Abstract

Integrated plasmonic sensors often require the nanofabrication of metallic structures on top of dielectric substrates by nanolithographic methods such as electron beam lithography (EBL). One of the preferred metals for the realization of such nanostructures is gold given both its corrosion resistance and favorable refractive index in the visible and NIR regions. Due to its inert nature, gold offers very poor adhesion to dielectric layers, therefore often requiring the deposition of a thin metallic layer as adhesion promoter. The presence of this layer has a negative influence on the plasmonic behavior of the resulting nano-antennas. Thus, the thickness of the adhesion layer should be kept as thin as possible. Moreover, the use of EBL on non-conductive substrates leads to charge accumulation in the isolating materials (i.e., charging effect), which degrades the resolution of the lithography. A possible solution to this problem is the use of an anti-charging layer under the electron sensitive resist, which should be thick enough to offer high conductivity. In this work, we present a nanofabrication process that decouples the contradicting requirements for the metal layers, permitting to independently optimize both the thickness and type of the metal used as anti-charging layer and as adhesion layer underneath the nanostructures. Additionally, the proposed method permits eliminating any metal residue during the lift-off process, leading to a perfectly clean device outside the nanostructured region, which is instrumental when the nanostructures are to be integrated with other photonic functions on the chip.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks

Desalegn T. Debu, Pijush K. Ghosh, David French, and Joseph B. Herzog
Opt. Mater. Express 7(1) 73-84 (2017)

Fabrication of metallic nanopatterns with ultrasmooth surface on various substrates through lift-off and transfer process

Cai Hongbing, Ren Wenzhen, Zhang Kun, Tian Yangchao, Pan Nan, Luo Yi, and Wang Xiaoping
Opt. Express 21(26) 32417-32424 (2013)

Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer

Mohamadreza Najiminaini, Fartash Vasefi, Bozena Kaminska, and Jeffrey J.L. Carson
Opt. Express 19(27) 26186-26197 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
    [Crossref]
  2. R. L. Sciences, “Surface Plasmon Resonance and Vaccine Research – Developments in Malaria Research. Application Note 18.”
  3. S. G. Patching, “Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery,” Biochim. Biophys. Acta, Biomembr. 1838(1), 43–55 (2014).
    [Crossref]
  4. A. Hakonen, K. Wu, M. Stenbæk Schmidt, P. O. Andersson, A. Boisen, and T. Rindzevicius, “Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers,” Talanta 189, 649–652 (2018).
    [Crossref]
  5. M. S. Schmidt, J. Hubner, and A. Boisen, “Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
    [Crossref]
  6. A. Espinosa-Soria, A. Griol, and A. Martínez, “Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps,” Opt. Express 24(9), 9592–9601 (2016).
    [Crossref]
  7. A. Espinosa-Soria, E. Pinilla-Cienfuegos, F. J. Díaz-Fernández, A. Griol, J. Martí, and A. Martínez, “Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip,” ACS Photonics 5(7), 2712–2717 (2018).
    [Crossref]
  8. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
    [Crossref]
  9. F. Peyskens, P. Wuytens, A. Raza, P. Van Dorpe, and R. Baets, “Waveguide excitation and collection of surface-enhanced Raman scattering from a single plasmonic antenna,” Nanophotonics 7(7), 1299–1306 (2018).
    [Crossref]
  10. F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
    [Crossref]
  11. F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
    [Crossref]
  12. I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” in SPIE Photonics Europe, (SPIE, 2012), 9.
  13. D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon Nitride in Silicon Photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
    [Crossref]
  14. M. de Goede, L. Chang, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, J. Adan, F. Mitjans, and S. M. García-Blanco, “Al2O3 Microresonators for Passive and Active Sensing Applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), SeTu4E.1.
  15. C. I. van Emmerik, M. Dijkstra, M. de Goede, L. Chang, J. Mu, and S. M. Garcia-Blanco, “Single-layer active-passive Al2O3 photonic integration platform,” Opt. Mater. Express 8(10), 3049–3054 (2018).
    [Crossref]
  16. C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23(9), 11160–11169 (2015).
    [Crossref]
  17. G. Naik, J. Kim, N. Kinsey, and A. Boltasseva, “Chapter 6 - Alternative Plasmonic Materials,” in Handbook of Surface Science, N. V. Richardson and S. Holloway, eds. (North-Holland, 2014), pp. 189–221.
  18. A. Assaban and M. Gillet, “Adhesion of gold and copper thin films deposited on alumina and magnesium oxide,” J. Adhes. Sci. Technol. 13(8), 871–885 (1999).
    [Crossref]
  19. P. Benjamin, C. Weaver, and N. F. Mott, “The adhesion of evaporated metal films on glass,” Proc. R. Soc. Lond. A 261(1307), 516–531 (1962).
    [Crossref]
  20. A. A. Volinsky, N. R. Moody, and W. W. Gerberich, “Interfacial toughness measurements for thin films on substrates,” Acta Mater. 50(3), 441–466 (2002).
    [Crossref]
  21. M. Todeschini, A. Bastos da Silva Fanta, F. Jensen, J. B. Wagner, and A. Han, “Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films,” ACS Appl. Mater. Interfaces 9(42), 37374–37385 (2017).
    [Crossref]
  22. C. Chow and J. A. Bain, “Effect of Thin Cr and Cu Adhesion Layers on Surface Plasmon Resonance at Au/SiO2Interfaces,” IEEE Trans. Magn. 52(7), 1–4 (2016).
    [Crossref]
  23. D. T. Debu, P. K. Ghosh, D. French, and J. B. Herzog, “Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks,” Opt. Mater. Express 7(1), 73–84 (2017).
    [Crossref]
  24. J. Liu, H. Cai, L. Kong, and X. Zhu, “Effect of Chromium Interlayer Thickness on Optical Properties of Au-Ag Nanoparticle Array,” J. Nanomater. 2014, 1–9 (2014).
    [Crossref]
  25. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref]
  26. S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly Sensitive Biosensing Using Arrays of Plasmonic Au Nanodisks Realized by Nanoimprint Lithography,” ACS Nano 5(2), 897–904 (2011).
    [Crossref]
  27. H. Guo, B. Simpkins, J. D. Caldwell, and J. P. Guo, “Resonance spectra of diabolo optical antenna arrays,” AIP Adv. 5(10), 107149 (2015).
    [Crossref]
  28. M. Horák, K. Bukvišová, V. Švarc, J. Jaskowiec, V. Křápek, and T. Šikola, “Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography,” Sci. Rep. 8(1), 9640 (2018).
    [Crossref]
  29. Microchem Corporation, “NANO™ PMMA and Copolymer (Datasheet)” (2001), retrieved 28/12/2018, http://microchem.com/pdf/PMMA_Data_Sheet.pdf .
  30. S. Moyses, “Solution Properties of Poly(Methyl Methacrylate) in Dimethylsulfoxide,” Int. J. Polym. Anal. Charact. 13(6), 413–427 (2008).
    [Crossref]
  31. M. Muhammad, S. C. Buswell, S. K. Dew, and M. Stepanova, “Nanopatterning of PMMA on insulating surfaces with various anticharging schemes using 30 keV electron beam lithography,” J. Vac. Sci. Technol., B 29(6), 06F304 (2011).
    [Crossref]
  32. C. Hahn, M. Amyot-Bourgeois, M. Al-Shehab, H. Northfield, Y. Choi, S. H. Song, R. N. Tait, and P. Berini, “Nanofabrication of plasmonic structures on insulating substrates by resist-on-metal bilayer lift-off,” Nanotechnology 30(5), 054003 (2019).
    [Crossref]
  33. M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
    [Crossref]
  34. J. Chen and Z. Zhang, “Bowtie nanoantennas with symmetry breaking,” in (SPIE, 2014), 10.
  35. N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
    [Crossref]
  36. X. G. Zhang, “Etching of Oxides,” in Electrochemistry of Silicon and Its Oxide (Springer, 2004).
  37. E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, 1998), Vol. I-III.
  38. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
    [Crossref]
  39. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
    [Crossref]

