Abstract

In this paper, we propose a 20-layer black phosphorus (BP) photodetector based on a nanoscale plasmonic grating structure. Different grating materials are compared to optimize the absorption. The optical characteristics of the BP photodetector are thoroughly analyzed by absorption spectra, electric intensity distribution and power flow distribution. By introducing the nanoscale plasmonic grating, the enhanced absorption can be achieved up to 89.8% at the resonance wavelength of 714 nm for p-polarized light incidence. Besides, the cut-off wavelength of the 20-layer BP photodetector is extended to the middle infrared range with a high responsitivity of 60.94 A/W. Furthermore, the dark current was also calculated to demonstrate the electric properties of the BP photodetector, and the results reveal that our BP photodetector may allow for the development of the infrared photodetectors based on two-dimensional materials.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure

Jianyang Zhou, Shuang Yan, Chawei Li, Jinfeng Zhu, and Qing H. Liu
Opt. Express 26(14) 18155-18163 (2018)

Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer

Yongbing Long, Haidong Deng, Haitao Xu, Liang Shen, Wenbin Guo, Chunyu Liu, Wenhao Huang, Wentao Peng, Lixian Li, Hongji Lin, and Chao Guo
Opt. Mater. Express 7(1) 100-110 (2017)

Resonance enhanced absorption in a graphene monolayer using deep metal gratings

B. Zhao, J. M. Zhao, and Z. M. Zhang
J. Opt. Soc. Am. B 32(6) 1176-1185 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
    [Crossref]
  2. F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
    [Crossref] [PubMed]
  3. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
    [Crossref] [PubMed]
  4. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref] [PubMed]
  5. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility,” ACS Nano 8(4), 4033–4041 (2014).
    [Crossref] [PubMed]
  6. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
    [Crossref] [PubMed]
  7. S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
    [Crossref]
  8. F. Xia, H. Wang, and Y. Jia, “Rediscovering Black Phosphorus: A Unique Anisotropic 2D Material for Optoelectronics and Electronics,” arXivcondmat. meshall. (2014).
  9. M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett. 14(6), 3347–3352 (2014).
    [Crossref] [PubMed]
  10. T. Hong, B. Chamlagain, W. Lin, H. J. Chuang, M. Pan, Z. Zhou, and Y. Q. Xu, “Polarized Photocurrent Response in Black Phosphorus Field-Effect Transistors,” Nanoscale 6(15), 8978–8983 (2014).
    [Crossref] [PubMed]
  11. Y. Du, C. Ouyang, S. Shi, and M. Lei, “Ab initio studies on atomic and electronic structures of black phosphorus,” J. Appl. Phys. 107(9), 093718 (2010).
    [Crossref]
  12. Ø. Prytz and E. Flage-Larsen, “The influence of exact exchange corrections in van der Waals layered narrow bandgap black phosphorus,” J. Phys. Condens. Matter 22(1), 015502 (2010).
    [Crossref] [PubMed]
  13. S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117B–118B, 422–424 (1983).
  14. Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, “Synthesis and some properties of black phosphorus single crystals,” Physica 105, 99–102 (1981).
  15. H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
    [Crossref] [PubMed]
  16. Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano 8(10), 10035–10042 (2014).
    [Crossref] [PubMed]
  17. Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
    [Crossref] [PubMed]
  18. M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
    [Crossref] [PubMed]
  19. M. Engel, M. Steiner, and P. Avouris, “Black phosphorus photodetector for multispectral, high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
    [Crossref] [PubMed]
  20. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  21. K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
    [Crossref] [PubMed]
  22. X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsitivity,” Nat. Photonics 7(11), 883–887 (2013).
    [Crossref]
  23. P. Andreas, H. Markus, M. F. Marco, B. Dominic, G. Romain, F. Thomas, and M. Thomas, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
    [Crossref]
  24. Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene-Silicon Microring Resonator,” Nano Lett. 15(7), 4393–4400 (2015).
    [Crossref] [PubMed]
  25. X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
    [Crossref]
  26. C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solarcell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
    [Crossref]
  27. S. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
    [Crossref]
  28. A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14(11), 44–48 (2003).
    [Crossref]
  29. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
    [Crossref]
  30. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
    [Crossref]
  31. F. Chen, J. Wu, C. Lee, Y. Hong, C. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
    [Crossref]
  32. J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
    [Crossref] [PubMed]
  33. W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett. 34(23), 3725–3727 (2009).
    [Crossref] [PubMed]
  34. A. E. Ostfeld and D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011).
    [Crossref]
  35. C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
    [Crossref]
  36. W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett. 36(4), 478–480 (2011).
    [Crossref] [PubMed]
  37. C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
    [Crossref]
  38. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express 19(15), 14200–14209 (2011).
    [Crossref] [PubMed]
  39. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [Crossref]
  40. M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
    [Crossref] [PubMed]
  41. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
    [Crossref] [PubMed]
  42. T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique,” Eur. Phys. J. Spec. Top. 153(1), 361–364 (2008).
    [Crossref]
  43. C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S. H. Oh, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
    [Crossref] [PubMed]
  44. C. Janisch, H. M. Song, and C. J. Zhou, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).
    [Crossref]
  45. L. Han, L. Wang, H. Z. Xing, and X. Chen, “Active Tuning of Mid-infrared Surface Plasmon Resonance and Its Hybridization in Black Phosphorus Sheet Array,” ACS Photonics 5(9), 3828–3837 (2018).
    [Crossref]
  46. J. T. Liu, T. B. Wang, X. J. Li, and N.-H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” Appl. Phys. Journal. 115(19), 193511 (2014).
    [Crossref]
  47. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
    [Crossref] [PubMed]
  48. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493 (1985).
    [Crossref] [PubMed]
  49. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
    [Crossref]
  50. N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsitivity and low dark current,” Nat. Photonics 9(4), 331–338 (2014).
  51. M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffraction-Induced Enhanced Absorption and Scattering,” Small 10(3), 576–583 (2014).
    [Crossref] [PubMed]
  52. Z. Liu and K. Aydin, “Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus,” Photonics Conference.16(6), 3457 (2017).
  53. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
    [Crossref]
  54. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  55. X. Wang and S. Lan, “Optical properties of black phosphorus,” Adv. Opt. Photonics 8(4), 618–655 (2016).
    [Crossref]
  56. S. P. McGlynn, “Concepts in Photoconductivity and Allied Problems,” J. Am. Chem. Soc. 86(24), 5707 (1964).
    [Crossref]
  57. V. Ryzhii, “The theory of quantum-dot infrared phototransistors,” Semicond. Sci. Technol. 11(5), 759–765 (1996).
    [Crossref]
  58. M. A. Rowe, E. J. Gansen, M. Greene, R. H. Hadfield, T. E. Harvey, M. Y. Su, S. W. Nam, R. P. Mirin, and D. Rosenberg, “Single-photon detection using a quantum dot optically gated feld-effect transistor with high internal quantum efficiency,” Appl. Phys. Lett. 89(25), 253505 (2006).
    [Crossref]
  59. X. Peng, A. Copple, and Q. Wei, “Strain Engineered Direct-indirect Band Gap Transition and its Mechanism in 2D Phosphorene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085402 (2014).
    [Crossref]
  60. S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
    [Crossref] [PubMed]
  61. L. Huang, W. C. Tan, L. Wang, B. W. Dong, C. K. Lee, and K. W. Ang, “Infrared black phosphorus phototransistor with tunable responsitivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9(41), 36130–36136 (2017).
    [Crossref]

