Abstract

Optimizing the direct-writing of viscoelastic liquids requires an understanding of the governing physics during jet and droplet formation. In this article, we study the effect of the distance between the donor and acceptor surfaces and identify a unique deposition-on-contact regime associated with viscoelasticity. For a given laser pulse energy, depending on the liquid film thickness, rheological properties, and the distance between the liquid film and the acceptor surface, the resulting jet can result in either a rapid deposition of a small volume or the formation of a liquid bridge that delays the breakup of the liquid filament and can result in deposition of multiple droplets. By adjusting the gap distance between the donor and acceptor surfaces, we show that it is possible to obtain single drop depositions via deposition-on-contact from viscoelastic liquids. Using dimensionless parameters, we present criteria that can be used to predict the different regimes observed in the experiments.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Printing of metallic 3D micro-objects by laser induced forward transfer

Michael Zenou and Zvi Kotler
Opt. Express 24(2) 1431-1446 (2016)

Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment

James A. Grant-Jacob, Benjamin Mills, Matthias Feinaeugle, Collin L. Sones, Gerrit Oosterhuis, Marc B. Hoppenbrouwers, and Robert W. Eason
Opt. Mater. Express 3(6) 747-754 (2013)

Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing

Qingfeng Li, Anne Patricia Alloncle, David Grojo, and Philippe Delaporte
Opt. Express 25(20) 24164-24172 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(1), 23–31 (2007).
    [Crossref]
  2. P. Serra and A. Piqué, Introduction to Laser-Induced Transfer and Other Associated Processes (Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, Germany, 2018).
  3. P. Serra and A. Piqué, “Laser-induced forward transfer: Fundamentals and applications,” Adv. Mater. Technol. 4(1), 1800099 (2019).
    [Crossref]
  4. Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing,” Opt. Express 25(20), 24164–24172 (2017).
    [Crossref]
  5. M. Chatzipetrou, M. Massaouti, G. Tsekenis, A. K. Trilling, E. van Andel, L. Scheres, M. M. Smulders, H. Zuilhof, and I. Zergioti, “Direct creation of biopatterns via a combination of laser-based techniques and click chemistry,” Langmuir 33(4), 848–853 (2017).
    [Crossref]
  6. J. Luo, R. Pohl, L. Qi, G.-W. Römer, C. Sun, D. Lohse, and C. W. Visser, “Printing functional 3d microdevices by laser-induced forward transfer,” Small 13(9), 1602553 (2017).
    [Crossref]
  7. A. Piqué and P. Serra, Laser Printing of Functional Materials: 3D Microfabrication, Electronics and Biomedicine (John Wiley & Sons, 2018).
  8. E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively induced jets from viscoelastic films for high-resolution printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
    [Crossref]
  9. Z. Zhang, Y. Jin, J. Yin, C. Xu, R. Xiong, K. Christensen, B. R. Ringeisen, D. B. Chrisey, and Y. Huang, “Evaluation of bioink printability for bioprinting applications,” Appl. Phys. Rev. 5(4), 041304 (2018).
    [Crossref]
  10. Z. Zhang, W. Chai, R. Xiong, L. Zhou, and Y. Huang, “Printing-induced cell injury evaluation during laser printing of 3t3 mouse fibroblasts,” Biofabrication 9(2), 025038 (2017).
    [Crossref]
  11. N. R. Schiele, D. B. Chrisey, and D. T. Corr, “Gelatin-based laser direct-write technique for the precise spatial patterning of cells,” Tissue Eng., Part C 17(3), 289–298 (2011).
    [Crossref]
  12. S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3d printing: 3d printing of highly stretchable and tough hydrogels into complex, cellularized structures (adv. mater. 27/2015),” Adv. Mater. 27(27), 4034 (2015).
    [Crossref]
  13. J. Z. Gul, M. Sajid, M. M. Rehman, G. U. Siddiqui, I. Shah, K.-H. Kim, J.-W. Lee, and K. H. Choi, “3d printing for soft robotics–a review,” Sci. Technol. Adv. Mater. 19(1), 243–262 (2018).
    [Crossref]
  14. I. T. Ozbolat and M. Hospodiuk, “Current advances and future perspectives in extrusion-based bioprinting,” Biomaterials 76, 321–343 (2016).
    [Crossref]
  15. C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
    [Crossref]
  16. Z. Zhang, R. Xiong, D. T. Corr, and Y. Huang, “Study of impingement types and printing quality during laser printing of viscoelastic alginate solutions,” Langmuir 32(12), 3004–3014 (2016).
    [Crossref]
  17. C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
    [Crossref]
  18. M. Rubinstein and R. H. Colby, Polymer Physics, vol. 23 (Oxford University PressNew York, 2003).
  19. L. Rayleigh, “Xvi. on the instability of a cylinder of viscous liquid under capillary force,” The London, Edinburgh, Dublin Philos. Mag. J. Sci. 34(207), 145–154 (1892).
    [Crossref]
  20. P. P. Bhat, S. Appathurai, M. T. Harris, M. Pasquali, G. H. McKinley, and O. A. Basaran, “Formation of beads-on-a-string structures during break-up of viscoelastic filaments,” Nat. Phys. 6(8), 625–631 (2010).
    [Crossref]
  21. A. A. Castrejón-Pita, J. Castrejon-Pita, and I. Hutchings, “Breakup of liquid filaments,” Phys. Rev. Lett. 108(7), 074506 (2012).
    [Crossref]
  22. T. Driessen, R. Jeurissen, H. Wijshoff, F. Toschi, and D. Lohse, “Stability of viscous long liquid filaments,” Phys. Fluids 25(6), 062109 (2013).
    [Crossref]
  23. H. A. Stone, “Dynamics of drop deformation and breakup in viscous fluids,” Annu. Rev. Fluid Mech. 26(1), 65–102 (1994).
    [Crossref]
  24. H. A. Stone and M. P. Brenner, “Note on the capillary thread instability for fluids of equal viscosities,” J. Fluid Mech. 318(1), 373–374 (1996).
    [Crossref]
  25. V. Entov and E. Hinch, “Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid,” J. Non-Newtonian Fluid Mech. 72(1), 31–53 (1997).
    [Crossref]
  26. S. L. Anna and G. H. McKinley, “Elasto-capillary thinning and breakup of model elastic liquids,” J. Rheol. 45(1), 115–138 (2001).
    [Crossref]
  27. C. Clasen, J. Eggers, M. A. Fontelos, J. Li, and G. H. McKinley, “The beads-on-string structure of viscoelastic threads,” J. Fluid Mech. 556, 283–308 (2006).
    [Crossref]
  28. A. M. Ardekani, V. Sharma, and G. H. McKinley, “Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets,” J. Fluid Mech. 665, 46–56 (2010).
    [Crossref]
  29. J. Eggers and E. Villermaux, “Physics of liquid jets,” Rep. Prog. Phys. 71(3), 036601 (2008).
    [Crossref]
  30. F. Wang, F. Contò, N. Naz, J. Castrejón-Pita, A. Castrejón-Pita, C. Bailey, W. Wang, J. Feng, and Y. Sui, “A fate-alternating transitional regime in contracting liquid filaments,” J. Fluid Mech. 860, 640–653 (2019).
    [Crossref]
  31. E. Turkoz, R. Fardel, and C. B. Arnold, “Advances in blister-actuated laser-induced forward transfer (ba-lift),” Laser Print. Funct. Materials: 3D Microfabr. Electron. Biomed. pp. 91–121 (2018).
  32. E. Turkoz, L. Deike, and C. B. Arnold, “Comparison of jets from newtonian and non-newtonian fluids induced by blister-actuated laser-induced forward transfer (ba-lift),” Appl. Phys. A 123(10), 652 (2017).
    [Crossref]
  33. V. Tirtaatmadja, G. H. McKinley, and J. J. Cooper-White, “Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration,” Phys. Fluids 18(4), 043101 (2006).
    [Crossref]
  34. B. Keshavarz, E. C. Houze, J. R. Moore, M. R. Koerner, and G. H. McKinley, “Ligament mediated fragmentation of viscoelastic liquids,” Phys. Rev. Lett. 117(15), 154502 (2016).
    [Crossref]
  35. M. Roché, H. Kellay, and H. A. Stone, “Heterogeneity and the role of normal stresses during the extensional thinning of non-brownian shear-thickening fluids,” Phys. Rev. Lett. 107(13), 134503 (2011).
    [Crossref]
  36. J. B. Segur and H. E. Oberstar, “Viscosity of glycerol and its aqueous solutions,” Ind. Eng. Chem. 43(9), 2117–2120 (1951).
    [Crossref]
  37. N. T. Kattamis, P. E. Purnick, R. Weiss, and C. B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91(17), 171120 (2007).
    [Crossref]
  38. M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
    [Crossref]
  39. Z. Zhang, R. Xiong, R. Mei, Y. Huang, and D. B. Chrisey, “Time-resolved imaging study of jetting dynamics during laser printing of viscoelastic alginate solutions,” Langmuir 31(23), 6447–6456 (2015).
    [Crossref]