2019 (1)

C. Hahn, M. Amyot-Bourgeois, M. Al-Shehab, H. Northfield, Y. Choi, S. H. Song, R. N. Tait, and P. Berini, “Nanofabrication of plasmonic structures on insulating substrates by resist-on-metal bilayer lift-off,” Nanotechnology 30(5), 054003 (2019).
[Crossref]

2018 (6)

A. Espinosa-Soria, E. Pinilla-Cienfuegos, F. J. Díaz-Fernández, A. Griol, J. Martí, and A. Martínez, “Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip,” ACS Photonics 5(7), 2712–2717 (2018).
[Crossref]

A. Hakonen, K. Wu, M. Stenbæk Schmidt, P. O. Andersson, A. Boisen, and T. Rindzevicius, “Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers,” Talanta 189, 649–652 (2018).
[Crossref]

F. Peyskens, P. Wuytens, A. Raza, P. Van Dorpe, and R. Baets, “Waveguide excitation and collection of surface-enhanced Raman scattering from a single plasmonic antenna,” Nanophotonics 7(7), 1299–1306 (2018).
[Crossref]

M. Horák, K. Bukvišová, V. Švarc, J. Jaskowiec, V. Křápek, and T. Šikola, “Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography,” Sci. Rep. 8(1), 9640 (2018).
[Crossref]

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon Nitride in Silicon Photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

C. I. van Emmerik, M. Dijkstra, M. de Goede, L. Chang, J. Mu, and S. M. Garcia-Blanco, “Single-layer active-passive Al2O3 photonic integration platform,” Opt. Mater. Express 8(10), 3049–3054 (2018).
[Crossref]

2017 (2)

D. T. Debu, P. K. Ghosh, D. French, and J. B. Herzog, “Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks,” Opt. Mater. Express 7(1), 73–84 (2017).
[Crossref]

M. Todeschini, A. Bastos da Silva Fanta, F. Jensen, J. B. Wagner, and A. Han, “Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films,” ACS Appl. Mater. Interfaces 9(42), 37374–37385 (2017).
[Crossref]

2016 (4)

C. Chow and J. A. Bain, “Effect of Thin Cr and Cu Adhesion Layers on Surface Plasmon Resonance at Au/SiO2Interfaces,” IEEE Trans. Magn. 52(7), 1–4 (2016).
[Crossref]

A. Espinosa-Soria, A. Griol, and A. Martínez, “Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps,” Opt. Express 24(9), 9592–9601 (2016).
[Crossref]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref]

2015 (3)

2014 (2)

J. Liu, H. Cai, L. Kong, and X. Zhu, “Effect of Chromium Interlayer Thickness on Optical Properties of Au-Ag Nanoparticle Array,” J. Nanomater. 2014, 1–9 (2014).
[Crossref]

S. G. Patching, “Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery,” Biochim. Biophys. Acta, Biomembr. 1838(1), 43–55 (2014).
[Crossref]

2012 (2)

M. S. Schmidt, J. Hubner, and A. Boisen, “Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[Crossref]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref]

2011 (2)

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly Sensitive Biosensing Using Arrays of Plasmonic Au Nanodisks Realized by Nanoimprint Lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref]