2018 (1)

L. Han, L. Wang, H. Z. Xing, and X. Chen, “Active Tuning of Mid-infrared Surface Plasmon Resonance and Its Hybridization in Black Phosphorus Sheet Array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

2017 (2)

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S. H. Oh, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

L. Huang, W. C. Tan, L. Wang, B. W. Dong, C. K. Lee, and K. W. Ang, “Infrared black phosphorus phototransistor with tunable responsitivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9(41), 36130–36136 (2017).
[Crossref]

2016 (2)

C. Janisch, H. M. Song, and C. J. Zhou, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).
[Crossref]

X. Wang and S. Lan, “Optical properties of black phosphorus,” Adv. Opt. Photonics 8(4), 618–655 (2016).
[Crossref]

2015 (1)

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene-Silicon Microring Resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

2014 (16)

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref] [PubMed]

T. Hong, B. Chamlagain, W. Lin, H. J. Chuang, M. Pan, Z. Zhou, and Y. Q. Xu, “Polarized Photocurrent Response in Black Phosphorus Field-Effect Transistors,” Nanoscale 6(15), 8978–8983 (2014).
[Crossref] [PubMed]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref] [PubMed]

Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref] [PubMed]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref] [PubMed]

M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
[Crossref] [PubMed]

M. Engel, M. Steiner, and P. Avouris, “Black phosphorus photodetector for multispectral, high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
[Crossref] [PubMed]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsitivity and low dark current,” Nat. Photonics 9(4), 331–338 (2014).

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffraction-Induced Enhanced Absorption and Scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

J. T. Liu, T. B. Wang, X. J. Li, and N.-H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” Appl. Phys. Journal. 115(19), 193511 (2014).
[Crossref]

X. Peng, A. Copple, and Q. Wei, “Strain Engineered Direct-indirect Band Gap Transition and its Mechanism in 2D Phosphorene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085402 (2014).
[Crossref]

2013 (4)

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsitivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

P. Andreas, H. Markus, M. F. Marco, B. Dominic, G. Romain, F. Thomas, and M. Thomas, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

2012 (1)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

2011 (9)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[Crossref] [PubMed]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[Crossref]

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

A. E. Ostfeld and D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011).
[Crossref]

W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett. 36(4), 478–480 (2011).
[Crossref] [PubMed]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express 19(15), 14200–14209 (2011).
[Crossref] [PubMed]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref] [PubMed]

2010 (4)

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[Crossref] [PubMed]

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Y. Du, C. Ouyang, S. Shi, and M. Lei, “Ab initio studies on atomic and electronic structures of black phosphorus,” J. Appl. Phys. 107(9), 093718 (2010).
[Crossref]

Ø. Prytz and E. Flage-Larsen, “The influence of exact exchange corrections in van der Waals layered narrow bandgap black phosphorus,” J. Phys. Condens. Matter 22(1), 015502 (2010).
[Crossref] [PubMed]

2009 (4)

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[Crossref]

W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett. 34(23), 3725–3727 (2009).
[Crossref] [PubMed]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[Crossref]

F. Chen, J. Wu, C. Lee, Y. Hong, C. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[Crossref]

2008 (3)

