Abstract

In this study, we investigate the direct-writing properties of Cu-based microstructures on both glass and Cu-thin-film-coated glass substrates used in femtosecond laser reductive sintering of Cu2O nanospheres. The conductivity of the micropatterns fabricated on the bare glass substrates are evaluated. The patterns exhibit high electrical conductivity. Such highly conductive patterning in the ambient environment is useful for the wiring of electrical devices and drawing electric circuits. In contrast, two types of microstructures are fabricated from multi- and single- layered Cu2O nanospheres at high and low pulse energies, respectively, only on the Cu-thin-film-coated glass substrates. The microstructures fabricated from the multi- and the single-layered Cu2O nanospheres consist mainly of Cu and Cu2O, respectively. A two-step structure is fabricated by internal writing in a Cu2O nanosphere solution film without feeding materials or piling up the layers. This direct-writing technique of Cu-based microstructures is promising for fabricating microsensors and actuators in printable electronics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiphoton laser direct writing of two-dimensional silver structures

Tommaso Baldacchini, Anne-Cécile Pons, Josefina Pons, Christopher N. LaFratta, John T. Fourkas, Yong Sun, and Michael J. Naughton
Opt. Express 13(4) 1275-1280 (2005)

Selective metallization on insulator surfaces with femtosecond laser pulses

Jian Xu, Yang Liao, Huidan Zeng, Zenghui Zhou, Haiyi Sun, Juan Song, Xinshun Wang, Ya Cheng, Zhizhan Xu, Koji Sugioka, and Katsumi Midorikawa
Opt. Express 15(20) 12743-12748 (2007)

References

  • View by:
  • |
  • |
  • |

  1. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon –absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [Crossref]
  2. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [Crossref]
  3. T. Zandrini, S. Taniguchi, and S. Maruo, “Magnetically Driven Micromachines Created by Two-Photon Microfabrication and Selective Electroless Magnetite Plating for Lab-on-a-Chip Applications,” Micromachines 8(2), 35 (2017).
    [Crossref]
  4. I. Spanos, A. Selimis, and M. Farsari, “3D magnetic microstructures,” Procedia CIRP 74, 349–352 (2018).
    [Crossref]
  5. A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
    [Crossref]
  6. Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
    [Crossref]
  7. T. Baldacchini, A.-C. Pons, J. Pons, C. N. LaFratta, and J. T. Fourkas, “Multiphoton laser direct writing of two-dimensional silver structures,” Opt. Express 13(4), 1275–1280 (2005).
    [Crossref]
  8. S. Maruo and T. Saeki, “Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix,” Opt. Express 16(2), 1174–1179 (2008).
    [Crossref]
  9. L. Vurth, P. Baldeck, O. Stephan, and G. Vitrant, “Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium (II) dye as photoinitiator,” Appl. Phys. Lett. 92(17), 171103 (2008).
    [Crossref]
  10. K. Vora, S. Y. Kang, S. Shobha, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett. 100(6), 063120 (2012).
    [Crossref]
  11. B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser induced direct local reduction and agglomeration of copper oxide nanoparticles,” J. Phys. Chem. C 115(48), 23664–23670 (2011).
    [Crossref]
  12. M. Mizoshiri, S. Arakane, J. Sakurai, and S. Hata, “Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles,” Appl. Phys. Express 9(3), 036701 (2016).
    [Crossref]
  13. H. Lee and M. Yang, “Effect of solvent and PVP on electrode conductivity in laser-induced reduction process,” Appl. Phys. A: Mater. Sci. Process. 119(1), 317–323 (2015).
    [Crossref]
  14. M. Fu, H. Long, K. Wang, G. Yang, and P. Lu, “Third order optical susceptibilities of the Cu2O thin film,” Thin Solid Films 519(19), 6557–6560 (2011).
    [Crossref]
  15. M. H. Kim, B. Lim, E. P. Lee, and Y. Xia, “Polyol synthesis of Cu2O nanoparticles: use of chloride to promote the formation of a cubic morphology,” J. Mater. Chem. 18(34), 4069–4073 (2008).
    [Crossref]
  16. M. Mizoshiri and Y. Kondo, “Direct writing of Cu-based fine micropatterns using femtosecond laser pulse-induced sintering of Cu2O nanospheres,” Jpn. J. Appl. Phys. 58(SD), SDDF05 (2019).
    [Crossref]
  17. Y. Sato, M. Tsukamoto, S. Masuno, Y. Yamashita, K. Yamashita, D. Tanigawa, and N. Abe, “Investigation of the microstructure and surface morphology of a Ti6Al4 V plate fabricated by vacuum selective laser melting,” Appl. Phys. A: Mater. Sci. Process. 122(4), 439 (2016).
    [Crossref]
  18. T. Ohishi and R. Kimura, “Fabrication of copper wire using glyoxylic acid copper complex and laser irradiation in air,” Mater. Sci. Appl. 6(9), 799–808 (2015).
    [Crossref]