2019 (2)

P. Serra and A. Piqué, “Laser-induced forward transfer: Fundamentals and applications,” Adv. Mater. Technol. 4(1), 1800099 (2019).
[Crossref]

F. Wang, F. Contò, N. Naz, J. Castrejón-Pita, A. Castrejón-Pita, C. Bailey, W. Wang, J. Feng, and Y. Sui, “A fate-alternating transitional regime in contracting liquid filaments,” J. Fluid Mech. 860, 640–653 (2019).
[Crossref]

2018 (3)

E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively induced jets from viscoelastic films for high-resolution printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
[Crossref]

Z. Zhang, Y. Jin, J. Yin, C. Xu, R. Xiong, K. Christensen, B. R. Ringeisen, D. B. Chrisey, and Y. Huang, “Evaluation of bioink printability for bioprinting applications,” Appl. Phys. Rev. 5(4), 041304 (2018).
[Crossref]

J. Z. Gul, M. Sajid, M. M. Rehman, G. U. Siddiqui, I. Shah, K.-H. Kim, J.-W. Lee, and K. H. Choi, “3d printing for soft robotics–a review,” Sci. Technol. Adv. Mater. 19(1), 243–262 (2018).
[Crossref]

2017 (5)

Z. Zhang, W. Chai, R. Xiong, L. Zhou, and Y. Huang, “Printing-induced cell injury evaluation during laser printing of 3t3 mouse fibroblasts,” Biofabrication 9(2), 025038 (2017).
[Crossref]

Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing,” Opt. Express 25(20), 24164–24172 (2017).
[Crossref]

M. Chatzipetrou, M. Massaouti, G. Tsekenis, A. K. Trilling, E. van Andel, L. Scheres, M. M. Smulders, H. Zuilhof, and I. Zergioti, “Direct creation of biopatterns via a combination of laser-based techniques and click chemistry,” Langmuir 33(4), 848–853 (2017).
[Crossref]

J. Luo, R. Pohl, L. Qi, G.-W. Römer, C. Sun, D. Lohse, and C. W. Visser, “Printing functional 3d microdevices by laser-induced forward transfer,” Small 13(9), 1602553 (2017).
[Crossref]

E. Turkoz, L. Deike, and C. B. Arnold, “Comparison of jets from newtonian and non-newtonian fluids induced by blister-actuated laser-induced forward transfer (ba-lift),” Appl. Phys. A 123(10), 652 (2017).
[Crossref]

2016 (4)

B. Keshavarz, E. C. Houze, J. R. Moore, M. R. Koerner, and G. H. McKinley, “Ligament mediated fragmentation of viscoelastic liquids,” Phys. Rev. Lett. 117(15), 154502 (2016).
[Crossref]

I. T. Ozbolat and M. Hospodiuk, “Current advances and future perspectives in extrusion-based bioprinting,” Biomaterials 76, 321–343 (2016).
[Crossref]

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

Z. Zhang, R. Xiong, D. T. Corr, and Y. Huang, “Study of impingement types and printing quality during laser printing of viscoelastic alginate solutions,” Langmuir 32(12), 3004–3014 (2016).
[Crossref]

2015 (2)

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3d printing: 3d printing of highly stretchable and tough hydrogels into complex, cellularized structures (adv. mater. 27/2015),” Adv. Mater. 27(27), 4034 (2015).
[Crossref]

Z. Zhang, R. Xiong, R. Mei, Y. Huang, and D. B. Chrisey, “Time-resolved imaging study of jetting dynamics during laser printing of viscoelastic alginate solutions,” Langmuir 31(23), 6447–6456 (2015).
[Crossref]

2013 (1)

T. Driessen, R. Jeurissen, H. Wijshoff, F. Toschi, and D. Lohse, “Stability of viscous long liquid filaments,” Phys. Fluids 25(6), 062109 (2013).
[Crossref]

2012 (2)

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

A. A. Castrejón-Pita, J. Castrejon-Pita, and I. Hutchings, “Breakup of liquid filaments,” Phys. Rev. Lett. 108(7), 074506 (2012).
[Crossref]

2011 (3)

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
[Crossref]

N. R. Schiele, D. B. Chrisey, and D. T. Corr, “Gelatin-based laser direct-write technique for the precise spatial patterning of cells,” Tissue Eng., Part C 17(3), 289–298 (2011).
[Crossref]

M. Roché, H. Kellay, and H. A. Stone, “Heterogeneity and the role of normal stresses during the extensional thinning of non-brownian shear-thickening fluids,” Phys. Rev. Lett. 107(13), 134503 (2011).
[Crossref]

2010 (2)

A. M. Ardekani, V. Sharma, and G. H. McKinley, “Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets,” J. Fluid Mech. 665, 46–56 (2010).
[Crossref]

P. P. Bhat, S. Appathurai, M. T. Harris, M. Pasquali, G. H. McKinley, and O. A. Basaran, “Formation of beads-on-a-string structures during break-up of viscoelastic filaments,” Nat. Phys. 6(8), 625–631 (2010).
[Crossref]

2008 (1)

J. Eggers and E. Villermaux, “Physics of liquid jets,” Rep. Prog. Phys. 71(3), 036601 (2008).
[Crossref]

2007 (2)

N. T. Kattamis, P. E. Purnick, R. Weiss, and C. B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91(17), 171120 (2007).
[Crossref]

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(1), 23–31 (2007).
[Crossref]

2006 (2)

V. Tirtaatmadja, G. H. McKinley, and J. J. Cooper-White, “Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration,” Phys. Fluids 18(4), 043101 (2006).
[Crossref]

C. Clasen, J. Eggers, M. A. Fontelos, J. Li, and G. H. McKinley, “The beads-on-string structure of viscoelastic threads,” J. Fluid Mech. 556, 283–308 (2006).
[Crossref]

2001 (1)

S. L. Anna and G. H. McKinley, “Elasto-capillary thinning and breakup of model elastic liquids,” J. Rheol. 45(1), 115–138 (2001).
[Crossref]

1997 (1)

V. Entov and E. Hinch, “Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid,” J. Non-Newtonian Fluid Mech. 72(1), 31–53 (1997).
[Crossref]

1996 (1)

H. A. Stone and M. P. Brenner, “Note on the capillary thread instability for fluids of equal viscosities,” J. Fluid Mech. 318(1), 373–374 (1996).
[Crossref]

1994 (1)

H. A. Stone, “Dynamics of drop deformation and breakup in viscous fluids,” Annu. Rev. Fluid Mech. 26(1), 65–102 (1994).
[Crossref]

1951 (1)

J. B. Segur and H. E. Oberstar, “Viscosity of glycerol and its aqueous solutions,” Ind. Eng. Chem. 43(9), 2117–2120 (1951).
[Crossref]

1892 (1)

L. Rayleigh, “Xvi. on the instability of a cylinder of viscous liquid under capillary force,” The London, Edinburgh, Dublin Philos. Mag. J. Sci. 34(207), 145–154 (1892).
[Crossref]

Alloncle, A. P.

Anna, S. L.

S. L. Anna and G. H. McKinley, “Elasto-capillary thinning and breakup of model elastic liquids,” J. Rheol. 45(1), 115–138 (2001).
[Crossref]

Appathurai, S.