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique,” Eur. Phys. J. Spec. Top. 153(1), 361–364 (2008).
[Crossref]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

2007 (2)

S. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

2006 (2)

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solarcell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

M. A. Rowe, E. J. Gansen, M. Greene, R. H. Hadfield, T. E. Harvey, M. Y. Su, S. W. Nam, R. P. Mirin, and D. Rosenberg, “Single-photon detection using a quantum dot optically gated feld-effect transistor with high internal quantum efficiency,” Appl. Phys. Lett. 89(25), 253505 (2006).
[Crossref]

2003 (1)

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14(11), 44–48 (2003).
[Crossref]

2002 (1)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[Crossref]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1996 (1)

V. Ryzhii, “The theory of quantum-dot infrared phototransistors,” Semicond. Sci. Technol. 11(5), 759–765 (1996).
[Crossref]

1985 (1)

1983 (1)

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117B–118B, 422–424 (1983).

1981 (1)

Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, “Synthesis and some properties of black phosphorus single crystals,” Physica 105, 99–102 (1981).

1964 (1)

S. P. McGlynn, “Concepts in Photoconductivity and Allied Problems,” J. Am. Chem. Soc. 86(24), 5707 (1964).
[Crossref]

Abdallah, S.

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique,” Eur. Phys. J. Spec. Top. 153(1), 361–364 (2008).
[Crossref]

Abdallah, T.

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique,” Eur. Phys. J. Spec. Top. 153(1), 361–364 (2008).
[Crossref]

Ajayan, P. M.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref] [PubMed]

Akaham, Y.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117B–118B, 422–424 (1983).

Alexander, R. W.

Andreas, P.

P. Andreas, H. Markus, M. F. Marco, B. Dominic, G. Romain, F. Thomas, and M. Thomas, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Ang, K. W.

L. Huang, W. C. Tan, L. Wang, B. W. Dong, C. K. Lee, and K. W. Ang, “Infrared black phosphorus phototransistor with tunable responsitivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9(41), 36130–36136 (2017).
[Crossref]

Assefa, S.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsitivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[Crossref]

Avouris, P.

M. Engel, M. Steiner, and P. Avouris, “Black phosphorus photodetector for multispectral, high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
[Crossref] [PubMed]

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Aydin, K.

Z. Liu and K. Aydin, “Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus,” Photonics Conference.16(6), 3457 (2017).

Bai, J.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref] [PubMed]

Bai, W.

Bartoli, F.

Bell, R. J.

Bienstman, P.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[Crossref]

Blanter, S. I.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref] [PubMed]

Buscema, M.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref] [PubMed]

M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
[Crossref] [PubMed]

Butler, S. Z.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Cai, L.

Cao, L.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Cao, Q.

Castellanos-Gomez, A.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref] [PubMed]

M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
[Crossref] [PubMed]

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Chamlagain, B.

T. Hong, B. Chamlagain, W. Lin, H. J. Chuang, M. Pan, Z. Zhou, and Y. Q. Xu, “Polarized Photocurrent Response in Black Phosphorus Field-Effect Transistors,” Nanoscale 6(15), 8978–8983 (2014).
[Crossref] [PubMed]

Chan, G. H.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Chen, C.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S. H. Oh, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsitivity and low dark current,” Nat. Photonics 9(4), 331–338 (2014).

Chen, F.

F. Chen, J. Wu, C. Lee, Y. Hong, C. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[Crossref]

Chen, F. C.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Chen, P.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Chen, X.

L. Han, L. Wang, H. Z. Xing, and X. Chen, “Active Tuning of Mid-infrared Surface Plasmon Resonance and Its Hybridization in Black Phosphorus Sheet Array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

Chen, X. H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Cheng, B.

Cheng, R.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref] [PubMed]

Cheng, Z. Z.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Chew, W. C.

Chien, F. C.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Chin, M. L.

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref] [PubMed]

Cho, S. H.

K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[Crossref] [PubMed]

Choi, J. Y.

K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[Crossref] [PubMed]

Choy, W. C. H.

Chuang, H. J.

T. Hong, B. Chamlagain, W. Lin, H. J. Chuang, M. Pan, Z. Zhou, and Y. Q. Xu, “Polarized Photocurrent Response in Black Phosphorus Field-Effect Transistors,” Nanoscale 6(15), 8978–8983 (2014).
[Crossref] [PubMed]

Chung, H. J.

K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[Crossref] [PubMed]

Cocoyer, C.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solarcell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Conrad, N. J.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref] [PubMed]

Copple, A.

X. Peng, A. Copple, and Q. Wei, “Strain Engineered Direct-indirect Band Gap Transition and its Mechanism in 2D Phosphorene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085402 (2014).
[Crossref]

Cui, Y.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

de Bettignies, R.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solarcell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Demir, H. V.

Deng, Y.

Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref] [PubMed]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref] [PubMed]

Ding, Y.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene-Silicon Microring Resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Doganov, R. A.

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Dominic, B.

P. Andreas, H. Markus, M. F. Marco, B. Dominic, G. Romain, F. Thomas, and M. Thomas, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Dong, B. W.

L. Huang, W. C. Tan, L. Wang, B. W. Dong, C. K. Lee, and K. W. Ang, “Infrared black phosphorus phototransistor with tunable responsitivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9(41), 36130–36136 (2017).
[Crossref]

Du, Y.

Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref] [PubMed]

Y. Du, C. Ouyang, S. Shi, and M. Lei, “Ab initio studies on atomic and electronic structures of black phosphorus,” J. Appl. Phys. 107(9), 093718 (2010).
[Crossref]

Duan, X.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref] [PubMed]

Dubey, M.

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref] [PubMed]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Easawi, K.

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique,” Eur. Phys. J. Spec. Top. 153(1), 361–364 (2008).
[Crossref]

El-Brolossy, T. A.

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique,” Eur. Phys. J. Spec. Top. 153(1), 361–364 (2008).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Endo, S.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117B–118B, 422–424 (1983).

Engel, M.

M. Engel, M. Steiner, and P. Avouris, “Black phosphorus photodetector for multispectral, high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
[Crossref] [PubMed]

Englund, D.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsitivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Fan, S.

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Feng, D.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Ferrari, A. C.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Fiorini-Debuisschert, C.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solarcell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Flage-Larsen, E.

Ø. Prytz and E. Flage-Larsen, “The influence of exact exchange corrections in van der Waals layered narrow bandgap black phosphorus,” J. Phys. Condens. Matter 22(1), 015502 (2010).
[Crossref] [PubMed]

Francescato, Y.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffraction-Induced Enhanced Absorption and Scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Frandsen, L. H.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene-Silicon Microring Resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Gan, Q.

Gan, X. T.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsitivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Gansen, E. J.

M. A. Rowe, E. J. Gansen, M. Greene, R. H. Hadfield, T. E. Harvey, M. Y. Su, S. W. Nam, R. P. Mirin, and D. Rosenberg, “Single-photon detection using a quantum dot optically gated feld-effect transistor with high internal quantum efficiency,” Appl. Phys. Lett. 89(25), 253505 (2006).
[Crossref]

Gao, Y. D.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsitivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Ge, Q.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Geffroy, B.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solarcell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Giannini, V.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffraction-Induced Enhanced Absorption and Scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Goldberger, J. E.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Gong, Y.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref] [PubMed]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Greene, M.

M. A. Rowe, E. J. Gansen, M. Greene, R. H. Hadfield, T. E. Harvey, M. Y. Su, S. W. Nam, R. P. Mirin, and D. Rosenberg, “Single-photon detection using a quantum dot optically gated feld-effect transistor with high internal quantum efficiency,” Appl. Phys. Lett. 89(25), 253505 (2006).
[Crossref]

Groenendijk, D. J.

M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
[Crossref] [PubMed]

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref] [PubMed]

Guo, L. J.

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[Crossref] [PubMed]

Gupta, J. A.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Gutiérrez, H. R.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Hadfield, R. H.

M. A. Rowe, E. J. Gansen, M. Greene, R. H. Hadfield, T. E. Harvey, M. Y. Su, S. W. Nam, R. P. Mirin, and D. Rosenberg, “Single-photon detection using a quantum dot optically gated feld-effect transistor with high internal quantum efficiency,” Appl. Phys. Lett. 89(25), 253505 (2006).
[Crossref]

Han, L.

L. Han, L. Wang, H. Z. Xing, and X. Chen, “Active Tuning of Mid-infrared Surface Plasmon Resonance and Its Hybridization in Black Phosphorus Sheet Array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

Han, S. J.

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref] [PubMed]

Harvey, T. E.

M. A. Rowe, E. J. Gansen, M. Greene, R. H. Hadfield, T. E. Harvey, M. Y. Su, S. W. Nam, R. P. Mirin, and D. Rosenberg, “Single-photon detection using a quantum dot optically gated feld-effect transistor with high internal quantum efficiency,” Appl. Phys. Lett. 89(25), 253505 (2006).
[Crossref]

Heinz, T. F.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsitivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Hollen, S. M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Hone, J.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsitivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Hong, M.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffraction-Induced Enhanced Absorption and Scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Hong, S. S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Hong, T.

T. Hong, B. Chamlagain, W. Lin, H. J. Chuang, M. Pan, Z. Zhou, and Y. Q. Xu, “Polarized Photocurrent Response in Black Phosphorus Field-Effect Transistors,” Nanoscale 6(15), 8978–8983 (2014).
[Crossref] [PubMed]

Hong, Y.

F. Chen, J. Wu, C. Lee, Y. Hong, C. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[Crossref]

Hsiao, Y. S.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Hsu, C. S.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Hu, H.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene-Silicon Microring Resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Hu, W.

Huang, J.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Huang, L.

L. Huang, W. C. Tan, L. Wang, B. W. Dong, C. K. Lee, and K. W. Ang, “Infrared black phosphorus phototransistor with tunable responsitivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9(41), 36130–36136 (2017).
[Crossref]

Huang, M. H.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

F. Chen, J. Wu, C. Lee, Y. Hong, C. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[Crossref]

Huang, Y.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref] [PubMed]

W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett. 34(23), 3725–3727 (2009).
[Crossref] [PubMed]

Ismach, A. F.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Janisch, C.

C. Janisch, H. M. Song, and C. J. Zhou, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).
[Crossref]

Jiang, H.

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref] [PubMed]

Johnson, T. W.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S. H. Oh, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

Johnston-Halperin, E.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kang, M. G.

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[Crossref] [PubMed]

Kanzaki, H.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117B–118B, 422–424 (1983).

Kasemo, B.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[Crossref]

Kim, K.

K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[Crossref] [PubMed]

Kim, T.

