Abstract

We report on the action of exposure time and peak Intensity on the growth of long-scale focal volumes in multiphoton polymerization. Using modified engineered Bessel beams, we explore the effects that rise during the voxel growth, while we present a counterintuitive action of the expected expansion of the polymerized volumes that is revealed for a specific range of peak Intensities. We show that there is a regime where the higher exposure time (number of pulses) creates shorter polymerized strings in comparison to a lower number of pulses, and we determine the polymerization thresholds.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

10 July 2019: A typographical correction was made to the author listing.


OSA Recommended Articles
Fabrication of high-aspect-ratio structures using Bessel-beam-activated photopolymerization

He Cheng, Chun Xia, Meng Zhang, Stephen M. Kuebler, and Xiaoming Yu
Appl. Opt. 58(13) D91-D97 (2019)

Abruptly autofocusing beams enable advanced multiscale photo-polymerization

Maria Manousidaki, Dimitrios G. Papazoglou, Maria Farsari, and Stelios Tzortzakis
Optica 3(5) 525-530 (2016)

Three-dimensional microfabrication through a multimode optical fiber

Edgar E. Morales-Delgado, Loic Urio, Donald B. Conkey, Nicolino Stasio, Demetri Psaltis, and Christophe Moser
Opt. Express 25(6) 7031-7045 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
    [Crossref]
  2. M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
    [Crossref]
  3. H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” in NMR 3D Analysis Photopolymerization (Springer, 2006), pp. 169–273.
  4. M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
    [Crossref]
  5. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
    [Crossref]
  6. C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton Fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
    [Crossref]
  7. E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
    [Crossref]
  8. M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
    [Crossref]
  9. G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-Dimensional Infrared Metamaterial with Asymmetric Transmission,” ACS Photonics 2(2), 287–294 (2015).
    [Crossref]
  10. I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
    [Crossref]
  11. G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
    [Crossref]
  12. L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135 (2012).
    [Crossref]
  13. C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Des. Manuf. Technol. 48(5-8), 435–441 (2010).
    [Crossref]
  14. M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
    [Crossref]
  15. L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
    [Crossref]
  16. G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217 (2014).
    [Crossref]
  17. L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
    [Crossref]
  18. J. Ježek, P. Zemánek, T. Čižmár, and V. Nedĕla, “Formation of long and thin polymer fiber using nondiffracting beam,” Opt. Express 14(19), 8506–8515 (2006).
    [Crossref]
  19. M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “Abruptly autofocusing beams enable advanced multiscale photo-polymerization,” Optica 3(5), 525 (2016).
    [Crossref]
  20. E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
    [Crossref]
  21. H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett. 80(20), 3673–3675 (2002).
    [Crossref]
  22. H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
    [Crossref]
  23. H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
    [Crossref]
  24. J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,” Adv. Mater. 26(38), 6566–6571 (2014).
    [Crossref]
  25. A. Pikulin, N. Bityurin, and V. I. Sokolov, “Model of diffusion-assisted direct laser writing by means of nanopolymerization in the presence of radical quencher,” AIP Adv. 5(12), 127215 (2015).
    [Crossref]
  26. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651 (1987).
    [Crossref]
  27. B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254(4), 841–844 (2007).
    [Crossref]
  28. S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103(2), 021106 (2013).
    [Crossref]
  29. A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
    [Crossref]
  30. P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4(1), 2622 (2013).
    [Crossref]

2016 (1)

2015 (4)

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-Dimensional Infrared Metamaterial with Asymmetric Transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

A. Pikulin, N. Bityurin, and V. I. Sokolov, “Model of diffusion-assisted direct laser writing by means of nanopolymerization in the presence of radical quencher,” AIP Adv. 5(12), 127215 (2015).
[Crossref]

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

2014 (3)

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217 (2014).
[Crossref]

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

2013 (4)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103(2), 021106 (2013).
[Crossref]

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4(1), 2622 (2013).
[Crossref]

2012 (5)

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref]

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135 (2012).
[Crossref]

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

2010 (3)

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Des. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

2009 (2)

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

2007 (2)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton Fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254(4), 841–844 (2007).
[Crossref]

2006 (1)

2003 (2)

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[Crossref]

2002 (1)

H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett. 80(20), 3673–3675 (2002).
[Crossref]

1987 (1)

Abdollahpour, D.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103(2), 021106 (2013).
[Crossref]

Amato, L.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135 (2012).
[Crossref]

Baldacchini, T.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton Fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

Belazaras, K.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Bellini, N.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135 (2012).
[Crossref]

Bhuian, B.

B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254(4), 841–844 (2007).
[Crossref]

Bickauskaite, G.

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

Bityurin, N.