P. P. Bhat, S. Appathurai, M. T. Harris, M. Pasquali, G. H. McKinley, and O. A. Basaran, “Formation of beads-on-a-string structures during break-up of viscoelastic filaments,” Nat. Phys. 6(8), 625–631 (2010).
[Crossref]

Ardekani, A. M.

A. M. Ardekani, V. Sharma, and G. H. McKinley, “Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets,” J. Fluid Mech. 665, 46–56 (2010).
[Crossref]

Arnold, C. B.

E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively induced jets from viscoelastic films for high-resolution printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
[Crossref]

E. Turkoz, L. Deike, and C. B. Arnold, “Comparison of jets from newtonian and non-newtonian fluids induced by blister-actuated laser-induced forward transfer (ba-lift),” Appl. Phys. A 123(10), 652 (2017).
[Crossref]

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

N. T. Kattamis, P. E. Purnick, R. Weiss, and C. B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91(17), 171120 (2007).
[Crossref]

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(1), 23–31 (2007).
[Crossref]

E. Turkoz, R. Fardel, and C. B. Arnold, “Advances in blister-actuated laser-induced forward transfer (ba-lift),” Laser Print. Funct. Materials: 3D Microfabr. Electron. Biomed. pp. 91–121 (2018).

Bailey, C.

F. Wang, F. Contò, N. Naz, J. Castrejón-Pita, A. Castrejón-Pita, C. Bailey, W. Wang, J. Feng, and Y. Sui, “A fate-alternating transitional regime in contracting liquid filaments,” J. Fluid Mech. 860, 640–653 (2019).
[Crossref]

Basaran, O. A.

P. P. Bhat, S. Appathurai, M. T. Harris, M. Pasquali, G. H. McKinley, and O. A. Basaran, “Formation of beads-on-a-string structures during break-up of viscoelastic filaments,” Nat. Phys. 6(8), 625–631 (2010).
[Crossref]

Bhat, P. P.

P. P. Bhat, S. Appathurai, M. T. Harris, M. Pasquali, G. H. McKinley, and O. A. Basaran, “Formation of beads-on-a-string structures during break-up of viscoelastic filaments,” Nat. Phys. 6(8), 625–631 (2010).
[Crossref]

Brasz, C. F.

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

Brenner, M. P.

H. A. Stone and M. P. Brenner, “Note on the capillary thread instability for fluids of equal viscosities,” J. Fluid Mech. 318(1), 373–374 (1996).
[Crossref]

Brown, M. S.

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

Castrejon-Pita, J.

A. A. Castrejón-Pita, J. Castrejon-Pita, and I. Hutchings, “Breakup of liquid filaments,” Phys. Rev. Lett. 108(7), 074506 (2012).
[Crossref]

Castrejón-Pita, A.

F. Wang, F. Contò, N. Naz, J. Castrejón-Pita, A. Castrejón-Pita, C. Bailey, W. Wang, J. Feng, and Y. Sui, “A fate-alternating transitional regime in contracting liquid filaments,” J. Fluid Mech. 860, 640–653 (2019).
[Crossref]

Castrejón-Pita, A. A.

A. A. Castrejón-Pita, J. Castrejon-Pita, and I. Hutchings, “Breakup of liquid filaments,” Phys. Rev. Lett. 108(7), 074506 (2012).
[Crossref]

Castrejón-Pita, J.

F. Wang, F. Contò, N. Naz, J. Castrejón-Pita, A. Castrejón-Pita, C. Bailey, W. Wang, J. Feng, and Y. Sui, “A fate-alternating transitional regime in contracting liquid filaments,” J. Fluid Mech. 860, 640–653 (2019).
[Crossref]

Chai, W.

Z. Zhang, W. Chai, R. Xiong, L. Zhou, and Y. Huang, “Printing-induced cell injury evaluation during laser printing of 3t3 mouse fibroblasts,” Biofabrication 9(2), 025038 (2017).
[Crossref]

Chan, H. F.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3d printing: 3d printing of highly stretchable and tough hydrogels into complex, cellularized structures (adv. mater. 27/2015),” Adv. Mater. 27(27), 4034 (2015).
[Crossref]

Chatzipetrou, M.

M. Chatzipetrou, M. Massaouti, G. Tsekenis, A. K. Trilling, E. van Andel, L. Scheres, M. M. Smulders, H. Zuilhof, and I. Zergioti, “Direct creation of biopatterns via a combination of laser-based techniques and click chemistry,” Langmuir 33(4), 848–853 (2017).
[Crossref]

Chichkov, B. N.

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
[Crossref]

Choi, K. H.

J. Z. Gul, M. Sajid, M. M. Rehman, G. U. Siddiqui, I. Shah, K.-H. Kim, J.-W. Lee, and K. H. Choi, “3d printing for soft robotics–a review,” Sci. Technol. Adv. Mater. 19(1), 243–262 (2018).
[Crossref]

Chrisey, D. B.

Z. Zhang, Y. Jin, J. Yin, C. Xu, R. Xiong, K. Christensen, B. R. Ringeisen, D. B. Chrisey, and Y. Huang, “Evaluation of bioink printability for bioprinting applications,” Appl. Phys. Rev. 5(4), 041304 (2018).
[Crossref]

Z. Zhang, R. Xiong, R. Mei, Y. Huang, and D. B. Chrisey, “Time-resolved imaging study of jetting dynamics during laser printing of viscoelastic alginate solutions,” Langmuir 31(23), 6447–6456 (2015).
[Crossref]

N. R. Schiele, D. B. Chrisey, and D. T. Corr, “Gelatin-based laser direct-write technique for the precise spatial patterning of cells,” Tissue Eng., Part C 17(3), 289–298 (2011).
[Crossref]

Christensen, K.

Z. Zhang, Y. Jin, J. Yin, C. Xu, R. Xiong, K. Christensen, B. R. Ringeisen, D. B. Chrisey, and Y. Huang, “Evaluation of bioink printability for bioprinting applications,” Appl. Phys. Rev. 5(4), 041304 (2018).
[Crossref]

Clasen, C.

C. Clasen, J. Eggers, M. A. Fontelos, J. Li, and G. H. McKinley, “The beads-on-string structure of viscoelastic threads,” J. Fluid Mech. 556, 283–308 (2006).
[Crossref]

Colby, R. H.

M. Rubinstein and R. H. Colby, Polymer Physics, vol. 23 (Oxford University PressNew York, 2003).

Contò, F.

F. Wang, F. Contò, N. Naz, J. Castrejón-Pita, A. Castrejón-Pita, C. Bailey, W. Wang, J. Feng, and Y. Sui, “A fate-alternating transitional regime in contracting liquid filaments,” J. Fluid Mech. 860, 640–653 (2019).
[Crossref]

Cooper-White, J. J.

V. Tirtaatmadja, G. H. McKinley, and J. J. Cooper-White, “Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration,” Phys. Fluids 18(4), 043101 (2006).
[Crossref]

Corr, D. T.

Z. Zhang, R. Xiong, D. T. Corr, and Y. Huang, “Study of impingement types and printing quality during laser printing of viscoelastic alginate solutions,” Langmuir 32(12), 3004–3014 (2016).
[Crossref]

N. R. Schiele, D. B. Chrisey, and D. T. Corr, “Gelatin-based laser direct-write technique for the precise spatial patterning of cells,” Tissue Eng., Part C 17(3), 289–298 (2011).
[Crossref]

Deike, L.

E. Turkoz, L. Deike, and C. B. Arnold, “Comparison of jets from newtonian and non-newtonian fluids induced by blister-actuated laser-induced forward transfer (ba-lift),” Appl. Phys. A 123(10), 652 (2017).
[Crossref]

Delaporte, P.

Diaspro, A.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

Driessen, T.

T. Driessen, R. Jeurissen, H. Wijshoff, F. Toschi, and D. Lohse, “Stability of viscous long liquid filaments,” Phys. Fluids 25(6), 062109 (2013).
[Crossref]

Duocastella, M.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

Eggers, J.