K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[Crossref] [PubMed]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kivshar, Y. S.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffraction-Induced Enhanced Absorption and Scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Kobayashi, K.

Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, “Synthesis and some properties of black phosphorus single crystals,” Physica 105, 99–102 (1981).

Koenig, S. P.

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Koester, S. J.

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsitivity and low dark current,” Nat. Photonics 9(4), 331–338 (2014).

Koppens, F. H.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Kuno, M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Kuo, C.

F. Chen, J. Wu, C. Lee, Y. Hong, C. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[Crossref]

Kuo, C. H.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Kuznetsov, A. I.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffraction-Induced Enhanced Absorption and Scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Lan, S.

X. Wang and S. Lan, “Optical properties of black phosphorus,” Adv. Opt. Photonics 8(4), 618–655 (2016).
[Crossref]

Langhammer, C.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Lederer, F.

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[Crossref]

Lee, C.

F. Chen, J. Wu, C. Lee, Y. Hong, C. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[Crossref]

Lee, C. K.

L. Huang, W. C. Tan, L. Wang, B. W. Dong, C. K. Lee, and K. W. Ang, “Infrared black phosphorus phototransistor with tunable responsitivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9(41), 36130–36136 (2017).
[Crossref]

Lee, J.

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Lei, D. Y.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffraction-Induced Enhanced Absorption and Scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Lei, M.

Y. Du, C. Ouyang, S. Shi, and M. Lei, “Ab initio studies on atomic and electronic structures of black phosphorus,” J. Appl. Phys. 107(9), 093718 (2010).
[Crossref]

Li, J.

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Li, L.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Li, M.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S. H. Oh, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsitivity and low dark current,” Nat. Photonics 9(4), 331–338 (2014).

Li, X. J.

J. T. Liu, T. B. Wang, X. J. Li, and N.-H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” Appl. Phys. Journal. 115(19), 193511 (2014).
[Crossref]

Liao, L.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref] [PubMed]

Lin, W.

T. Hong, B. Chamlagain, W. Lin, H. J. Chuang, M. Pan, Z. Zhou, and Y. Q. Xu, “Polarized Photocurrent Response in Black Phosphorus Field-Effect Transistors,” Nanoscale 6(15), 8978–8983 (2014).
[Crossref] [PubMed]

Liu, G.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref] [PubMed]

Liu, H.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref] [PubMed]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref] [PubMed]

Liu, J. T.

J. T. Liu, T. B. Wang, X. J. Li, and N.-H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” Appl. Phys. Journal. 115(19), 193511 (2014).
[Crossref]

Liu, L.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref] [PubMed]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, N.-H.

J. T. Liu, T. B. Wang, X. J. Li, and N.-H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” Appl. Phys. Journal. 115(19), 193511 (2014).
[Crossref]

Liu, Y.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref] [PubMed]

Liu, Z.

Z. Liu and K. Aydin, “Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus,” Photonics Conference.16(6), 3457 (2017).

Long, L. L.

Lou, J.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref] [PubMed]

Luk’yanchuk, B.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffraction-Induced Enhanced Absorption and Scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Luo, X.

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[Crossref] [PubMed]

Luo, Z.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref] [PubMed]

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Maes, B.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[Crossref]

Maier, S. A.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffraction-Induced Enhanced Absorption and Scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[Crossref]

Marco, M. F.

P. Andreas, H. Markus, M. F. Marco, B. Dominic, G. Romain, F. Thomas, and M. Thomas, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Markus, H.

P. Andreas, H. Markus, M. F. Marco, B. Dominic, G. Romain, F. Thomas, and M. Thomas, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Martinelli, M.

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14(11), 44–48 (2003).
[Crossref]

Maruyama, Y.

Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, “Synthesis and some properties of black phosphorus single crystals,” Physica 105, 99–102 (1981).

McGehee, M. D.

S. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[Crossref]

McGlynn, S. P.

S. P. McGlynn, “Concepts in Photoconductivity and Allied Problems,” J. Am. Chem. Soc. 86(24), 5707 (1964).
[Crossref]

Melloni, A.

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14(11), 44–48 (2003).
[Crossref]

Meric, I.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsitivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Mikuni, A.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117B–118B, 422–424 (1983).

Min, C.

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Mirin, R. P.

M. A. Rowe, E. J. Gansen, M. Greene, R. H. Hadfield, T. E. Harvey, M. Y. Su, S. W. Nam, R. P. Mirin, and D. Rosenberg, “Single-photon detection using a quantum dot optically gated feld-effect transistor with high internal quantum efficiency,” Appl. Phys. Lett. 89(25), 253505 (2006).
[Crossref]

Miroshnichenko, A. E.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffraction-Induced Enhanced Absorption and Scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Mohamed, M. B.

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique,” Eur. Phys. J. Spec. Top. 153(1), 361–364 (2008).
[Crossref]

Mohr, D. A.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S. H. Oh, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

Mori, S.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117B–118B, 422–424 (1983).

Morichetti, F.

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14(11), 44–48 (2003).
[Crossref]

Mortensen, N. A.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene-Silicon Microring Resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Mueller, T.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Muro, K.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117B–118B, 422–424 (1983).

Najmaei, S.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref] [PubMed]

Nam, S. W.