2019 (1)

M. Mizoshiri and Y. Kondo, “Direct writing of Cu-based fine micropatterns using femtosecond laser pulse-induced sintering of Cu2O nanospheres,” Jpn. J. Appl. Phys. 58(SD), SDDF05 (2019).
[Crossref]

2018 (1)

I. Spanos, A. Selimis, and M. Farsari, “3D magnetic microstructures,” Procedia CIRP 74, 349–352 (2018).
[Crossref]

2017 (1)

T. Zandrini, S. Taniguchi, and S. Maruo, “Magnetically Driven Micromachines Created by Two-Photon Microfabrication and Selective Electroless Magnetite Plating for Lab-on-a-Chip Applications,” Micromachines 8(2), 35 (2017).
[Crossref]

2016 (2)

Y. Sato, M. Tsukamoto, S. Masuno, Y. Yamashita, K. Yamashita, D. Tanigawa, and N. Abe, “Investigation of the microstructure and surface morphology of a Ti6Al4 V plate fabricated by vacuum selective laser melting,” Appl. Phys. A: Mater. Sci. Process. 122(4), 439 (2016).
[Crossref]

M. Mizoshiri, S. Arakane, J. Sakurai, and S. Hata, “Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles,” Appl. Phys. Express 9(3), 036701 (2016).
[Crossref]

2015 (2)

H. Lee and M. Yang, “Effect of solvent and PVP on electrode conductivity in laser-induced reduction process,” Appl. Phys. A: Mater. Sci. Process. 119(1), 317–323 (2015).
[Crossref]

T. Ohishi and R. Kimura, “Fabrication of copper wire using glyoxylic acid copper complex and laser irradiation in air,” Mater. Sci. Appl. 6(9), 799–808 (2015).
[Crossref]

2012 (1)

K. Vora, S. Y. Kang, S. Shobha, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett. 100(6), 063120 (2012).
[Crossref]

2011 (2)

B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser induced direct local reduction and agglomeration of copper oxide nanoparticles,” J. Phys. Chem. C 115(48), 23664–23670 (2011).
[Crossref]

M. Fu, H. Long, K. Wang, G. Yang, and P. Lu, “Third order optical susceptibilities of the Cu2O thin film,” Thin Solid Films 519(19), 6557–6560 (2011).
[Crossref]

2009 (1)

Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[Crossref]

2008 (3)

S. Maruo and T. Saeki, “Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix,” Opt. Express 16(2), 1174–1179 (2008).
[Crossref]

L. Vurth, P. Baldeck, O. Stephan, and G. Vitrant, “Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium (II) dye as photoinitiator,” Appl. Phys. Lett. 92(17), 171103 (2008).
[Crossref]

M. H. Kim, B. Lim, E. P. Lee, and Y. Xia, “Polyol synthesis of Cu2O nanoparticles: use of chloride to promote the formation of a cubic morphology,” J. Mater. Chem. 18(34), 4069–4073 (2008).
[Crossref]

2006 (1)

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
[Crossref]

2005 (1)

2001 (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref]

1997 (1)

Abe, N.