A. Pikulin, N. Bityurin, and V. I. Sokolov, “Model of diffusion-assisted direct laser writing by means of nanopolymerization in the presence of radical quencher,” AIP Adv. 5(12), 127215 (2015).
[Crossref]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref]

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

Brasselet, E.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

Cerullo, G.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135 (2012).
[Crossref]

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

Chichkov, B. N.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Des. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

Chon, J. W. M.

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

Chu, J.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Cižmár, T.

Couairon, A.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4(1), 2622 (2013).
[Crossref]

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103(2), 021106 (2013).
[Crossref]

Crean, G. M.

B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254(4), 841–844 (2007).
[Crossref]

Dedoussis, V.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Des. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

Durnin, J.

Eaton, S. M.

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135 (2012).
[Crossref]

Economou, E. N.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-Dimensional Infrared Metamaterial with Asymmetric Transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

El-Tamer, A.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Farrer, R. A.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton Fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

Farsari, M.

M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “Abruptly autofocusing beams enable advanced multiscale photo-polymerization,” Optica 3(5), 525 (2016).
[Crossref]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-Dimensional Infrared Metamaterial with Asymmetric Transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref]

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Des. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

Fischer, J.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

Fotakis, C.

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref]

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Des. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

Fourkas, J. T.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton Fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

Gadonas, R.

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Gaidukeviciute, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Des. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

Gedvilas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Gertus, T.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Gilbergs, H.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Gray, D.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref]

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

Gu, M.

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

Gu, Y.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135 (2012).
[Crossref]

Hinze, U.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Hu, Y.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Huang, W.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Ježek, J.

Juodkazis, S.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

Kabouraki, E.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref]

Kadic, M.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

Kafesaki, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-Dimensional Infrared Metamaterial with Asymmetric Transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

Kambouraki, E.

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

Karalekas, D.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Des. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

Kawata, S.

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[Crossref]

H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett. 80(20), 3673–3675 (2002).
[Crossref]

H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” in NMR 3D Analysis Photopolymerization (Springer, 2006), pp. 169–273.

Kelemen, L.

Kenanakis, G.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-Dimensional Infrared Metamaterial with Asymmetric Transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Kim, M.-S.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[Crossref]

LaFratta, C. N.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton Fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

Laganà, M.

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

Lee, K.-S.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[Crossref]

Li, J.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Maeda, M.

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

Malinauskas, M.

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

Manousidaki, M.

M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “Abruptly autofocusing beams enable advanced multiscale photo-polymerization,” Optica 3(5), 525 (2016).
[Crossref]

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

Matulaitiene, I.

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

Mayer, F.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

Melissinaki, V.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Des. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

Misawa, H.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

Momot, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Mueller, J. B.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

Nava, M. M.

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

Nedela, V.

Niaura, G.

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

O’Brien, S.

B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254(4), 841–844 (2007).
[Crossref]

Ohrt, C.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Des. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

Ormos, P.

Osellame, R.

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135 (2012).
[Crossref]

Paipulas, D.

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Panagiotopoulos, P.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103(2), 021106 (2013).
[Crossref]

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4(1), 2622 (2013).
[Crossref]

Papazoglou, D. G.

M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “Abruptly autofocusing beams enable advanced multiscale photo-polymerization,” Optica 3(5), 525 (2016).
[Crossref]

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4(1), 2622 (2013).
[Crossref]

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103(2), 021106 (2013).
[Crossref]

Pikulin, A.

A. Pikulin, N. Bityurin, and V. I. Sokolov, “Model of diffusion-assisted direct laser writing by means of nanopolymerization in the presence of radical quencher,” AIP Adv. 5(12), 127215 (2015).
[Crossref]

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref]

Piskarskas, A.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Purlys, V.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Raciukaitis, G.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Raimondi, M. T.

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

Reinhardt, C.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Des. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

Rutkauskas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Sakellari, I.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref]

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Schizas, C.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Des. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

Selimis, A.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-Dimensional Infrared Metamaterial with Asymmetric Transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Smilgevicius, V.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Sokolov, V. I.

A. Pikulin, N. Bityurin, and V. I. Sokolov, “Model of diffusion-assisted direct laser writing by means of nanopolymerization in the presence of radical quencher,” AIP Adv. 5(12), 127215 (2015).
[Crossref]

Soukoulis, C. M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-Dimensional Infrared Metamaterial with Asymmetric Transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

Stankevicius, E.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Sun, H.-B.

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[Crossref]

H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett. 80(20), 3673–3675 (2002).
[Crossref]

H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” in NMR 3D Analysis Photopolymerization (Springer, 2006), pp. 169–273.

Suntsov, S.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103(2), 021106 (2013).
[Crossref]

Takada, K.

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[Crossref]

Tanaka, T.

H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett. 80(20), 3673–3675 (2002).
[Crossref]

Terzaki, K.