J. Eggers and E. Villermaux, “Physics of liquid jets,” Rep. Prog. Phys. 71(3), 036601 (2008).
[Crossref]

C. Clasen, J. Eggers, M. A. Fontelos, J. Li, and G. H. McKinley, “The beads-on-string structure of viscoelastic threads,” J. Fluid Mech. 556, 283–308 (2006).
[Crossref]

Entov, V.

V. Entov and E. Hinch, “Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid,” J. Non-Newtonian Fluid Mech. 72(1), 31–53 (1997).
[Crossref]

Fardel, R.

E. Turkoz, R. Fardel, and C. B. Arnold, “Advances in blister-actuated laser-induced forward transfer (ba-lift),” Laser Print. Funct. Materials: 3D Microfabr. Electron. Biomed. pp. 91–121 (2018).

Feng, J.

F. Wang, F. Contò, N. Naz, J. Castrejón-Pita, A. Castrejón-Pita, C. Bailey, W. Wang, J. Feng, and Y. Sui, “A fate-alternating transitional regime in contracting liquid filaments,” J. Fluid Mech. 860, 640–653 (2019).
[Crossref]

Florian, C.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

Fontelos, M. A.

C. Clasen, J. Eggers, M. A. Fontelos, J. Li, and G. H. McKinley, “The beads-on-string structure of viscoelastic threads,” J. Fluid Mech. 556, 283–308 (2006).
[Crossref]

Grojo, D.

Gruene, M.

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
[Crossref]

Guilak, F.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3d printing: 3d printing of highly stretchable and tough hydrogels into complex, cellularized structures (adv. mater. 27/2015),” Adv. Mater. 27(27), 4034 (2015).
[Crossref]

Gul, J. Z.

J. Z. Gul, M. Sajid, M. M. Rehman, G. U. Siddiqui, I. Shah, K.-H. Kim, J.-W. Lee, and K. H. Choi, “3d printing for soft robotics–a review,” Sci. Technol. Adv. Mater. 19(1), 243–262 (2018).
[Crossref]

Harris, M. T.

P. P. Bhat, S. Appathurai, M. T. Harris, M. Pasquali, G. H. McKinley, and O. A. Basaran, “Formation of beads-on-a-string structures during break-up of viscoelastic filaments,” Nat. Phys. 6(8), 625–631 (2010).
[Crossref]

Hinch, E.

V. Entov and E. Hinch, “Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid,” J. Non-Newtonian Fluid Mech. 72(1), 31–53 (1997).
[Crossref]

Hong, S.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3d printing: 3d printing of highly stretchable and tough hydrogels into complex, cellularized structures (adv. mater. 27/2015),” Adv. Mater. 27(27), 4034 (2015).
[Crossref]

Hospodiuk, M.

I. T. Ozbolat and M. Hospodiuk, “Current advances and future perspectives in extrusion-based bioprinting,” Biomaterials 76, 321–343 (2016).
[Crossref]

Houze, E. C.

B. Keshavarz, E. C. Houze, J. R. Moore, M. R. Koerner, and G. H. McKinley, “Ligament mediated fragmentation of viscoelastic liquids,” Phys. Rev. Lett. 117(15), 154502 (2016).
[Crossref]

Huang, Y.

Z. Zhang, Y. Jin, J. Yin, C. Xu, R. Xiong, K. Christensen, B. R. Ringeisen, D. B. Chrisey, and Y. Huang, “Evaluation of bioink printability for bioprinting applications,” Appl. Phys. Rev. 5(4), 041304 (2018).
[Crossref]

Z. Zhang, W. Chai, R. Xiong, L. Zhou, and Y. Huang, “Printing-induced cell injury evaluation during laser printing of 3t3 mouse fibroblasts,” Biofabrication 9(2), 025038 (2017).
[Crossref]

Z. Zhang, R. Xiong, D. T. Corr, and Y. Huang, “Study of impingement types and printing quality during laser printing of viscoelastic alginate solutions,” Langmuir 32(12), 3004–3014 (2016).
[Crossref]

Z. Zhang, R. Xiong, R. Mei, Y. Huang, and D. B. Chrisey, “Time-resolved imaging study of jetting dynamics during laser printing of viscoelastic alginate solutions,” Langmuir 31(23), 6447–6456 (2015).
[Crossref]

Hutchings, I.

A. A. Castrejón-Pita, J. Castrejon-Pita, and I. Hutchings, “Breakup of liquid filaments,” Phys. Rev. Lett. 108(7), 074506 (2012).
[Crossref]

Jeurissen, R.

T. Driessen, R. Jeurissen, H. Wijshoff, F. Toschi, and D. Lohse, “Stability of viscous long liquid filaments,” Phys. Fluids 25(6), 062109 (2013).
[Crossref]

Jin, Y.

Z. Zhang, Y. Jin, J. Yin, C. Xu, R. Xiong, K. Christensen, B. R. Ringeisen, D. B. Chrisey, and Y. Huang, “Evaluation of bioink printability for bioprinting applications,” Appl. Phys. Rev. 5(4), 041304 (2018).
[Crossref]

Kattamis, N. T.

N. T. Kattamis, P. E. Purnick, R. Weiss, and C. B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91(17), 171120 (2007).
[Crossref]

Kellay, H.

M. Roché, H. Kellay, and H. A. Stone, “Heterogeneity and the role of normal stresses during the extensional thinning of non-brownian shear-thickening fluids,” Phys. Rev. Lett. 107(13), 134503 (2011).
[Crossref]

Keshavarz, B.

B. Keshavarz, E. C. Houze, J. R. Moore, M. R. Koerner, and G. H. McKinley, “Ligament mediated fragmentation of viscoelastic liquids,” Phys. Rev. Lett. 117(15), 154502 (2016).
[Crossref]

Kim, H.

E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively induced jets from viscoelastic films for high-resolution printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
[Crossref]

Kim, K.-H.

J. Z. Gul, M. Sajid, M. M. Rehman, G. U. Siddiqui, I. Shah, K.-H. Kim, J.-W. Lee, and K. H. Choi, “3d printing for soft robotics–a review,” Sci. Technol. Adv. Mater. 19(1), 243–262 (2018).
[Crossref]

Koch, J.

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
[Crossref]

Koch, L.

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
[Crossref]

Koerner, M. R.

B. Keshavarz, E. C. Houze, J. R. Moore, M. R. Koerner, and G. H. McKinley, “Ligament mediated fragmentation of viscoelastic liquids,” Phys. Rev. Lett. 117(15), 154502 (2016).
[Crossref]

Lee, J.-W.

J. Z. Gul, M. Sajid, M. M. Rehman, G. U. Siddiqui, I. Shah, K.-H. Kim, J.-W. Lee, and K. H. Choi, “3d printing for soft robotics–a review,” Sci. Technol. Adv. Mater. 19(1), 243–262 (2018).
[Crossref]

Leong, K. W.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3d printing: 3d printing of highly stretchable and tough hydrogels into complex, cellularized structures (adv. mater. 27/2015),” Adv. Mater. 27(27), 4034 (2015).
[Crossref]

Li, J.

C. Clasen, J. Eggers, M. A. Fontelos, J. Li, and G. H. McKinley, “The beads-on-string structure of viscoelastic threads,” J. Fluid Mech. 556, 283–308 (2006).
[Crossref]

Li, Q.

Lin, S.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3d printing: 3d printing of highly stretchable and tough hydrogels into complex, cellularized structures (adv. mater. 27/2015),” Adv. Mater. 27(27), 4034 (2015).
[Crossref]

Lohse, D.

J. Luo, R. Pohl, L. Qi, G.-W. Römer, C. Sun, D. Lohse, and C. W. Visser, “Printing functional 3d microdevices by laser-induced forward transfer,” Small 13(9), 1602553 (2017).
[Crossref]

T. Driessen, R. Jeurissen, H. Wijshoff, F. Toschi, and D. Lohse, “Stability of viscous long liquid filaments,” Phys. Fluids 25(6), 062109 (2013).
[Crossref]

Lopez, G. P.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3d printing: 3d printing of highly stretchable and tough hydrogels into complex, cellularized structures (adv. mater. 27/2015),” Adv. Mater. 27(27), 4034 (2015).
[Crossref]

Luo, J.