M. A. Rowe, E. J. Gansen, M. Greene, R. H. Hadfield, T. E. Harvey, M. Y. Su, S. W. Nam, R. P. Mirin, and D. Rosenberg, “Single-photon detection using a quantum dot optically gated feld-effect transistor with high internal quantum efficiency,” Appl. Phys. Lett. 89(25), 253505 (2006).
[Crossref]

Narita, S.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117B–118B, 422–424 (1983).

Neal, A. T.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Negm, S.

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique,” Eur. Phys. J. Spec. Top. 153(1), 361–364 (2008).
[Crossref]

Neto, A. H. C.

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Oh, S. H.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S. H. Oh, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

Okyay, A. K.

Ordal, M. A.

Ostfeld, A. E.

A. E. Ostfeld and D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011).
[Crossref]

Ou, X.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Ouyang, C.

Y. Du, C. Ouyang, S. Shi, and M. Lei, “Ab initio studies on atomic and electronic structures of black phosphorus,” J. Appl. Phys. 107(9), 093718 (2010).
[Crossref]

Özyilmaz, B.

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Pacifici, D.

A. E. Ostfeld and D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011).
[Crossref]

Pan, M.

T. Hong, B. Chamlagain, W. Lin, H. J. Chuang, M. Pan, Z. Zhou, and Y. Q. Xu, “Polarized Photocurrent Response in Black Phosphorus Field-Effect Transistors,” Nanoscale 6(15), 8978–8983 (2014).
[Crossref] [PubMed]

Park, H. J.

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[Crossref] [PubMed]

Peng, R.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S. H. Oh, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

Peng, X.

X. Peng, A. Copple, and Q. Wei, “Strain Engineered Direct-indirect Band Gap Transition and its Mechanism in 2D Phosphorene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085402 (2014).
[Crossref]

Peumans, P.

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

S. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[Crossref]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Plashnitsa, V. V.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Polini, M.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Prytz, Ø.

Ø. Prytz and E. Flage-Larsen, “The influence of exact exchange corrections in van der Waals layered narrow bandgap black phosphorus,” J. Phys. Condens. Matter 22(1), 015502 (2010).
[Crossref] [PubMed]

Querry, M. R.

Rahmani, M.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffraction-Induced Enhanced Absorption and Scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Raimond, P.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solarcell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Rim, S.

S. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[Crossref]

Robinson, R. D.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Rocha, L.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solarcell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Rockstuhl, C.

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[Crossref]

Romain, G.

P. Andreas, H. Markus, M. F. Marco, B. Dominic, G. Romain, F. Thomas, and M. Thomas, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Rosenberg, D.

M. A. Rowe, E. J. Gansen, M. Greene, R. H. Hadfield, T. E. Harvey, M. Y. Su, S. W. Nam, R. P. Mirin, and D. Rosenberg, “Single-photon detection using a quantum dot optically gated feld-effect transistor with high internal quantum efficiency,” Appl. Phys. Lett. 89(25), 253505 (2006).
[Crossref]

Rowe, M. A.

M. A. Rowe, E. J. Gansen, M. Greene, R. H. Hadfield, T. E. Harvey, M. Y. Su, S. W. Nam, R. P. Mirin, and D. Rosenberg, “Single-photon detection using a quantum dot optically gated feld-effect transistor with high internal quantum efficiency,” Appl. Phys. Lett. 89(25), 253505 (2006).
[Crossref]

Ruoff, R. S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Ryzhii, V.

V. Ryzhii, “The theory of quantum-dot infrared phototransistors,” Semicond. Sci. Technol. 11(5), 759–765 (1996).
[Crossref]

Salahuddin, S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Schatz, G. C.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Schmidt, H.

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Schwind, M.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Scully, S. R.

S. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[Crossref]

Sefunc, M. A.

Seki, M.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117B–118B, 422–424 (1983).

Sentein, C.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solarcell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Sha, W. E. I.

Shan, J.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Shen, H.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[Crossref]

Shepard, K.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsitivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Shi, L.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Shi, S.

Y. Du, C. Ouyang, S. Shi, and M. Lei, “Ab initio studies on atomic and electronic structures of black phosphorus,” J. Appl. Phys. 107(9), 093718 (2010).
[Crossref]

Shiue, R. J.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsitivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Sicot, L.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solarcell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Song, G.

Song, H. M.

C. Janisch, H. M. Song, and C. J. Zhou, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).
[Crossref]

Spencer, M. G.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Steele, G. A.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref] [PubMed]

M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
[Crossref] [PubMed]

Steiner, M.

M. Engel, M. Steiner, and P. Avouris, “Black phosphorus photodetector for multispectral, high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
[Crossref] [PubMed]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Su, M. Y.

M. A. Rowe, E. J. Gansen, M. Greene, R. H. Hadfield, T. E. Harvey, M. Y. Su, S. W. Nam, R. P. Mirin, and D. Rosenberg, “Single-photon detection using a quantum dot optically gated feld-effect transistor with high internal quantum efficiency,” Appl. Phys. Lett. 89(25), 253505 (2006).
[Crossref]

Su, S.

Suga, S.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117B–118B, 422–424 (1983).

Suzuki, S.

Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, “Synthesis and some properties of black phosphorus single crystals,” Physica 105, 99–102 (1981).

Talaat, H.

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique,” Eur. Phys. J. Spec. Top. 153(1), 361–364 (2008).
[Crossref]

Tan, W. C.