M. Muhammad, S. C. Buswell, S. K. Dew, and M. Stepanova, “Nanopatterning of PMMA on insulating surfaces with various anticharging schemes using 30 keV electron beam lithography,” J. Vac. Sci. Technol., B 29(6), 06F304 (2011).
[Crossref]

2010 (1)

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

2008 (1)

S. Moyses, “Solution Properties of Poly(Methyl Methacrylate) in Dimethylsulfoxide,” Int. J. Polym. Anal. Charact. 13(6), 413–427 (2008).
[Crossref]

2005 (1)

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

2004 (1)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

2003 (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

2002 (1)

A. A. Volinsky, N. R. Moody, and W. W. Gerberich, “Interfacial toughness measurements for thin films on substrates,” Acta Mater. 50(3), 441–466 (2002).
[Crossref]

1999 (1)

A. Assaban and M. Gillet, “Adhesion of gold and copper thin films deposited on alumina and magnesium oxide,” J. Adhes. Sci. Technol. 13(8), 871–885 (1999).
[Crossref]

1962 (1)

P. Benjamin, C. Weaver, and N. F. Mott, “The adhesion of evaporated metal films on glass,” Proc. R. Soc. Lond. A 261(1307), 516–531 (1962).
[Crossref]

1957 (1)

R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Aassime, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref]

Adan, J.

M. de Goede, L. Chang, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, J. Adan, F. Mitjans, and S. M. García-Blanco, “Al2O3 Microresonators for Passive and Active Sensing Applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), SeTu4E.1.

Ahn, J.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly Sensitive Biosensing Using Arrays of Plasmonic Au Nanodisks Realized by Nanoimprint Lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref]

Alepuz-Benache, I.

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” in SPIE Photonics Europe, (SPIE, 2012), 9.

Al-Shehab, M.

C. Hahn, M. Amyot-Bourgeois, M. Al-Shehab, H. Northfield, Y. Choi, S. H. Song, R. N. Tait, and P. Berini, “Nanofabrication of plasmonic structures on insulating substrates by resist-on-metal bilayer lift-off,” Nanotechnology 30(5), 054003 (2019).
[Crossref]

Amyot-Bourgeois, M.

C. Hahn, M. Amyot-Bourgeois, M. Al-Shehab, H. Northfield, Y. Choi, S. H. Song, R. N. Tait, and P. Berini, “Nanofabrication of plasmonic structures on insulating substrates by resist-on-metal bilayer lift-off,” Nanotechnology 30(5), 054003 (2019).
[Crossref]

Andersson, P. O.

A. Hakonen, K. Wu, M. Stenbæk Schmidt, P. O. Andersson, A. Boisen, and T. Rindzevicius, “Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers,” Talanta 189, 649–652 (2018).
[Crossref]

Apuzzo, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref]

Assaban, A.

A. Assaban and M. Gillet, “Adhesion of gold and copper thin films deposited on alumina and magnesium oxide,” J. Adhes. Sci. Technol. 13(8), 871–885 (1999).
[Crossref]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Baets, R.

F. Peyskens, P. Wuytens, A. Raza, P. Van Dorpe, and R. Baets, “Waveguide excitation and collection of surface-enhanced Raman scattering from a single plasmonic antenna,” Nanophotonics 7(7), 1299–1306 (2018).
[Crossref]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
[Crossref]

Bain, J. A.

C. Chow and J. A. Bain, “Effect of Thin Cr and Cu Adhesion Layers on Surface Plasmon Resonance at Au/SiO2Interfaces,” IEEE Trans. Magn. 52(7), 1–4 (2016).
[Crossref]

Bartl, J.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref]

Bastos da Silva Fanta, A.

M. Todeschini, A. Bastos da Silva Fanta, F. Jensen, J. B. Wagner, and A. Han, “Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films,” ACS Appl. Mater. Interfaces 9(42), 37374–37385 (2017).
[Crossref]

Benjamin, P.

P. Benjamin, C. Weaver, and N. F. Mott, “The adhesion of evaporated metal films on glass,” Proc. R. Soc. Lond. A 261(1307), 516–531 (1962).
[Crossref]

Berini, P.

C. Hahn, M. Amyot-Bourgeois, M. Al-Shehab, H. Northfield, Y. Choi, S. H. Song, R. N. Tait, and P. Berini, “Nanofabrication of plasmonic structures on insulating substrates by resist-on-metal bilayer lift-off,” Nanotechnology 30(5), 054003 (2019).
[Crossref]

Blaize, S.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref]

Blumenthal, D. J.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon Nitride in Silicon Photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Boisen, A.

A. Hakonen, K. Wu, M. Stenbæk Schmidt, P. O. Andersson, A. Boisen, and T. Rindzevicius, “Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers,” Talanta 189, 649–652 (2018).
[Crossref]

M. S. Schmidt, J. Hubner, and A. Boisen, “Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[Crossref]

Boltasseva, A.

G. Naik, J. Kim, N. Kinsey, and A. Boltasseva, “Chapter 6 - Alternative Plasmonic Materials,” in Handbook of Surface Science, N. V. Richardson and S. Holloway, eds. (North-Holland, 2014), pp. 189–221.

Bukvišová, K.

M. Horák, K. Bukvišová, V. Švarc, J. Jaskowiec, V. Křápek, and T. Šikola, “Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography,” Sci. Rep. 8(1), 9640 (2018).
[Crossref]

Buswell, S. C.

M. Muhammad, S. C. Buswell, S. K. Dew, and M. Stepanova, “Nanopatterning of PMMA on insulating surfaces with various anticharging schemes using 30 keV electron beam lithography,” J. Vac. Sci. Technol., B 29(6), 06F304 (2011).
[Crossref]

Cai, H.