J. Luo, R. Pohl, L. Qi, G.-W. Römer, C. Sun, D. Lohse, and C. W. Visser, “Printing functional 3d microdevices by laser-induced forward transfer,” Small 13(9), 1602553 (2017).
[Crossref]

Massaouti, M.

M. Chatzipetrou, M. Massaouti, G. Tsekenis, A. K. Trilling, E. van Andel, L. Scheres, M. M. Smulders, H. Zuilhof, and I. Zergioti, “Direct creation of biopatterns via a combination of laser-based techniques and click chemistry,” Langmuir 33(4), 848–853 (2017).
[Crossref]

McKinley, G. H.

B. Keshavarz, E. C. Houze, J. R. Moore, M. R. Koerner, and G. H. McKinley, “Ligament mediated fragmentation of viscoelastic liquids,” Phys. Rev. Lett. 117(15), 154502 (2016).
[Crossref]

P. P. Bhat, S. Appathurai, M. T. Harris, M. Pasquali, G. H. McKinley, and O. A. Basaran, “Formation of beads-on-a-string structures during break-up of viscoelastic filaments,” Nat. Phys. 6(8), 625–631 (2010).
[Crossref]

A. M. Ardekani, V. Sharma, and G. H. McKinley, “Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets,” J. Fluid Mech. 665, 46–56 (2010).
[Crossref]

C. Clasen, J. Eggers, M. A. Fontelos, J. Li, and G. H. McKinley, “The beads-on-string structure of viscoelastic threads,” J. Fluid Mech. 556, 283–308 (2006).
[Crossref]

V. Tirtaatmadja, G. H. McKinley, and J. J. Cooper-White, “Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration,” Phys. Fluids 18(4), 043101 (2006).
[Crossref]

S. L. Anna and G. H. McKinley, “Elasto-capillary thinning and breakup of model elastic liquids,” J. Rheol. 45(1), 115–138 (2001).
[Crossref]

Mei, R.

Z. Zhang, R. Xiong, R. Mei, Y. Huang, and D. B. Chrisey, “Time-resolved imaging study of jetting dynamics during laser printing of viscoelastic alginate solutions,” Langmuir 31(23), 6447–6456 (2015).
[Crossref]

Moore, J. R.

B. Keshavarz, E. C. Houze, J. R. Moore, M. R. Koerner, and G. H. McKinley, “Ligament mediated fragmentation of viscoelastic liquids,” Phys. Rev. Lett. 117(15), 154502 (2016).
[Crossref]

Naz, N.

F. Wang, F. Contò, N. Naz, J. Castrejón-Pita, A. Castrejón-Pita, C. Bailey, W. Wang, J. Feng, and Y. Sui, “A fate-alternating transitional regime in contracting liquid filaments,” J. Fluid Mech. 860, 640–653 (2019).
[Crossref]

Oberstar, H. E.

J. B. Segur and H. E. Oberstar, “Viscosity of glycerol and its aqueous solutions,” Ind. Eng. Chem. 43(9), 2117–2120 (1951).
[Crossref]

Ozbolat, I. T.

I. T. Ozbolat and M. Hospodiuk, “Current advances and future perspectives in extrusion-based bioprinting,” Biomaterials 76, 321–343 (2016).
[Crossref]

Pasquali, M.

P. P. Bhat, S. Appathurai, M. T. Harris, M. Pasquali, G. H. McKinley, and O. A. Basaran, “Formation of beads-on-a-string structures during break-up of viscoelastic filaments,” Nat. Phys. 6(8), 625–631 (2010).
[Crossref]

Perazzo, A.

E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively induced jets from viscoelastic films for high-resolution printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
[Crossref]

Piazza, S.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

Piqué, A.

P. Serra and A. Piqué, “Laser-induced forward transfer: Fundamentals and applications,” Adv. Mater. Technol. 4(1), 1800099 (2019).
[Crossref]

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(1), 23–31 (2007).
[Crossref]

P. Serra and A. Piqué, Introduction to Laser-Induced Transfer and Other Associated Processes (Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, Germany, 2018).

A. Piqué and P. Serra, Laser Printing of Functional Materials: 3D Microfabrication, Electronics and Biomedicine (John Wiley & Sons, 2018).

Pohl, R.

J. Luo, R. Pohl, L. Qi, G.-W. Römer, C. Sun, D. Lohse, and C. W. Visser, “Printing functional 3d microdevices by laser-induced forward transfer,” Small 13(9), 1602553 (2017).
[Crossref]

Purnick, P. E.

N. T. Kattamis, P. E. Purnick, R. Weiss, and C. B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91(17), 171120 (2007).
[Crossref]

Qi, L.

J. Luo, R. Pohl, L. Qi, G.-W. Römer, C. Sun, D. Lohse, and C. W. Visser, “Printing functional 3d microdevices by laser-induced forward transfer,” Small 13(9), 1602553 (2017).
[Crossref]

Rayleigh, L.

L. Rayleigh, “Xvi. on the instability of a cylinder of viscous liquid under capillary force,” The London, Edinburgh, Dublin Philos. Mag. J. Sci. 34(207), 145–154 (1892).
[Crossref]

Rehman, M. M.

J. Z. Gul, M. Sajid, M. M. Rehman, G. U. Siddiqui, I. Shah, K.-H. Kim, J.-W. Lee, and K. H. Choi, “3d printing for soft robotics–a review,” Sci. Technol. Adv. Mater. 19(1), 243–262 (2018).
[Crossref]

Ringeisen, B. R.

Z. Zhang, Y. Jin, J. Yin, C. Xu, R. Xiong, K. Christensen, B. R. Ringeisen, D. B. Chrisey, and Y. Huang, “Evaluation of bioink printability for bioprinting applications,” Appl. Phys. Rev. 5(4), 041304 (2018).
[Crossref]

Roché, M.

M. Roché, H. Kellay, and H. A. Stone, “Heterogeneity and the role of normal stresses during the extensional thinning of non-brownian shear-thickening fluids,” Phys. Rev. Lett. 107(13), 134503 (2011).
[Crossref]

Römer, G.-W.

J. Luo, R. Pohl, L. Qi, G.-W. Römer, C. Sun, D. Lohse, and C. W. Visser, “Printing functional 3d microdevices by laser-induced forward transfer,” Small 13(9), 1602553 (2017).
[Crossref]

Rubinstein, M.

M. Rubinstein and R. H. Colby, Polymer Physics, vol. 23 (Oxford University PressNew York, 2003).

Sajid, M.

J. Z. Gul, M. Sajid, M. M. Rehman, G. U. Siddiqui, I. Shah, K.-H. Kim, J.-W. Lee, and K. H. Choi, “3d printing for soft robotics–a review,” Sci. Technol. Adv. Mater. 19(1), 243–262 (2018).
[Crossref]

Scheres, L.

M. Chatzipetrou, M. Massaouti, G. Tsekenis, A. K. Trilling, E. van Andel, L. Scheres, M. M. Smulders, H. Zuilhof, and I. Zergioti, “Direct creation of biopatterns via a combination of laser-based techniques and click chemistry,” Langmuir 33(4), 848–853 (2017).
[Crossref]

Schiele, N. R.

N. R. Schiele, D. B. Chrisey, and D. T. Corr, “Gelatin-based laser direct-write technique for the precise spatial patterning of cells,” Tissue Eng., Part C 17(3), 289–298 (2011).
[Crossref]

Segur, J. B.

J. B. Segur and H. E. Oberstar, “Viscosity of glycerol and its aqueous solutions,” Ind. Eng. Chem. 43(9), 2117–2120 (1951).
[Crossref]

Serra, P.

P. Serra and A. Piqué, “Laser-induced forward transfer: Fundamentals and applications,” Adv. Mater. Technol. 4(1), 1800099 (2019).
[Crossref]

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(1), 23–31 (2007).
[Crossref]

P. Serra and A. Piqué, Introduction to Laser-Induced Transfer and Other Associated Processes (Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, Germany, 2018).

A. Piqué and P. Serra, Laser Printing of Functional Materials: 3D Microfabrication, Electronics and Biomedicine (John Wiley & Sons, 2018).