L. Huang, W. C. Tan, L. Wang, B. W. Dong, C. K. Lee, and K. W. Ang, “Infrared black phosphorus phototransistor with tunable responsitivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9(41), 36130–36136 (2017).
[Crossref]

Taniguchi, M.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117B–118B, 422–424 (1983).

Tanuma, S.

Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, “Synthesis and some properties of black phosphorus single crystals,” Physica 105, 99–102 (1981).

Terrones, M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Thomas, F.

P. Andreas, H. Markus, M. F. Marco, B. Dominic, G. Romain, F. Thomas, and M. Thomas, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Thomas, M.

P. Andreas, H. Markus, M. F. Marco, B. Dominic, G. Romain, F. Thomas, and M. Thomas, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Tománek, D.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Tribelsky, M. I.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffraction-Induced Enhanced Absorption and Scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Tsang, H. K.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Tsukiyama, Y.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117B–118B, 422–424 (1983).

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

van der Zant, H. S.

M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
[Crossref] [PubMed]

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref] [PubMed]

Van Duyne, R. P.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Veronis, G.

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Vitiello, M. S.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, H.

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref] [PubMed]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Wang, L.

L. Han, L. Wang, H. Z. Xing, and X. Chen, “Active Tuning of Mid-infrared Surface Plasmon Resonance and Its Hybridization in Black Phosphorus Sheet Array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

L. Huang, W. C. Tan, L. Wang, B. W. Dong, C. K. Lee, and K. W. Ang, “Infrared black phosphorus phototransistor with tunable responsitivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9(41), 36130–36136 (2017).
[Crossref]

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref] [PubMed]

Wang, Q.

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Wang, T. B.

J. T. Liu, T. B. Wang, X. J. Li, and N.-H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” Appl. Phys. Journal. 115(19), 193511 (2014).
[Crossref]

Wang, W.

Wang, X.

X. Wang and S. Lan, “Optical properties of black phosphorus,” Adv. Opt. Photonics 8(4), 618–655 (2016).
[Crossref]

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref] [PubMed]

Wang, X. M.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Wei, Q.

X. Peng, A. Copple, and Q. Wei, “Strain Engineered Direct-indirect Band Gap Transition and its Mechanism in 2D Phosphorene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085402 (2014).
[Crossref]

Windl, W.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Wu, H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Wu, J.

F. Chen, J. Wu, C. Lee, Y. Hong, C. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[Crossref]

Wu, J. L.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Xia, F.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref] [PubMed]

Xia, Q.

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref] [PubMed]

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xiao, S.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene-Silicon Microring Resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Xing, H. Z.

L. Han, L. Wang, H. Z. Xing, and X. Chen, “Active Tuning of Mid-infrared Surface Plasmon Resonance and Its Hybridization in Black Phosphorus Sheet Array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

Xu, J. B.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Xu, K.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Xu, T.

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[Crossref] [PubMed]

Xu, X.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref] [PubMed]

Xu, Y. Q.

T. Hong, B. Chamlagain, W. Lin, H. J. Chuang, M. Pan, Z. Zhou, and Y. Q. Xu, “Polarized Photocurrent Response in Black Phosphorus Field-Effect Transistors,” Nanoscale 6(15), 8978–8983 (2014).
[Crossref] [PubMed]

Xue, C.

Xue, H.

Ye, G. J.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Ye, P. D.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref] [PubMed]

Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref] [PubMed]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yoo, D.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S. H. Oh, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

Youngblood, N.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S. H. Oh, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsitivity and low dark current,” Nat. Photonics 9(4), 331–338 (2014).

Yu, Y.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Yvind, K.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene-Silicon Microring Resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, G.

Zhang, J.

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Zhao, J.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Zhao, S.

S. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[Crossref]

Zhou, C. J.

C. Janisch, H. M. Song, and C. J. Zhou, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).
[Crossref]

Zhou, H.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref] [PubMed]

Zhou, Z.

T. Hong, B. Chamlagain, W. Lin, H. J. Chuang, M. Pan, Z. Zhou, and Y. Q. Xu, “Polarized Photocurrent Response in Black Phosphorus Field-Effect Transistors,” Nanoscale 6(15), 8978–8983 (2014).
[Crossref] [PubMed]

Zhu, X.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene-Silicon Microring Resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Zhu, Z.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Zoric, I.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Zuo, Y.

2D Mater. (1)

C. Janisch, H. M. Song, and C. J. Zhou, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (1)

L. Huang, W. C. Tan, L. Wang, B. W. Dong, C. K. Lee, and K. W. Ang, “Infrared black phosphorus phototransistor with tunable responsitivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9(41), 36130–36136 (2017).
[Crossref]

ACS Nano (5)

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref] [PubMed]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref] [PubMed]

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

L. Han, L. Wang, H. Z. Xing, and X. Chen, “Active Tuning of Mid-infrared Surface Plasmon Resonance and Its Hybridization in Black Phosphorus Sheet Array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

Adv. Mater. (1)

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

X. Wang and S. Lan, “Optical properties of black phosphorus,” Adv. Opt. Photonics 8(4), 618–655 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Journal. (1)

J. T. Liu, T. B. Wang, X. J. Li, and N.-H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” Appl. Phys. Journal. 115(19), 193511 (2014).
[Crossref]

Appl. Phys. Lett. (10)

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[Crossref]