J. Liu, H. Cai, L. Kong, and X. Zhu, “Effect of Chromium Interlayer Thickness on Optical Properties of Au-Ag Nanoparticle Array,” J. Nanomater. 2014, 1–9 (2014).
[Crossref]

Caldwell, J. D.

H. Guo, B. Simpkins, J. D. Caldwell, and J. P. Guo, “Resonance spectra of diabolo optical antenna arrays,” AIP Adv. 5(10), 107149 (2015).
[Crossref]

Chang, L.

C. I. van Emmerik, M. Dijkstra, M. de Goede, L. Chang, J. Mu, and S. M. Garcia-Blanco, “Single-layer active-passive Al2O3 photonic integration platform,” Opt. Mater. Express 8(10), 3049–3054 (2018).
[Crossref]

M. de Goede, L. Chang, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, J. Adan, F. Mitjans, and S. M. García-Blanco, “Al2O3 Microresonators for Passive and Active Sensing Applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), SeTu4E.1.

Chelnokov, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref]

Chen, J.

J. Chen and Z. Zhang, “Bowtie nanoantennas with symmetry breaking,” in (SPIE, 2014), 10.

Choi, Y.

C. Hahn, M. Amyot-Bourgeois, M. Al-Shehab, H. Northfield, Y. Choi, S. H. Song, R. N. Tait, and P. Berini, “Nanofabrication of plasmonic structures on insulating substrates by resist-on-metal bilayer lift-off,” Nanotechnology 30(5), 054003 (2019).
[Crossref]

Chow, C.

C. Chow and J. A. Bain, “Effect of Thin Cr and Cu Adhesion Layers on Surface Plasmon Resonance at Au/SiO2Interfaces,” IEEE Trans. Magn. 52(7), 1–4 (2016).
[Crossref]

Corporation, Microchem

Microchem Corporation, “NANO™ PMMA and Copolymer (Datasheet)” (2001), retrieved 28/12/2018, http://microchem.com/pdf/PMMA_Data_Sheet.pdf .

Dagens, B.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref]

de Goede, M.

C. I. van Emmerik, M. Dijkstra, M. de Goede, L. Chang, J. Mu, and S. M. Garcia-Blanco, “Single-layer active-passive Al2O3 photonic integration platform,” Opt. Mater. Express 8(10), 3049–3054 (2018).
[Crossref]

M. de Goede, L. Chang, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, J. Adan, F. Mitjans, and S. M. García-Blanco, “Al2O3 Microresonators for Passive and Active Sensing Applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), SeTu4E.1.

Debu, D. T.

Delacour, C.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref]

Dew, S. K.

M. Muhammad, S. C. Buswell, S. K. Dew, and M. Stepanova, “Nanopatterning of PMMA on insulating surfaces with various anticharging schemes using 30 keV electron beam lithography,” J. Vac. Sci. Technol., B 29(6), 06F304 (2011).
[Crossref]

Dhakal, A.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
[Crossref]

Díaz-Fernández, F. J.

A. Espinosa-Soria, E. Pinilla-Cienfuegos, F. J. Díaz-Fernández, A. Griol, J. Martí, and A. Martínez, “Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip,” ACS Photonics 5(7), 2712–2717 (2018).
[Crossref]

Dijkstra, M.

C. I. van Emmerik, M. Dijkstra, M. de Goede, L. Chang, J. Mu, and S. M. Garcia-Blanco, “Single-layer active-passive Al2O3 photonic integration platform,” Opt. Mater. Express 8(10), 3049–3054 (2018).
[Crossref]

M. de Goede, L. Chang, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, J. Adan, F. Mitjans, and S. M. García-Blanco, “Al2O3 Microresonators for Passive and Active Sensing Applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), SeTu4E.1.

Eisler, H. J.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Eres, G.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

Espinosa-Soria, A.

A. Espinosa-Soria, E. Pinilla-Cienfuegos, F. J. Díaz-Fernández, A. Griol, J. Martí, and A. Martínez, “Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip,” ACS Photonics 5(7), 2712–2717 (2018).
[Crossref]

A. Espinosa-Soria, A. Griol, and A. Martínez, “Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps,” Opt. Express 24(9), 9592–9601 (2016).
[Crossref]

Evans, C. C.

Février, M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref]

Finley, J. J.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref]

Flassig, F.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref]

French, D.

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Gaddis, A. L.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

Garcia-Blanco, S. M.

García-Blanco, S. M.

M. de Goede, L. Chang, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, J. Adan, F. Mitjans, and S. M. García-Blanco, “Al2O3 Microresonators for Passive and Active Sensing Applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), SeTu4E.1.

García-Meca, C.

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” in SPIE Photonics Europe, (SPIE, 2012), 9.

Gerberich, W. W.

A. A. Volinsky, N. R. Moody, and W. W. Gerberich, “Interfacial toughness measurements for thin films on substrates,” Acta Mater. 50(3), 441–466 (2002).
[Crossref]

Geuzebroek, D.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon Nitride in Silicon Photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Ghosh, P. K.

Gillet, M.

A. Assaban and M. Gillet, “Adhesion of gold and copper thin films deposited on alumina and magnesium oxide,” J. Adhes. Sci. Technol. 13(8), 871–885 (1999).
[Crossref]

Glashagen, G.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref]

Gogol, P.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref]

Griol, A.

A. Espinosa-Soria, E. Pinilla-Cienfuegos, F. J. Díaz-Fernández, A. Griol, J. Martí, and A. Martínez, “Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip,” ACS Photonics 5(7), 2712–2717 (2018).
[Crossref]

A. Espinosa-Soria, A. Griol, and A. Martínez, “Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps,” Opt. Express 24(9), 9592–9601 (2016).
[Crossref]

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” in SPIE Photonics Europe, (SPIE, 2012), 9.