Y. Sato, M. Tsukamoto, S. Masuno, Y. Yamashita, K. Yamashita, D. Tanigawa, and N. Abe, “Investigation of the microstructure and surface morphology of a Ti6Al4 V plate fabricated by vacuum selective laser melting,” Appl. Phys. A: Mater. Sci. Process. 122(4), 439 (2016).
[Crossref]

Arakane, S.

M. Mizoshiri, S. Arakane, J. Sakurai, and S. Hata, “Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles,” Appl. Phys. Express 9(3), 036701 (2016).
[Crossref]

Baldacchini, T.

Baldeck, P.

L. Vurth, P. Baldeck, O. Stephan, and G. Vitrant, “Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium (II) dye as photoinitiator,” Appl. Phys. Lett. 92(17), 171103 (2008).
[Crossref]

Cao, Y.-Y.

Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[Crossref]

Duan, X.-M.

Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[Crossref]

Farsari, M.

I. Spanos, A. Selimis, and M. Farsari, “3D magnetic microstructures,” Procedia CIRP 74, 349–352 (2018).
[Crossref]

Fourkas, J. T.

Fu, M.

M. Fu, H. Long, K. Wang, G. Yang, and P. Lu, “Third order optical susceptibilities of the Cu2O thin film,” Thin Solid Films 519(19), 6557–6560 (2011).
[Crossref]

Han, S.

B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser induced direct local reduction and agglomeration of copper oxide nanoparticles,” J. Phys. Chem. C 115(48), 23664–23670 (2011).
[Crossref]

Hata, S.

M. Mizoshiri, S. Arakane, J. Sakurai, and S. Hata, “Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles,” Appl. Phys. Express 9(3), 036701 (2016).
[Crossref]

Ishikawa, A.

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
[Crossref]

Kang, B.

B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser induced direct local reduction and agglomeration of copper oxide nanoparticles,” J. Phys. Chem. C 115(48), 23664–23670 (2011).
[Crossref]

Kang, S. Y.

K. Vora, S. Y. Kang, S. Shobha, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett. 100(6), 063120 (2012).
[Crossref]

Kawata, S.

Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[Crossref]

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
[Crossref]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon –absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[Crossref]

Kim, J.

B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser induced direct local reduction and agglomeration of copper oxide nanoparticles,” J. Phys. Chem. C 115(48), 23664–23670 (2011).
[Crossref]

Kim, M. H.

M. H. Kim, B. Lim, E. P. Lee, and Y. Xia, “Polyol synthesis of Cu2O nanoparticles: use of chloride to promote the formation of a cubic morphology,” J. Mater. Chem. 18(34), 4069–4073 (2008).
[Crossref]

Kimura, R.

T. Ohishi and R. Kimura, “Fabrication of copper wire using glyoxylic acid copper complex and laser irradiation in air,” Mater. Sci. Appl. 6(9), 799–808 (2015).
[Crossref]

Ko, S.

B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser induced direct local reduction and agglomeration of copper oxide nanoparticles,” J. Phys. Chem. C 115(48), 23664–23670 (2011).
[Crossref]

Kondo, Y.

M. Mizoshiri and Y. Kondo, “Direct writing of Cu-based fine micropatterns using femtosecond laser pulse-induced sintering of Cu2O nanospheres,” Jpn. J. Appl. Phys. 58(SD), SDDF05 (2019).
[Crossref]

LaFratta, C. N.

Lee, E. P.

M. H. Kim, B. Lim, E. P. Lee, and Y. Xia, “Polyol synthesis of Cu2O nanoparticles: use of chloride to promote the formation of a cubic morphology,” J. Mater. Chem. 18(34), 4069–4073 (2008).
[Crossref]

Lee, H.

H. Lee and M. Yang, “Effect of solvent and PVP on electrode conductivity in laser-induced reduction process,” Appl. Phys. A: Mater. Sci. Process. 119(1), 317–323 (2015).
[Crossref]

Lim, B.