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

Tzortzakis, S.

M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “Abruptly autofocusing beams enable advanced multiscale photo-polymerization,” Optica 3(5), 525 (2016).
[Crossref]

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4(1), 2622 (2013).
[Crossref]

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103(2), 021106 (2013).
[Crossref]

Vamvakaki, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-Dimensional Infrared Metamaterial with Asymmetric Transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref]

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

Vasilantonakis, N.

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

Vizsnyiczai, G.

Wegener, M.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

Winfield, R. J.

B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254(4), 841–844 (2007).
[Crossref]

Xomalis, A.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-Dimensional Infrared Metamaterial with Asymmetric Transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Yang, L.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Zemánek, P.

Žukauskas, A.

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

ACS Nano (1)

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref]

ACS Photonics (1)

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-Dimensional Infrared Metamaterial with Asymmetric Transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Adv. Mater. (1)

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization kinetics in three-dimensional direct laser writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

Adv. OptoElectron. (1)

G. Bickauskaite, M. Manousidaki, K. Terzaki, E. Kambouraki, I. Sakellari, N. Vasilantonakis, D. Gray, C. M. Soukoulis, C. Fotakis, M. Vamvakaki, M. Kafesaki, M. Farsari, A. Pikulin, and N. Bityurin, “3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing,” Adv. OptoElectron. 2012, 1–6 (2012).
[Crossref]

AIP Adv. (1)

A. Pikulin, N. Bityurin, and V. I. Sokolov, “Model of diffusion-assisted direct laser writing by means of nanopolymerization in the presence of radical quencher,” AIP Adv. 5(12), 127215 (2015).
[Crossref]

Angew. Chem., Int. Ed. (1)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton Fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

Appl. Phys. Lett. (6)

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett. 80(20), 3673–3675 (2002).
[Crossref]

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[Crossref]

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103(2), 021106 (2013).
[Crossref]

Appl. Surf. Sci. (1)

B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254(4), 841–844 (2007).
[Crossref]

Int. J. Adv. Des. Manuf. Technol. (1)

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Des. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

J. Appl. Biomater. Funct. Mater. (1)

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

J. Appl. Phys. (1)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

J. Micromech. Microeng. (1)

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

J. Opt. (1)

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

Lab Chip (1)

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135 (2012).
[Crossref]

Laser Photonics Rev. (2)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

Nat. Commun. (1)

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4(1), 2622 (2013).
[Crossref]

Nat. Photonics (1)

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

Optica (1)

Phys. Rep. (1)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Other (1)

H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” in NMR 3D Analysis Photopolymerization (Springer, 2006), pp. 169–273.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup. f (300 mm); Obj. (Microscope objective, 20x NA = 0.4); (i) Typical SLM conical phase mask used. (ii) Experimental Intensity I2 distribution of the engineered Bessel beam along propagation as captured by a CCD camera in air after the objective lens. Bessel zone length 130µm (FWHM); (iii) Schematic representation of the engineered Bessel beam normalized intensity I2 distribution inside the volume of a photoresist droplet on a cover glass substrate. (iv) Intensity distribution I2 (x-y plane) of the Bessel beam at the focus. Focal Spot size (FWHM) 1.8µm.
Fig. 2.
Fig. 2. SEM images of the polymerized voxels using engineered Bessel beams. (a) - (d) Voxels fabricated using Ipeak=20TW/cm2 (dashed arrows show the voxel diameter broadening direction and range of extension in respect to number of pulses), and (e)–(h) Ipeak =31 TW/cm2, for 1000, 600, 60 and 8 number of pulses. Scale bars are showing the measured lengths along the voxel’s longitudinal structure. (i)-(j) SEM images of the whole sample at 45° view and vertical side view. The directions of the Intensity increase, pulses number decrease and light propagation direction are shown by the respective arrows.
Fig. 3.
Fig. 3. (a) Voxel Length as a function of the Number of Pulses (6 to 1000 pulses). (b) Inset of the dashed area of figure (a). For a number of pulses higher than 100 (more than 100msec) saturation of the polymerized volume length is observed.
Fig. 4.
Fig. 4. (a) Voxel width as a function of the Number of Pulses (6 to 1000 pulses). (b) Inset of the dashed area of figure (a).
Fig. 5.
Fig. 5. Polymerized Voxel Width (a) and Voxel Length (b) as a function of the pulse peak Intensity for 1sec to 10msec exposure time.
Fig. 6.
Fig. 6. (a) Polymerized voxel length (solid black line) and width (dashed blue line) as a function of Ipeak for the lowest exposure time threshold TTh =6msec. (b) Polymerized Voxel length (solid black line) and width (dashed blue line) as a function of the number of pulses for IPeak= 14 TW/cm2 (•).

Metrics