Gu, B.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

Guo, H.

H. Guo, B. Simpkins, J. D. Caldwell, and J. P. Guo, “Resonance spectra of diabolo optical antenna arrays,” AIP Adv. 5(10), 107149 (2015).
[Crossref]

Guo, J. P.

H. Guo, B. Simpkins, J. D. Caldwell, and J. P. Guo, “Resonance spectra of diabolo optical antenna arrays,” AIP Adv. 5(10), 107149 (2015).
[Crossref]

Hahn, C.

C. Hahn, M. Amyot-Bourgeois, M. Al-Shehab, H. Northfield, Y. Choi, S. H. Song, R. N. Tait, and P. Berini, “Nanofabrication of plasmonic structures on insulating substrates by resist-on-metal bilayer lift-off,” Nanotechnology 30(5), 054003 (2019).
[Crossref]

Hakonen, A.

A. Hakonen, K. Wu, M. Stenbæk Schmidt, P. O. Andersson, A. Boisen, and T. Rindzevicius, “Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers,” Talanta 189, 649–652 (2018).
[Crossref]

Han, A.

M. Todeschini, A. Bastos da Silva Fanta, F. Jensen, J. B. Wagner, and A. Han, “Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films,” ACS Appl. Mater. Interfaces 9(42), 37374–37385 (2017).
[Crossref]

Hatab, N. A.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

Hecht, B.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Heideman, R.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon Nitride in Silicon Photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Herzog, J. B.

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Horák, M.

M. Horák, K. Bukvišová, V. Švarc, J. Jaskowiec, V. Křápek, and T. Šikola, “Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography,” Sci. Rep. 8(1), 9640 (2018).
[Crossref]

Hsueh, C.-H.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

Hubner, J.

M. S. Schmidt, J. Hubner, and A. Boisen, “Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[Crossref]

Jaskowiec, J.

M. Horák, K. Bukvišová, V. Švarc, J. Jaskowiec, V. Křápek, and T. Šikola, “Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography,” Sci. Rep. 8(1), 9640 (2018).
[Crossref]

Jensen, F.

M. Todeschini, A. Bastos da Silva Fanta, F. Jensen, J. B. Wagner, and A. Han, “Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films,” ACS Appl. Mater. Interfaces 9(42), 37374–37385 (2017).
[Crossref]

Kaniber, M.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref]

Kim, J.

G. Naik, J. Kim, N. Kinsey, and A. Boltasseva, “Chapter 6 - Alternative Plasmonic Materials,” in Handbook of Surface Science, N. V. Richardson and S. Holloway, eds. (North-Holland, 2014), pp. 189–221.

Kim, M. G.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly Sensitive Biosensing Using Arrays of Plasmonic Au Nanodisks Realized by Nanoimprint Lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Kinsey, N.

G. Naik, J. Kim, N. Kinsey, and A. Boltasseva, “Chapter 6 - Alternative Plasmonic Materials,” in Handbook of Surface Science, N. V. Richardson and S. Holloway, eds. (North-Holland, 2014), pp. 189–221.

Kong, L.

J. Liu, H. Cai, L. Kong, and X. Zhu, “Effect of Chromium Interlayer Thickness on Optical Properties of Au-Ag Nanoparticle Array,” J. Nanomater. 2014, 1–9 (2014).
[Crossref]

Krápek, V.

M. Horák, K. Bukvišová, V. Švarc, J. Jaskowiec, V. Křápek, and T. Šikola, “Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography,” Sci. Rep. 8(1), 9640 (2018).
[Crossref]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Le Thomas, N.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
[Crossref]

Lee, J. J.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly Sensitive Biosensing Using Arrays of Plasmonic Au Nanodisks Realized by Nanoimprint Lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref]

Lee, K. S.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly Sensitive Biosensing Using Arrays of Plasmonic Au Nanodisks Realized by Nanoimprint Lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref]

Lee, S. W.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly Sensitive Biosensing Using Arrays of Plasmonic Au Nanodisks Realized by Nanoimprint Lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref]

Leinse, A.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon Nitride in Silicon Photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Li, J.-H.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

Liu, C.

Liu, J.

J. Liu, H. Cai, L. Kong, and X. Zhu, “Effect of Chromium Interlayer Thickness on Optical Properties of Au-Ag Nanoparticle Array,” J. Nanomater. 2014, 1–9 (2014).
[Crossref]

Lorente-Crespo, M.

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” in SPIE Photonics Europe, (SPIE, 2012), 9.

Lourtioz, J.-M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref]

Martí, J.

A. Espinosa-Soria, E. Pinilla-Cienfuegos, F. J. Díaz-Fernández, A. Griol, J. Martí, and A. Martínez, “Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip,” ACS Photonics 5(7), 2712–2717 (2018).
[Crossref]

Martin, O. J. F.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Martínez, A.

A. Espinosa-Soria, E. Pinilla-Cienfuegos, F. J. Díaz-Fernández, A. Griol, J. Martí, and A. Martínez, “Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip,” ACS Photonics 5(7), 2712–2717 (2018).
[Crossref]

A. Espinosa-Soria, A. Griol, and A. Martínez, “Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps,” Opt. Express 24(9), 9592–9601 (2016).
[Crossref]

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” in SPIE Photonics Europe, (SPIE, 2012), 9.

Martínez, E.

M. de Goede, L. Chang, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, J. Adan, F. Mitjans, and S. M. García-Blanco, “Al2O3 Microresonators for Passive and Active Sensing Applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), SeTu4E.1.