M. H. Kim, B. Lim, E. P. Lee, and Y. Xia, “Polyol synthesis of Cu2O nanoparticles: use of chloride to promote the formation of a cubic morphology,” J. Mater. Chem. 18(34), 4069–4073 (2008).
[Crossref]

Long, H.

M. Fu, H. Long, K. Wang, G. Yang, and P. Lu, “Third order optical susceptibilities of the Cu2O thin film,” Thin Solid Films 519(19), 6557–6560 (2011).
[Crossref]

Lu, P.

M. Fu, H. Long, K. Wang, G. Yang, and P. Lu, “Third order optical susceptibilities of the Cu2O thin film,” Thin Solid Films 519(19), 6557–6560 (2011).
[Crossref]

Maruo, S.

Masuno, S.

Y. Sato, M. Tsukamoto, S. Masuno, Y. Yamashita, K. Yamashita, D. Tanigawa, and N. Abe, “Investigation of the microstructure and surface morphology of a Ti6Al4 V plate fabricated by vacuum selective laser melting,” Appl. Phys. A: Mater. Sci. Process. 122(4), 439 (2016).
[Crossref]

Mazur, E.

K. Vora, S. Y. Kang, S. Shobha, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett. 100(6), 063120 (2012).
[Crossref]

Mizoshiri, M.

M. Mizoshiri and Y. Kondo, “Direct writing of Cu-based fine micropatterns using femtosecond laser pulse-induced sintering of Cu2O nanospheres,” Jpn. J. Appl. Phys. 58(SD), SDDF05 (2019).
[Crossref]

M. Mizoshiri, S. Arakane, J. Sakurai, and S. Hata, “Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles,” Appl. Phys. Express 9(3), 036701 (2016).
[Crossref]

Nakamura, O.

Ohishi, T.

T. Ohishi and R. Kimura, “Fabrication of copper wire using glyoxylic acid copper complex and laser irradiation in air,” Mater. Sci. Appl. 6(9), 799–808 (2015).
[Crossref]

Pons, A.-C.

Pons, J.

Saeki, T.

Sakurai, J.

M. Mizoshiri, S. Arakane, J. Sakurai, and S. Hata, “Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles,” Appl. Phys. Express 9(3), 036701 (2016).
[Crossref]

Sato, Y.

Y. Sato, M. Tsukamoto, S. Masuno, Y. Yamashita, K. Yamashita, D. Tanigawa, and N. Abe, “Investigation of the microstructure and surface morphology of a Ti6Al4 V plate fabricated by vacuum selective laser melting,” Appl. Phys. A: Mater. Sci. Process. 122(4), 439 (2016).
[Crossref]

Selimis, A.

I. Spanos, A. Selimis, and M. Farsari, “3D magnetic microstructures,” Procedia CIRP 74, 349–352 (2018).
[Crossref]

Shobha, S.

K. Vora, S. Y. Kang, S. Shobha, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett. 100(6), 063120 (2012).
[Crossref]

Spanos, I.

I. Spanos, A. Selimis, and M. Farsari, “3D magnetic microstructures,” Procedia CIRP 74, 349–352 (2018).
[Crossref]

Stephan, O.

L. Vurth, P. Baldeck, O. Stephan, and G. Vitrant, “Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium (II) dye as photoinitiator,” Appl. Phys. Lett. 92(17), 171103 (2008).
[Crossref]

Sun, H.-B.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref]

Takada, K.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref]

Takeyasu, N.

Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[Crossref]

Tanaka, T.

Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[Crossref]

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
[Crossref]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref]

Tanigawa, D.

Y. Sato, M. Tsukamoto, S. Masuno, Y. Yamashita, K. Yamashita, D. Tanigawa, and N. Abe, “Investigation of the microstructure and surface morphology of a Ti6Al4 V plate fabricated by vacuum selective laser melting,” Appl. Phys. A: Mater. Sci. Process. 122(4), 439 (2016).
[Crossref]

Taniguchi, S.