M. A. Rowe, E. J. Gansen, M. Greene, R. H. Hadfield, T. E. Harvey, M. Y. Su, S. W. Nam, R. P. Mirin, and D. Rosenberg, “Single-photon detection using a quantum dot optically gated feld-effect transistor with high internal quantum efficiency,” Appl. Phys. Lett. 89(25), 253505 (2006).
[Crossref]

A. E. Ostfeld and D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011).
[Crossref]

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[Crossref]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[Crossref]

F. Chen, J. Wu, C. Lee, Y. Hong, C. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[Crossref]

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solarcell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

S. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[Crossref]

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique,” Eur. Phys. J. Spec. Top. 153(1), 361–364 (2008).
[Crossref]

J. Am. Chem. Soc. (1)

S. P. McGlynn, “Concepts in Photoconductivity and Allied Problems,” J. Am. Chem. Soc. 86(24), 5707 (1964).
[Crossref]

J. Appl. Phys. (3)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Y. Du, C. Ouyang, S. Shi, and M. Lei, “Ab initio studies on atomic and electronic structures of black phosphorus,” J. Appl. Phys. 107(9), 093718 (2010).
[Crossref]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[Crossref]

J. Phys. Chem. C (1)

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

J. Phys. Condens. Matter (1)

Ø. Prytz and E. Flage-Larsen, “The influence of exact exchange corrections in van der Waals layered narrow bandgap black phosphorus,” J. Phys. Condens. Matter 22(1), 015502 (2010).
[Crossref] [PubMed]

Nano Lett. (6)

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref] [PubMed]

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref] [PubMed]

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene-Silicon Microring Resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

M. Engel, M. Steiner, and P. Avouris, “Black phosphorus photodetector for multispectral, high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
[Crossref] [PubMed]

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S. H. Oh, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Nanoscale (1)

T. Hong, B. Chamlagain, W. Lin, H. J. Chuang, M. Pan, Z. Zhou, and Y. Q. Xu, “Polarized Photocurrent Response in Black Phosphorus Field-Effect Transistors,” Nanoscale 6(15), 8978–8983 (2014).
[Crossref] [PubMed]

Nat. Commun. (2)

M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
[Crossref] [PubMed]

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Nat. Photonics (5)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsitivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

P. Andreas, H. Markus, M. F. Marco, B. Dominic, G. Romain, F. Thomas, and M. Thomas, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsitivity and low dark current,” Nat. Photonics 9(4), 331–338 (2014).

Nature (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Opt. Photonics News (1)

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14(11), 44–48 (2003).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

X. Peng, A. Copple, and Q. Wei, “Strain Engineered Direct-indirect Band Gap Transition and its Mechanism in 2D Phosphorene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085402 (2014).
[Crossref]

Physica (2)

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117B–118B, 422–424 (1983).

Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, “Synthesis and some properties of black phosphorus single crystals,” Physica 105, 99–102 (1981).

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

V. Ryzhii, “The theory of quantum-dot infrared phototransistors,” Semicond. Sci. Technol. 11(5), 759–765 (1996).
[Crossref]

Small (1)

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffraction-Induced Enhanced Absorption and Scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Other (2)

Z. Liu and K. Aydin, “Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus,” Photonics Conference.16(6), 3457 (2017).

F. Xia, H. Wang, and Y. Jia, “Rediscovering Black Phosphorus: A Unique Anisotropic 2D Material for Optoelectronics and Electronics,” arXivcondmat. meshall. (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of 20-layer BP-based photodetector. (b) The exclusive absorption in the BP layer of the nanoscale grating structures for three different grating materials and no grating. And the exclusive absorption in the graphene layer of the Al grating structures (green line).
Fig. 2
Fig. 2 (a) The exclusive absorption in the black phosphorus layer of the nanoscale grating structure at eight different heights (i.e., height = 5, 10, 15, 20, 25, 30, 35 and 40 nm) for p-polarized incidence. The exclusive absorption of the black phosphorus layer as the function of the height of the grating for (b) p-polarized and (c) s-polarized incidences, respectively. (d) The Poynting vector distribution of the nanoscale grating (w = 140 nm, h = 5 nm) structure in the Y-Z plane at a wavelength of 700 nm for p-polarized and s-polarized incidence, respectively.
Fig. 3
Fig. 3 The electric field distribution in the X-Y plane at a wavelength of 800 nm for p-polarized incidence around (a) the BP/grating interface and (b) the grating/air interface.
Fig. 4
Fig. 4 The electric field distribution in the Y-Z plane at a wavelength of 800 nm for p-polarized incidence at different heights. (a) h = 5 nm. (b) h = 15 nm. (c) h = 25 nm. (d) h = 35 nm.
Fig. 5
Fig. 5 (a) The exclusive absorption in the black phosphorus layer of the nanoscale grating structure at eight different widths (i.e., width = 90, 100, 110, 120, 130, 140, 150 and 160 nm) for p-polarized incidence. The exclusive absorption of the black phosphorus layer as the function of the width of the grating for (b) p-polarized and (c) s-polarized incidences, respectively. (d) The Poynting vector distribution of the nanoscale grating (w = 160 nm, h = 5 nm) structure at a wavelength of 700 nm for p-polarized and s-polarized incidences, respectively.
Fig. 6
Fig. 6 Calculated absorption coefficient and responsitivity for the 20-layer BP photodetector.
Fig. 7
Fig. 7 Transfer curve of the 20-layer BP photodetector.