Mégy, R.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref]

Mitjans, F.

M. de Goede, L. Chang, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, J. Adan, F. Mitjans, and S. M. García-Blanco, “Al2O3 Microresonators for Passive and Active Sensing Applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), SeTu4E.1.

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Moody, N. R.

A. A. Volinsky, N. R. Moody, and W. W. Gerberich, “Interfacial toughness measurements for thin films on substrates,” Acta Mater. 50(3), 441–466 (2002).
[Crossref]

Mott, N. F.

P. Benjamin, C. Weaver, and N. F. Mott, “The adhesion of evaporated metal films on glass,” Proc. R. Soc. Lond. A 261(1307), 516–531 (1962).
[Crossref]

Moyses, S.

S. Moyses, “Solution Properties of Poly(Methyl Methacrylate) in Dimethylsulfoxide,” Int. J. Polym. Anal. Charact. 13(6), 413–427 (2008).
[Crossref]

Mu, J.

Muhammad, M.

M. Muhammad, S. C. Buswell, S. K. Dew, and M. Stepanova, “Nanopatterning of PMMA on insulating surfaces with various anticharging schemes using 30 keV electron beam lithography,” J. Vac. Sci. Technol., B 29(6), 06F304 (2011).
[Crossref]

Muhlschlegel, P.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Naik, G.

G. Naik, J. Kim, N. Kinsey, and A. Boltasseva, “Chapter 6 - Alternative Plasmonic Materials,” in Handbook of Surface Science, N. V. Richardson and S. Holloway, eds. (North-Holland, 2014), pp. 189–221.

Neutens, P.

Northfield, H.

C. Hahn, M. Amyot-Bourgeois, M. Al-Shehab, H. Northfield, Y. Choi, S. H. Song, R. N. Tait, and P. Berini, “Nanofabrication of plasmonic structures on insulating substrates by resist-on-metal bilayer lift-off,” Nanotechnology 30(5), 054003 (2019).
[Crossref]

Obregón, R.

M. de Goede, L. Chang, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, J. Adan, F. Mitjans, and S. M. García-Blanco, “Al2O3 Microresonators for Passive and Active Sensing Applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), SeTu4E.1.

Ortuño, R.

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” in SPIE Photonics Europe, (SPIE, 2012), 9.

Padilla, L.

M. de Goede, L. Chang, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, J. Adan, F. Mitjans, and S. M. García-Blanco, “Al2O3 Microresonators for Passive and Active Sensing Applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), SeTu4E.1.

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, 1998), Vol. I-III.

Patching, S. G.

S. G. Patching, “Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery,” Biochim. Biophys. Acta, Biomembr. 1838(1), 43–55 (2014).
[Crossref]

Peyskens, F.

F. Peyskens, P. Wuytens, A. Raza, P. Van Dorpe, and R. Baets, “Waveguide excitation and collection of surface-enhanced Raman scattering from a single plasmonic antenna,” Nanophotonics 7(7), 1299–1306 (2018).
[Crossref]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
[Crossref]

Pinilla-Cienfuegos, E.

A. Espinosa-Soria, E. Pinilla-Cienfuegos, F. J. Díaz-Fernández, A. Griol, J. Martí, and A. Martínez, “Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip,” ACS Photonics 5(7), 2712–2717 (2018).
[Crossref]

Pohl, D. W.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Ramón-Azcón, J.

M. de Goede, L. Chang, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, J. Adan, F. Mitjans, and S. M. García-Blanco, “Al2O3 Microresonators for Passive and Active Sensing Applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), SeTu4E.1.

Raza, A.

F. Peyskens, P. Wuytens, A. Raza, P. Van Dorpe, and R. Baets, “Waveguide excitation and collection of surface-enhanced Raman scattering from a single plasmonic antenna,” Nanophotonics 7(7), 1299–1306 (2018).
[Crossref]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Regler, A.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref]

Retterer, S. T.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

Rindzevicius, T.

A. Hakonen, K. Wu, M. Stenbæk Schmidt, P. O. Andersson, A. Boisen, and T. Rindzevicius, “Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers,” Talanta 189, 649–652 (2018).
[Crossref]

Ritchie, R. H.

R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Rodríguez-Fortuño, F. J.

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” in SPIE Photonics Europe, (SPIE, 2012), 9.

Roeloffzen, C.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon Nitride in Silicon Photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Schmidt, M. S.

M. S. Schmidt, J. Hubner, and A. Boisen, “Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[Crossref]

Schraml, K.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Sciences, R. L.

R. L. Sciences, “Surface Plasmon Resonance and Vaccine Research – Developments in Malaria Research. Application Note 18.”

Shin, Y. B.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly Sensitive Biosensing Using Arrays of Plasmonic Au Nanodisks Realized by Nanoimprint Lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref]

Šikola, T.

M. Horák, K. Bukvišová, V. Švarc, J. Jaskowiec, V. Křápek, and T. Šikola, “Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography,” Sci. Rep. 8(1), 9640 (2018).
[Crossref]

Simpkins, B.

H. Guo, B. Simpkins, J. D. Caldwell, and J. P. Guo, “Resonance spectra of diabolo optical antenna arrays,” AIP Adv. 5(10), 107149 (2015).
[Crossref]

Song, S. H.

C. Hahn, M. Amyot-Bourgeois, M. Al-Shehab, H. Northfield, Y. Choi, S. H. Song, R. N. Tait, and P. Berini, “Nanofabrication of plasmonic structures on insulating substrates by resist-on-metal bilayer lift-off,” Nanotechnology 30(5), 054003 (2019).
[Crossref]

Stenbæk Schmidt, M.