Shah, I.

J. Z. Gul, M. Sajid, M. M. Rehman, G. U. Siddiqui, I. Shah, K.-H. Kim, J.-W. Lee, and K. H. Choi, “3d printing for soft robotics–a review,” Sci. Technol. Adv. Mater. 19(1), 243–262 (2018).
[Crossref]

Sharma, V.

A. M. Ardekani, V. Sharma, and G. H. McKinley, “Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets,” J. Fluid Mech. 665, 46–56 (2010).
[Crossref]

Siddiqui, G. U.

J. Z. Gul, M. Sajid, M. M. Rehman, G. U. Siddiqui, I. Shah, K.-H. Kim, J.-W. Lee, and K. H. Choi, “3d printing for soft robotics–a review,” Sci. Technol. Adv. Mater. 19(1), 243–262 (2018).
[Crossref]

Smulders, M. M.

M. Chatzipetrou, M. Massaouti, G. Tsekenis, A. K. Trilling, E. van Andel, L. Scheres, M. M. Smulders, H. Zuilhof, and I. Zergioti, “Direct creation of biopatterns via a combination of laser-based techniques and click chemistry,” Langmuir 33(4), 848–853 (2017).
[Crossref]

Stone, H. A.

E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively induced jets from viscoelastic films for high-resolution printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
[Crossref]

M. Roché, H. Kellay, and H. A. Stone, “Heterogeneity and the role of normal stresses during the extensional thinning of non-brownian shear-thickening fluids,” Phys. Rev. Lett. 107(13), 134503 (2011).
[Crossref]

H. A. Stone and M. P. Brenner, “Note on the capillary thread instability for fluids of equal viscosities,” J. Fluid Mech. 318(1), 373–374 (1996).
[Crossref]

H. A. Stone, “Dynamics of drop deformation and breakup in viscous fluids,” Annu. Rev. Fluid Mech. 26(1), 65–102 (1994).
[Crossref]

Sui, Y.

F. Wang, F. Contò, N. Naz, J. Castrejón-Pita, A. Castrejón-Pita, C. Bailey, W. Wang, J. Feng, and Y. Sui, “A fate-alternating transitional regime in contracting liquid filaments,” J. Fluid Mech. 860, 640–653 (2019).
[Crossref]

Sun, C.

J. Luo, R. Pohl, L. Qi, G.-W. Römer, C. Sun, D. Lohse, and C. W. Visser, “Printing functional 3d microdevices by laser-induced forward transfer,” Small 13(9), 1602553 (2017).
[Crossref]

Sycks, D.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3d printing: 3d printing of highly stretchable and tough hydrogels into complex, cellularized structures (adv. mater. 27/2015),” Adv. Mater. 27(27), 4034 (2015).
[Crossref]

Tirtaatmadja, V.

V. Tirtaatmadja, G. H. McKinley, and J. J. Cooper-White, “Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration,” Phys. Fluids 18(4), 043101 (2006).
[Crossref]

Toschi, F.

T. Driessen, R. Jeurissen, H. Wijshoff, F. Toschi, and D. Lohse, “Stability of viscous long liquid filaments,” Phys. Fluids 25(6), 062109 (2013).
[Crossref]

Trilling, A. K.

M. Chatzipetrou, M. Massaouti, G. Tsekenis, A. K. Trilling, E. van Andel, L. Scheres, M. M. Smulders, H. Zuilhof, and I. Zergioti, “Direct creation of biopatterns via a combination of laser-based techniques and click chemistry,” Langmuir 33(4), 848–853 (2017).
[Crossref]

Tsekenis, G.

M. Chatzipetrou, M. Massaouti, G. Tsekenis, A. K. Trilling, E. van Andel, L. Scheres, M. M. Smulders, H. Zuilhof, and I. Zergioti, “Direct creation of biopatterns via a combination of laser-based techniques and click chemistry,” Langmuir 33(4), 848–853 (2017).
[Crossref]

Turkoz, E.

E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively induced jets from viscoelastic films for high-resolution printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
[Crossref]

E. Turkoz, L. Deike, and C. B. Arnold, “Comparison of jets from newtonian and non-newtonian fluids induced by blister-actuated laser-induced forward transfer (ba-lift),” Appl. Phys. A 123(10), 652 (2017).
[Crossref]

E. Turkoz, R. Fardel, and C. B. Arnold, “Advances in blister-actuated laser-induced forward transfer (ba-lift),” Laser Print. Funct. Materials: 3D Microfabr. Electron. Biomed. pp. 91–121 (2018).

Unger, C.

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
[Crossref]

van Andel, E.

M. Chatzipetrou, M. Massaouti, G. Tsekenis, A. K. Trilling, E. van Andel, L. Scheres, M. M. Smulders, H. Zuilhof, and I. Zergioti, “Direct creation of biopatterns via a combination of laser-based techniques and click chemistry,” Langmuir 33(4), 848–853 (2017).
[Crossref]

Ventikos, Y.

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

Villermaux, E.

J. Eggers and E. Villermaux, “Physics of liquid jets,” Rep. Prog. Phys. 71(3), 036601 (2008).
[Crossref]

Visser, C. W.

J. Luo, R. Pohl, L. Qi, G.-W. Römer, C. Sun, D. Lohse, and C. W. Visser, “Printing functional 3d microdevices by laser-induced forward transfer,” Small 13(9), 1602553 (2017).
[Crossref]

Wang, F.

F. Wang, F. Contò, N. Naz, J. Castrejón-Pita, A. Castrejón-Pita, C. Bailey, W. Wang, J. Feng, and Y. Sui, “A fate-alternating transitional regime in contracting liquid filaments,” J. Fluid Mech. 860, 640–653 (2019).
[Crossref]

Wang, W.

F. Wang, F. Contò, N. Naz, J. Castrejón-Pita, A. Castrejón-Pita, C. Bailey, W. Wang, J. Feng, and Y. Sui, “A fate-alternating transitional regime in contracting liquid filaments,” J. Fluid Mech. 860, 640–653 (2019).
[Crossref]

Weiss, R.

N. T. Kattamis, P. E. Purnick, R. Weiss, and C. B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91(17), 171120 (2007).
[Crossref]

Wijshoff, H.

T. Driessen, R. Jeurissen, H. Wijshoff, F. Toschi, and D. Lohse, “Stability of viscous long liquid filaments,” Phys. Fluids 25(6), 062109 (2013).
[Crossref]

Xiong, R.

Z. Zhang, Y. Jin, J. Yin, C. Xu, R. Xiong, K. Christensen, B. R. Ringeisen, D. B. Chrisey, and Y. Huang, “Evaluation of bioink printability for bioprinting applications,” Appl. Phys. Rev. 5(4), 041304 (2018).
[Crossref]

Z. Zhang, W. Chai, R. Xiong, L. Zhou, and Y. Huang, “Printing-induced cell injury evaluation during laser printing of 3t3 mouse fibroblasts,” Biofabrication 9(2), 025038 (2017).
[Crossref]

Z. Zhang, R. Xiong, D. T. Corr, and Y. Huang, “Study of impingement types and printing quality during laser printing of viscoelastic alginate solutions,” Langmuir 32(12), 3004–3014 (2016).
[Crossref]

Z. Zhang, R. Xiong, R. Mei, Y. Huang, and D. B. Chrisey, “Time-resolved imaging study of jetting dynamics during laser printing of viscoelastic alginate solutions,” Langmuir 31(23), 6447–6456 (2015).
[Crossref]

Xu, C.

Z. Zhang, Y. Jin, J. Yin, C. Xu, R. Xiong, K. Christensen, B. R. Ringeisen, D. B. Chrisey, and Y. Huang, “Evaluation of bioink printability for bioprinting applications,” Appl. Phys. Rev. 5(4), 041304 (2018).
[Crossref]

Yin, J.

Z. Zhang, Y. Jin, J. Yin, C. Xu, R. Xiong, K. Christensen, B. R. Ringeisen, D. B. Chrisey, and Y. Huang, “Evaluation of bioink printability for bioprinting applications,” Appl. Phys. Rev. 5(4), 041304 (2018).
[Crossref]

Zergioti, I.