T. Zandrini, S. Taniguchi, and S. Maruo, “Magnetically Driven Micromachines Created by Two-Photon Microfabrication and Selective Electroless Magnetite Plating for Lab-on-a-Chip Applications,” Micromachines 8(2), 35 (2017).
[Crossref]

Tsukamoto, M.

Y. Sato, M. Tsukamoto, S. Masuno, Y. Yamashita, K. Yamashita, D. Tanigawa, and N. Abe, “Investigation of the microstructure and surface morphology of a Ti6Al4 V plate fabricated by vacuum selective laser melting,” Appl. Phys. A: Mater. Sci. Process. 122(4), 439 (2016).
[Crossref]

Vitrant, G.

L. Vurth, P. Baldeck, O. Stephan, and G. Vitrant, “Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium (II) dye as photoinitiator,” Appl. Phys. Lett. 92(17), 171103 (2008).
[Crossref]

Vora, K.

K. Vora, S. Y. Kang, S. Shobha, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett. 100(6), 063120 (2012).
[Crossref]

Vurth, L.

L. Vurth, P. Baldeck, O. Stephan, and G. Vitrant, “Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium (II) dye as photoinitiator,” Appl. Phys. Lett. 92(17), 171103 (2008).
[Crossref]

Wang, K.

M. Fu, H. Long, K. Wang, G. Yang, and P. Lu, “Third order optical susceptibilities of the Cu2O thin film,” Thin Solid Films 519(19), 6557–6560 (2011).
[Crossref]

Xia, Y.

M. H. Kim, B. Lim, E. P. Lee, and Y. Xia, “Polyol synthesis of Cu2O nanoparticles: use of chloride to promote the formation of a cubic morphology,” J. Mater. Chem. 18(34), 4069–4073 (2008).
[Crossref]

Yamashita, K.

Y. Sato, M. Tsukamoto, S. Masuno, Y. Yamashita, K. Yamashita, D. Tanigawa, and N. Abe, “Investigation of the microstructure and surface morphology of a Ti6Al4 V plate fabricated by vacuum selective laser melting,” Appl. Phys. A: Mater. Sci. Process. 122(4), 439 (2016).
[Crossref]

Yamashita, Y.

Y. Sato, M. Tsukamoto, S. Masuno, Y. Yamashita, K. Yamashita, D. Tanigawa, and N. Abe, “Investigation of the microstructure and surface morphology of a Ti6Al4 V plate fabricated by vacuum selective laser melting,” Appl. Phys. A: Mater. Sci. Process. 122(4), 439 (2016).
[Crossref]

Yang, G.

M. Fu, H. Long, K. Wang, G. Yang, and P. Lu, “Third order optical susceptibilities of the Cu2O thin film,” Thin Solid Films 519(19), 6557–6560 (2011).
[Crossref]

Yang, M.

H. Lee and M. Yang, “Effect of solvent and PVP on electrode conductivity in laser-induced reduction process,” Appl. Phys. A: Mater. Sci. Process. 119(1), 317–323 (2015).
[Crossref]

B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser induced direct local reduction and agglomeration of copper oxide nanoparticles,” J. Phys. Chem. C 115(48), 23664–23670 (2011).
[Crossref]

Zandrini, T.

T. Zandrini, S. Taniguchi, and S. Maruo, “Magnetically Driven Micromachines Created by Two-Photon Microfabrication and Selective Electroless Magnetite Plating for Lab-on-a-Chip Applications,” Micromachines 8(2), 35 (2017).
[Crossref]

Appl. Phys. A: Mater. Sci. Process. (2)

H. Lee and M. Yang, “Effect of solvent and PVP on electrode conductivity in laser-induced reduction process,” Appl. Phys. A: Mater. Sci. Process. 119(1), 317–323 (2015).
[Crossref]

Y. Sato, M. Tsukamoto, S. Masuno, Y. Yamashita, K. Yamashita, D. Tanigawa, and N. Abe, “Investigation of the microstructure and surface morphology of a Ti6Al4 V plate fabricated by vacuum selective laser melting,” Appl. Phys. A: Mater. Sci. Process. 122(4), 439 (2016).
[Crossref]