A. Hakonen, K. Wu, M. Stenbæk Schmidt, P. O. Andersson, A. Boisen, and T. Rindzevicius, “Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers,” Talanta 189, 649–652 (2018).
[Crossref]

Stepanova, M.

M. Muhammad, S. C. Buswell, S. K. Dew, and M. Stepanova, “Nanopatterning of PMMA on insulating surfaces with various anticharging schemes using 30 keV electron beam lithography,” J. Vac. Sci. Technol., B 29(6), 06F304 (2011).
[Crossref]

Subramanian, A. Z.

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Suntivich, J.

Švarc, V.

M. Horák, K. Bukvišová, V. Švarc, J. Jaskowiec, V. Křápek, and T. Šikola, “Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography,” Sci. Rep. 8(1), 9640 (2018).
[Crossref]

Tait, R. N.

C. Hahn, M. Amyot-Bourgeois, M. Al-Shehab, H. Northfield, Y. Choi, S. H. Song, R. N. Tait, and P. Berini, “Nanofabrication of plasmonic structures on insulating substrates by resist-on-metal bilayer lift-off,” Nanotechnology 30(5), 054003 (2019).
[Crossref]

Todeschini, M.

M. Todeschini, A. Bastos da Silva Fanta, F. Jensen, J. B. Wagner, and A. Han, “Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films,” ACS Appl. Mater. Interfaces 9(42), 37374–37385 (2017).
[Crossref]

Van Dorpe, P.

F. Peyskens, P. Wuytens, A. Raza, P. Van Dorpe, and R. Baets, “Waveguide excitation and collection of surface-enhanced Raman scattering from a single plasmonic antenna,” Nanophotonics 7(7), 1299–1306 (2018).
[Crossref]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
[Crossref]

van Emmerik, C. I.

Volinsky, A. A.

A. A. Volinsky, N. R. Moody, and W. W. Gerberich, “Interfacial toughness measurements for thin films on substrates,” Acta Mater. 50(3), 441–466 (2002).
[Crossref]

Wagner, J. B.

M. Todeschini, A. Bastos da Silva Fanta, F. Jensen, J. B. Wagner, and A. Han, “Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films,” ACS Appl. Mater. Interfaces 9(42), 37374–37385 (2017).
[Crossref]

Weaver, C.

P. Benjamin, C. Weaver, and N. F. Mott, “The adhesion of evaporated metal films on glass,” Proc. R. Soc. Lond. A 261(1307), 516–531 (1962).
[Crossref]

Wierzbowski, J.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref]

Wu, K.

A. Hakonen, K. Wu, M. Stenbæk Schmidt, P. O. Andersson, A. Boisen, and T. Rindzevicius, “Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers,” Talanta 189, 649–652 (2018).
[Crossref]

Wuytens, P.

F. Peyskens, P. Wuytens, A. Raza, P. Van Dorpe, and R. Baets, “Waveguide excitation and collection of surface-enhanced Raman scattering from a single plasmonic antenna,” Nanophotonics 7(7), 1299–1306 (2018).
[Crossref]

Zhang, X. G.

X. G. Zhang, “Etching of Oxides,” in Electrochemistry of Silicon and Its Oxide (Springer, 2004).

Zhang, Z.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

J. Chen and Z. Zhang, “Bowtie nanoantennas with symmetry breaking,” in (SPIE, 2014), 10.

Zhu, X.

J. Liu, H. Cai, L. Kong, and X. Zhu, “Effect of Chromium Interlayer Thickness on Optical Properties of Au-Ag Nanoparticle Array,” J. Nanomater. 2014, 1–9 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

M. Todeschini, A. Bastos da Silva Fanta, F. Jensen, J. B. Wagner, and A. Han, “Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films,” ACS Appl. Mater. Interfaces 9(42), 37374–37385 (2017).
[Crossref]

ACS Nano (1)

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly Sensitive Biosensing Using Arrays of Plasmonic Au Nanodisks Realized by Nanoimprint Lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref]

ACS Photonics (2)

A. Espinosa-Soria, E. Pinilla-Cienfuegos, F. J. Díaz-Fernández, A. Griol, J. Martí, and A. Martínez, “Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip,” ACS Photonics 5(7), 2712–2717 (2018).
[Crossref]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

Acta Mater. (1)

A. A. Volinsky, N. R. Moody, and W. W. Gerberich, “Interfacial toughness measurements for thin films on substrates,” Acta Mater. 50(3), 441–466 (2002).
[Crossref]

Adv. Mater. (1)

M. S. Schmidt, J. Hubner, and A. Boisen, “Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[Crossref]

AIP Adv. (1)

H. Guo, B. Simpkins, J. D. Caldwell, and J. P. Guo, “Resonance spectra of diabolo optical antenna arrays,” AIP Adv. 5(10), 107149 (2015).
[Crossref]

Biochim. Biophys. Acta, Biomembr. (1)

S. G. Patching, “Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery,” Biochim. Biophys. Acta, Biomembr. 1838(1), 43–55 (2014).
[Crossref]

IEEE Trans. Magn. (1)

C. Chow and J. A. Bain, “Effect of Thin Cr and Cu Adhesion Layers on Surface Plasmon Resonance at Au/SiO2Interfaces,” IEEE Trans. Magn. 52(7), 1–4 (2016).
[Crossref]

Int. J. Polym. Anal. Charact. (1)

S. Moyses, “Solution Properties of Poly(Methyl Methacrylate) in Dimethylsulfoxide,” Int. J. Polym. Anal. Charact. 13(6), 413–427 (2008).
[Crossref]