M. Chatzipetrou, M. Massaouti, G. Tsekenis, A. K. Trilling, E. van Andel, L. Scheres, M. M. Smulders, H. Zuilhof, and I. Zergioti, “Direct creation of biopatterns via a combination of laser-based techniques and click chemistry,” Langmuir 33(4), 848–853 (2017).
[Crossref]

Zhang, Z.

Z. Zhang, Y. Jin, J. Yin, C. Xu, R. Xiong, K. Christensen, B. R. Ringeisen, D. B. Chrisey, and Y. Huang, “Evaluation of bioink printability for bioprinting applications,” Appl. Phys. Rev. 5(4), 041304 (2018).
[Crossref]

Z. Zhang, W. Chai, R. Xiong, L. Zhou, and Y. Huang, “Printing-induced cell injury evaluation during laser printing of 3t3 mouse fibroblasts,” Biofabrication 9(2), 025038 (2017).
[Crossref]

Z. Zhang, R. Xiong, D. T. Corr, and Y. Huang, “Study of impingement types and printing quality during laser printing of viscoelastic alginate solutions,” Langmuir 32(12), 3004–3014 (2016).
[Crossref]

Z. Zhang, R. Xiong, R. Mei, Y. Huang, and D. B. Chrisey, “Time-resolved imaging study of jetting dynamics during laser printing of viscoelastic alginate solutions,” Langmuir 31(23), 6447–6456 (2015).
[Crossref]

Zhao, X.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3d printing: 3d printing of highly stretchable and tough hydrogels into complex, cellularized structures (adv. mater. 27/2015),” Adv. Mater. 27(27), 4034 (2015).
[Crossref]

Zhou, L.

Z. Zhang, W. Chai, R. Xiong, L. Zhou, and Y. Huang, “Printing-induced cell injury evaluation during laser printing of 3t3 mouse fibroblasts,” Biofabrication 9(2), 025038 (2017).
[Crossref]

Zuilhof, H.

M. Chatzipetrou, M. Massaouti, G. Tsekenis, A. K. Trilling, E. van Andel, L. Scheres, M. M. Smulders, H. Zuilhof, and I. Zergioti, “Direct creation of biopatterns via a combination of laser-based techniques and click chemistry,” Langmuir 33(4), 848–853 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (1)

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref]

Adv. Mater. (1)

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao, “3d printing: 3d printing of highly stretchable and tough hydrogels into complex, cellularized structures (adv. mater. 27/2015),” Adv. Mater. 27(27), 4034 (2015).
[Crossref]

Adv. Mater. Technol. (1)

P. Serra and A. Piqué, “Laser-induced forward transfer: Fundamentals and applications,” Adv. Mater. Technol. 4(1), 1800099 (2019).
[Crossref]

Annu. Rev. Fluid Mech. (1)

H. A. Stone, “Dynamics of drop deformation and breakup in viscous fluids,” Annu. Rev. Fluid Mech. 26(1), 65–102 (1994).
[Crossref]

Appl. Phys. A (2)

E. Turkoz, L. Deike, and C. B. Arnold, “Comparison of jets from newtonian and non-newtonian fluids induced by blister-actuated laser-induced forward transfer (ba-lift),” Appl. Phys. A 123(10), 652 (2017).
[Crossref]

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A 103(2), 271–277 (2011).
[Crossref]

Appl. Phys. Lett. (1)

N. T. Kattamis, P. E. Purnick, R. Weiss, and C. B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91(17), 171120 (2007).
[Crossref]

Appl. Phys. Rev. (1)

Z. Zhang, Y. Jin, J. Yin, C. Xu, R. Xiong, K. Christensen, B. R. Ringeisen, D. B. Chrisey, and Y. Huang, “Evaluation of bioink printability for bioprinting applications,” Appl. Phys. Rev. 5(4), 041304 (2018).
[Crossref]

Biofabrication (1)

Z. Zhang, W. Chai, R. Xiong, L. Zhou, and Y. Huang, “Printing-induced cell injury evaluation during laser printing of 3t3 mouse fibroblasts,” Biofabrication 9(2), 025038 (2017).
[Crossref]

Biomaterials (1)

I. T. Ozbolat and M. Hospodiuk, “Current advances and future perspectives in extrusion-based bioprinting,” Biomaterials 76, 321–343 (2016).
[Crossref]

Ind. Eng. Chem. (1)

J. B. Segur and H. E. Oberstar, “Viscosity of glycerol and its aqueous solutions,” Ind. Eng. Chem. 43(9), 2117–2120 (1951).
[Crossref]

J. Fluid Mech. (5)

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

C. Clasen, J. Eggers, M. A. Fontelos, J. Li, and G. H. McKinley, “The beads-on-string structure of viscoelastic threads,” J. Fluid Mech. 556, 283–308 (2006).
[Crossref]

A. M. Ardekani, V. Sharma, and G. H. McKinley, “Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets,” J. Fluid Mech. 665, 46–56 (2010).
[Crossref]

F. Wang, F. Contò, N. Naz, J. Castrejón-Pita, A. Castrejón-Pita, C. Bailey, W. Wang, J. Feng, and Y. Sui, “A fate-alternating transitional regime in contracting liquid filaments,” J. Fluid Mech. 860, 640–653 (2019).
[Crossref]

H. A. Stone and M. P. Brenner, “Note on the capillary thread instability for fluids of equal viscosities,” J. Fluid Mech. 318(1), 373–374 (1996).
[Crossref]

J. Non-Newtonian Fluid Mech. (1)

V. Entov and E. Hinch, “Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid,” J. Non-Newtonian Fluid Mech. 72(1), 31–53 (1997).
[Crossref]

J. Rheol. (1)

S. L. Anna and G. H. McKinley, “Elasto-capillary thinning and breakup of model elastic liquids,” J. Rheol. 45(1), 115–138 (2001).
[Crossref]

Langmuir (3)

Z. Zhang, R. Xiong, D. T. Corr, and Y. Huang, “Study of impingement types and printing quality during laser printing of viscoelastic alginate solutions,” Langmuir 32(12), 3004–3014 (2016).
[Crossref]

M. Chatzipetrou, M. Massaouti, G. Tsekenis, A. K. Trilling, E. van Andel, L. Scheres, M. M. Smulders, H. Zuilhof, and I. Zergioti, “Direct creation of biopatterns via a combination of laser-based techniques and click chemistry,” Langmuir 33(4), 848–853 (2017).
[Crossref]

Z. Zhang, R. Xiong, R. Mei, Y. Huang, and D. B. Chrisey, “Time-resolved imaging study of jetting dynamics during laser printing of viscoelastic alginate solutions,” Langmuir 31(23), 6447–6456 (2015).
[Crossref]

MRS Bull. (1)

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(1), 23–31 (2007).
[Crossref]

Nat. Phys. (1)

P. P. Bhat, S. Appathurai, M. T. Harris, M. Pasquali, G. H. McKinley, and O. A. Basaran, “Formation of beads-on-a-string structures during break-up of viscoelastic filaments,” Nat. Phys. 6(8), 625–631 (2010).
[Crossref]

Opt. Express (1)

Phys. Fluids (2)

T. Driessen, R. Jeurissen, H. Wijshoff, F. Toschi, and D. Lohse, “Stability of viscous long liquid filaments,” Phys. Fluids 25(6), 062109 (2013).
[Crossref]

V. Tirtaatmadja, G. H. McKinley, and J. J. Cooper-White, “Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration,” Phys. Fluids 18(4), 043101 (2006).
[Crossref]

Phys. Rev. Lett. (4)

B. Keshavarz, E. C. Houze, J. R. Moore, M. R. Koerner, and G. H. McKinley, “Ligament mediated fragmentation of viscoelastic liquids,” Phys. Rev. Lett. 117(15), 154502 (2016).
[Crossref]

M. Roché, H. Kellay, and H. A. Stone, “Heterogeneity and the role of normal stresses during the extensional thinning of non-brownian shear-thickening fluids,” Phys. Rev. Lett. 107(13), 134503 (2011).
[Crossref]