Appl. Phys. Express (1)

M. Mizoshiri, S. Arakane, J. Sakurai, and S. Hata, “Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles,” Appl. Phys. Express 9(3), 036701 (2016).
[Crossref]

Appl. Phys. Lett. (3)

L. Vurth, P. Baldeck, O. Stephan, and G. Vitrant, “Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium (II) dye as photoinitiator,” Appl. Phys. Lett. 92(17), 171103 (2008).
[Crossref]

K. Vora, S. Y. Kang, S. Shobha, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett. 100(6), 063120 (2012).
[Crossref]

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
[Crossref]

J. Mater. Chem. (1)

M. H. Kim, B. Lim, E. P. Lee, and Y. Xia, “Polyol synthesis of Cu2O nanoparticles: use of chloride to promote the formation of a cubic morphology,” J. Mater. Chem. 18(34), 4069–4073 (2008).
[Crossref]

J. Phys. Chem. C (1)

B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser induced direct local reduction and agglomeration of copper oxide nanoparticles,” J. Phys. Chem. C 115(48), 23664–23670 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Mizoshiri and Y. Kondo, “Direct writing of Cu-based fine micropatterns using femtosecond laser pulse-induced sintering of Cu2O nanospheres,” Jpn. J. Appl. Phys. 58(SD), SDDF05 (2019).
[Crossref]

Mater. Sci. Appl. (1)

T. Ohishi and R. Kimura, “Fabrication of copper wire using glyoxylic acid copper complex and laser irradiation in air,” Mater. Sci. Appl. 6(9), 799–808 (2015).
[Crossref]

Micromachines (1)

T. Zandrini, S. Taniguchi, and S. Maruo, “Magnetically Driven Micromachines Created by Two-Photon Microfabrication and Selective Electroless Magnetite Plating for Lab-on-a-Chip Applications,” Micromachines 8(2), 35 (2017).
[Crossref]

Nature (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Procedia CIRP (1)

I. Spanos, A. Selimis, and M. Farsari, “3D magnetic microstructures,” Procedia CIRP 74, 349–352 (2018).
[Crossref]

Small (1)

Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[Crossref]

Thin Solid Films (1)

M. Fu, H. Long, K. Wang, G. Yang, and P. Lu, “Third order optical susceptibilities of the Cu2O thin film,” Thin Solid Films 519(19), 6557–6560 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a)FE-SEM image of Cu2O nanospheres, (b)photograph of Cu2O nanosphere solution film, and (c)absorption spectrum of solution film.
Fig. 2.
Fig. 2. FE-SEM image of line pattern on bare glass and on Cu-thin-film-coated glass substrates.
Fig. 3.
Fig. 3. (a)FE-SEM image of line pattern on bare glass substrate at scanning speed of 30 µm/s and pulse energy of 0.312 nJ. Line widths of HAZ as function of scanning speed at a pulse energy of 0.312 nJ.
Fig. 4.
Fig. 4. (a-b)FE-SEM images of the line patterns with multi- and single-layered Cu2O nanospheres, and (c)the relationship between line width and scanning speed.
Fig. 5.
Fig. 5. FE-SEM images of micropatterns with raster scanning pitch of (a)1.0 and 2.0 µm, respectively. (c)XRD spectra of micropatterns fabricated by using various raster scan pitches.
Fig. 6.
Fig. 6. (a)Electrical conductivity of micropatterns fabricated at various scanning speed. (b)XRD spectra of micropatterns fabricated at scanning speeds of 30 and 100 µm/s.
Fig. 7.
Fig. 7. (a)Schematic illustration of direct writing process of two-step microstructure. (b) FE-SEM image of microstructure and (c)of magnified FE-SEM image of (b). (d), (e) AFM images of surface of second and first steps of the microstructure and (f), (g) their cross-sectional profiles.
Fig. 8.
Fig. 8. Raman shift of Cu-thin film on glass substrate, Cu2O nanosphere film on Cu-thin film, the first step and the second step of microstructures.

Metrics