars) of the lateral (blue bars) and axial (yellow bars) PSFs of the lenses shown in (b). The scale bars denote a length of 50µm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C = 4 π A / P 2 ,
R = W 2 8 h + h 2
S N R = I o n l e n s I o f f l e n s

Metrics