J. Adhes. Sci. Technol. (1)

A. Assaban and M. Gillet, “Adhesion of gold and copper thin films deposited on alumina and magnesium oxide,” J. Adhes. Sci. Technol. 13(8), 871–885 (1999).
[Crossref]

J. Nanomater. (1)

J. Liu, H. Cai, L. Kong, and X. Zhu, “Effect of Chromium Interlayer Thickness on Optical Properties of Au-Ag Nanoparticle Array,” J. Nanomater. 2014, 1–9 (2014).
[Crossref]

J. Vac. Sci. Technol., B (1)

M. Muhammad, S. C. Buswell, S. K. Dew, and M. Stepanova, “Nanopatterning of PMMA on insulating surfaces with various anticharging schemes using 30 keV electron beam lithography,” J. Vac. Sci. Technol., B 29(6), 06F304 (2011).
[Crossref]

Nano Lett. (3)

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Nanophotonics (1)

F. Peyskens, P. Wuytens, A. Raza, P. Van Dorpe, and R. Baets, “Waveguide excitation and collection of surface-enhanced Raman scattering from a single plasmonic antenna,” Nanophotonics 7(7), 1299–1306 (2018).
[Crossref]

Nanotechnology (1)

C. Hahn, M. Amyot-Bourgeois, M. Al-Shehab, H. Northfield, Y. Choi, S. H. Song, R. N. Tait, and P. Berini, “Nanofabrication of plasmonic structures on insulating substrates by resist-on-metal bilayer lift-off,” Nanotechnology 30(5), 054003 (2019).
[Crossref]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (2)

Phys. Rev. (1)

R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Proc. IEEE (1)

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon Nitride in Silicon Photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Proc. R. Soc. Lond. A (1)

P. Benjamin, C. Weaver, and N. F. Mott, “The adhesion of evaporated metal films on glass,” Proc. R. Soc. Lond. A 261(1307), 516–531 (1962).
[Crossref]

Sci. Rep. (2)

M. Horák, K. Bukvišová, V. Švarc, J. Jaskowiec, V. Křápek, and T. Šikola, “Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography,” Sci. Rep. 8(1), 9640 (2018).
[Crossref]

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6(1), 23203 (2016).
[Crossref]

Science (1)

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Talanta (1)

A. Hakonen, K. Wu, M. Stenbæk Schmidt, P. O. Andersson, A. Boisen, and T. Rindzevicius, “Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers,” Talanta 189, 649–652 (2018).
[Crossref]

Other (8)

R. L. Sciences, “Surface Plasmon Resonance and Vaccine Research – Developments in Malaria Research. Application Note 18.”

G. Naik, J. Kim, N. Kinsey, and A. Boltasseva, “Chapter 6 - Alternative Plasmonic Materials,” in Handbook of Surface Science, N. V. Richardson and S. Holloway, eds. (North-Holland, 2014), pp. 189–221.

M. de Goede, L. Chang, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, J. Adan, F. Mitjans, and S. M. García-Blanco, “Al2O3 Microresonators for Passive and Active Sensing Applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), SeTu4E.1.

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” in SPIE Photonics Europe, (SPIE, 2012), 9.

X. G. Zhang, “Etching of Oxides,” in Electrochemistry of Silicon and Its Oxide (Springer, 2004).

E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, 1998), Vol. I-III.

J. Chen and Z. Zhang, “Bowtie nanoantennas with symmetry breaking,” in (SPIE, 2014), 10.

Microchem Corporation, “NANO™ PMMA and Copolymer (Datasheet)” (2001), retrieved 28/12/2018, http://microchem.com/pdf/PMMA_Data_Sheet.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Proposed process for the fabrication of bowtie nano-antenna arrays on non-conductive substrates using EBL.
Fig. 2.
Fig. 2. (left) Bowtie nano-antenna simulation model and (right) EBL mask (right). Rounded triangles with a curvature radius (Rc) and apex angle (α) are used in the simulations to represent the bowtie structures. Ideal triangles are used in the EBL mask to form antennas with equivalent length, gap and apex angle. The gap and length of the antennas in the EBL mask is adjusted by a distance Kc (reduction constant) to compensate for the limited resolution of the e-beam.
Fig. 3.
Fig. 3. SEM inspection of a bowtie nano-antenna on a test sample during the development of our fabrication process. A trench was created using focused ion beam (FIB) to explore the resist profile. The PMMA layer appears as the dark layer underneath the evaporated metal. Scale bar is 200 nm.
Fig. 4.
Fig. 4. HR-SEM images of bowtie nano-antennas fabricated in the first experiment and average dimensions (length and gap) in the image. All dimensions are given in nanometers. Scale bar is 200 nm.
Fig. 5.
Fig. 5. SEM characterization of bowtie nano-antennas on top of a TiO2 substrate. (left) general overview of dose test. Scale bar: 1 µm. (right) detail of one of the bowtie nano-antennas in the dose test. Dimensions of the antenna (gap and length) are indicated in the image. Scale bar: 150 nm.
Fig. 6.
Fig. 6. (a) General overview of different bowtie nano-antenna arrays and additional test patterns in the same sample after the development and etching steps. (b) PMMA bubbling problem, (c) Defects after the lift-off process and (d) Defect-free sample after metal etching.
Fig. 7.
Fig. 7. (a) Dark-field microscopy setup and schematic showing the polarization of a bowtie nano- antenna array during the measurement process, (b) Comparison between the incident angle (αinc≈23°) and the admission angle (ßad=30°) showing the rejection of specular reflection of the excitation signal.
Fig. 8.
Fig. 8. Bowtie antenna characterization in dose test. All dimensions (length and gap) are given in nanometers. Continue lines show the experimental results and dashed lines show the simulation results.

Metrics