A. A. Castrejón-Pita, J. Castrejon-Pita, and I. Hutchings, “Breakup of liquid filaments,” Phys. Rev. Lett. 108(7), 074506 (2012).
[Crossref]

E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B. Arnold, “Impulsively induced jets from viscoelastic films for high-resolution printing,” Phys. Rev. Lett. 120(7), 074501 (2018).
[Crossref]

Rep. Prog. Phys. (1)

J. Eggers and E. Villermaux, “Physics of liquid jets,” Rep. Prog. Phys. 71(3), 036601 (2008).
[Crossref]

Sci. Technol. Adv. Mater. (1)

J. Z. Gul, M. Sajid, M. M. Rehman, G. U. Siddiqui, I. Shah, K.-H. Kim, J.-W. Lee, and K. H. Choi, “3d printing for soft robotics–a review,” Sci. Technol. Adv. Mater. 19(1), 243–262 (2018).
[Crossref]

Small (1)

J. Luo, R. Pohl, L. Qi, G.-W. Römer, C. Sun, D. Lohse, and C. W. Visser, “Printing functional 3d microdevices by laser-induced forward transfer,” Small 13(9), 1602553 (2017).
[Crossref]

The London, Edinburgh, Dublin Philos. Mag. J. Sci. (1)

L. Rayleigh, “Xvi. on the instability of a cylinder of viscous liquid under capillary force,” The London, Edinburgh, Dublin Philos. Mag. J. Sci. 34(207), 145–154 (1892).
[Crossref]

Tissue Eng., Part C (1)

N. R. Schiele, D. B. Chrisey, and D. T. Corr, “Gelatin-based laser direct-write technique for the precise spatial patterning of cells,” Tissue Eng., Part C 17(3), 289–298 (2011).
[Crossref]

Other (4)

A. Piqué and P. Serra, Laser Printing of Functional Materials: 3D Microfabrication, Electronics and Biomedicine (John Wiley & Sons, 2018).

P. Serra and A. Piqué, Introduction to Laser-Induced Transfer and Other Associated Processes (Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, Germany, 2018).

M. Rubinstein and R. H. Colby, Polymer Physics, vol. 23 (Oxford University PressNew York, 2003).

E. Turkoz, R. Fardel, and C. B. Arnold, “Advances in blister-actuated laser-induced forward transfer (ba-lift),” Laser Print. Funct. Materials: 3D Microfabr. Electron. Biomed. pp. 91–121 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Different regimes observed during the transfer of viscoelastic PEO solutions after the absorption of the laser pulse energy by the polyimide (PI) layer. (a) No transfer regime where the laser pulse energy is insufficient for the jet to reach the acceptor surface. (b) Single drop regime where breakup takes place before the jet reaches the acceptor surface. (c) The deposition-on-contact regime where the acceptor surface is placed close to the maximum stretching length of the jet. The deposition is rapid, and a single drop is deposited. (d) The liquid bridge regime where the elastic forces along the filament can sustain the formation of a liquid bridge. The resulting viscoelastic filament continues to thin and results in the formation of the beads-on-a-string structure after some time $\Delta t$.
Fig. 2.
Fig. 2. Images from high-speed videos of different regimes observed during the transfer of viscoelastic PEO solutions. (a) Single drop deposition (Fig. 1(b)) where the filament breaks up into a droplet and is deposited onto the acceptor surface ($H_f = 5.8$ $\mu$m, $\mu = 6.5$ mPa.s, $\lambda = 6.6$ ms). The acceptor surface is shown with dashed lines. (b) An example for the deposition-on-contact (Fig. 1(c)) regime, where the jet is stretched almost to the maximum when it reaches the substrate, so deposition takes place rapidly ($H_f = 10.2$ $\mu$m, $\mu = 7.5$ mPa.s, $\lambda = 9.7$ ms). The elastic forces pull the viscoelastic filament back to the donor liquid film layer. (c) The bridging regime (Fig. 1(d)), where a thin liquid bridge goes through (viscous and elastic) thinning ($H_f = 18.5$ $\mu$m, $\mu = 4.0$ mPa.s, $\lambda = 2.5$ ms). This regime results in the formation of the beads-on-a-string structure towards the end of the filament breakup. The laser pulse energy for all of the cases is measured as $7.12 \pm 0.131$ $\mu$J. The spot size is $20$ $\mu$m. The scale bar represents 25 $\mu$m.
Fig. 3.
Fig. 3. Deposition of a Newtonian liquid prepared with DI water and glycerol of 50 wt.% - 50 wt.% concentrations ($\mu \approx 5.3$ mPa.s [36], $\rho \approx 1125$ kg/m$^3$ ). Due to the lack of elasticity, when stretched, Newtonian liquids do not retract back as observed with the deposition-on-contact regime (Fig. 2(b)) with viscoelastic liquids. Long filaments of Newtonian liquids breakup into multiple droplets and these droplets are deposited onto the acceptor surface. The scale bar represents 25 $\mu$m.
Fig. 4.
Fig. 4. Phase diagram of the regimes observed during the jetting of PEO solutions using BA-LIFT. For single drop deposition, the time for the breakup to take place, $t_c$, should be smaller than the time that the jet takes to reach the acceptor surface, $t_g = H_g/U_j$, where $U_j$ is the characteristic jet velocity. Here, $U_j$ is approximated as the average blister velocity $U_b$ until the blister height reaches the 90% of its final height (see Appendix B). Single drop deposition is therefore observed if $t_g / t_c > 1$. The deposition-on-contact regime takes place when the donor-acceptor surface distance $H_g$ is approximately equal to the jet length at maximum stretch $L_{max}$, $H_g/ L_{max} \sim 1$. $L_{max}$ is measured experimentally without an acceptor surface and found to exhibit for a given configuration approximately 15 % variation, whose effect is represented with the errorbar on a data point.
Fig. 5.
Fig. 5. Aspect ratio plays a critical role in determining the outcome of the drop deposition process. (a) Different regimes observed by changing the donor-acceptor gap distance and keeping all of the other experimental parameters constant. If $H_g$ is too large, the jet can retract back without transferring any material. As $H_g$ is decreased, the deposition-on-contact regime is observed. Further decrease in $H_g$ results in the formation of a liquid bridge. (b) The aspect ratio $H_g/H_f$ values that result in deposition-on-contact regime as a function of the relaxation time $\lambda$. As the relaxation time of the solution is increased, the resulting jet needs to be stretched more for the deposition-on-contact regime. The liquid film thickness $H_f$ measurements show approximately 15% variation, whose effect is represented with the errorbar on a data point.
Fig. 6.
Fig. 6. Rheological properties of PEO solutions. (a) Shear viscosity $\mu$ of 0.15 wt.%, 0.20 wt.% and 0.30 wt.% PEO in water as a function of shear rate $\dot {\gamma }$. The constant viscosity values to calculate the Ohnesorge number for the PEO solutions are 4.0 mPa.s, 6.5 mPa.s, and 7.5 mPa.s for 0.15 wt.%, 0.20 wt.% and 0.30 wt.% PEO, respectively. (b) Elongational relaxation time measurements of 0.15 wt.%, 0.20 wt.% and 0.30 wt.% PEO in water. The diameter $2R_{\textrm {fil}}$ of a gravity-driven jet is recorded as a function of time $t$. The relaxation time $\lambda$ is calculated by fitting an exponential line to the elastic thinning part. The relaxation times are evaluated as $2.5 \pm 0.3$ ms, $6.6 \pm 1.3$ ms, and $9.7 \pm 1.5$ ms for 0.15 wt.%, 0.20 wt.% and 0.30 wt.%, respectively.
Fig. 7.
Fig. 7. The blister profile generated with the laser pulse energy used in this study. (a) A three-dimensional contour plot of a blister measured with confocal microscopy. The red line across the blister is used to extract the profile presented in (b). (c) The evolution of the blister velocity $U_b(t)$ (solid curve) and blister height $H_b$ (t) (dotted curve) as a function of time for the first $\sim 150$ ns, when the blister height reaches 90% of its final height. The average velocity $U_b$ used in evaluating the dimensionless parameters is calculated as the average velocity during this time. The time-dependent profile is obtained from the empirical formula presented in a previous study [38].