Abstract

Titanium dioxide (TiO2) and indium tin oxide (ITO) are both widely used as pigments for thermal barrier nanoparticulate coatings. However, their respective complex refractive indices exhibit different features from each other. In this paper, TiO2 and ITO sintered clusters with necking-ball structures were generated based on the particle superposition model. The impact of the different incident wavelengths and the ball-necking factor, as well as the refractive index of the ambient medium on their scattering properties, were compared and discussed. The results indicated that because of the distinct spectral characteristics of TiO2 and ITO, the discussed factors (especially the ball-necking factor) displayed quite different effects on the locations and deviations of the maximum extinction cross section in comparison. Though the sensitivity of the ball-necking factor for the ITO cluster to the extinction cross section was higher than that of the TiO2 cluster, the state of sintering could be probed and assessed by measuring the extinction spectrum for both TiO2 and ITO sintered clusters.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations

Michael Kahnert, Timo Nousiainen, Hannakaisa Lindqvist, and Martin Ebert
Opt. Express 20(9) 10042-10058 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623 (2011).
    [Crossref]
  2. B. X. Wang and C. Y. Zhao, “Effect of anisotropy on thermal radiation transport in porous ceramics,” Int. J. Therm. Sci. 111, 301–309 (2017).
    [Crossref]
  3. X. W. Chen, C. Y. Zhao, and B. X. Wang, “Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings,” J. Quant. Spectrosc. Radiat. Transf. 210, 116–126 (2018).
    [Crossref]
  4. W. E. Vargas, “Optimization of the diffuse reflectance of pigmented coatings taking into account multiple scattering,” J. Appl. Phys. 88(7), 4079 (2000).
    [Crossref]
  5. W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
    [Crossref]
  6. M. Baneshi, S. Maruyama, and A. Komiya, “Infrared Radiative Properties of Thin Polyethylene Coating Pigmented With Titanium Dioxide Particles,” J. Heat Transfer 132(2), 023306 (2010).
    [Crossref]
  7. M. Baneshi, S. Maruyama, and A. Komiya, “The Effects of Using Some Common White Pigments on Thermal and Aesthetic Performances of Pigmented Coatings,” Journal of Thermal Science and Technology 4(1), 131–145 (2009).
    [Crossref]
  8. H. Gonome, M. Baneshi, J. Okajima, A. Komiya, and S. Maruyama, “Controlling the radiative properties of cool black-color coatings pigmented with CuO submicron particles,” J. Quant. Spectrosc. Radiat. Transf. 132, 90–98 (2014).
    [Crossref]
  9. Q. Cheng, J. Chai, and Z. Zhang, “Investigation of double-layer coating pigmented with CuO particles of different concentrations on aesthetic and thermal aspects,” Int. J. Therm. Sci. 105, 36–44 (2016).
    [Crossref]
  10. J. Chai, Q. Cheng, M. Si, Y. Su, Y. Zhou, and J. Song, “Numerical simulation of white double-layer coating with different submicron particles on the spectral reflectance,” J. Quant. Spectrosc. Radiat. Transf. 189, 176–180 (2017).
    [Crossref]
  11. C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
    [Crossref]
  12. J. Ederth, A. Hultåker, G. Niklasson, P. Heszler, A. R. van Doorn, M. J. Jongerius, D. Burgard, and C. G. Granqvist, “Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air,” Appl. Phys., A Mater. Sci. Process. 81(7), 1363–1368 (2005).
    [Crossref]
  13. I. Hamberg and C. G. Granqvist, “Optical properties of transparent and heatreflecting indium tin oxide films: The role of ionized impurity scattering,” Appl. Phys. Lett. 44(8), 721–723 (1984).
    [Crossref]
  14. I. Hamberg, A. Hjortsberg, and C. G. Granqvist, “High quality transparent heat reflectors of reactively evaporated indium tin oxide,” Appl. Phys. Lett. 40(5), 362–364 (1982).
    [Crossref]
  15. A. Indluru and T. L. Alford, “Effect of Ag thickness on electrical transport and optical properties of indium tin oxide–Ag–indium tin oxide multilayers,” J. Appl. Phys. 105(12), 123528 (2009).
    [Crossref]
  16. H. Liu, C. Chang, C. Lin, and P. Yu, “Scattering analysis of the indium-tin-oxide (ITO) nanowhiskers on ITO film substrate for thin film solar cell,” in Proceedings of SPIE-The International Society for Optical Engineering, A. Freundlich and J. F. F. Guillemoles, eds. (2012), Vol. 8256, p. 82560A.
    [Crossref]
  17. C. Li, Y. Luo, X. Guo, D. Li, J. Mi, L. Sø, P. Hald, Q. Meng, and B. B. Iversen, “Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells,” J. Solid State Chem. 196, 504–510 (2012).
    [Crossref]
  18. M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transf. 146, 41–58 (2014).
    [Crossref]
  19. Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Effect of morphology on the optical properties of soot aggregated with spheroidal monomers,” J. Quant. Spectrosc. Radiat. Transf. 168, 158–169 (2016).
    [Crossref]
  20. R. Kandilian, R. L. Heng, and L. Pilon, “Absorption and scattering by fractal aggregates and by their equivalent coated spheres,” J. Quant. Spectrosc. Radiat. Transf. 151, 310–326 (2015).
    [Crossref]
  21. J. Yon, A. Bescond, and F. Liu, “On the radiative properties of soot aggregates part 1: Necking and overlapping,” J. Quant. Spectrosc. Radiat. Transf. 162, 197–206 (2015).
    [Crossref]
  22. K. Skorupski and J. Mroczka, “Effect of the necking phenomenon on the optical properties of soot particles,” J. Quant. Spectrosc. Radiat. Transf. 141, 40–48 (2014).
    [Crossref]
  23. K. Skorupski, J. Mroczka, N. Riefler, H. Oltmann, S. Will, and T. Wriedt, “Impact of morphological parameters onto simulated light scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 119, 53–66 (2013).
    [Crossref]
  24. M. L. Eggersdorfer, D. Kadau, H. J. Herrmann, and S. E. Pratsinis, “Aggregate morphology evolution by sintering: Number and diameter of primary particles,” J. Aerosol Sci. 46, 7–19 (2012).
    [Crossref] [PubMed]
  25. T. Wriedt, J. Wilkens, and J. Hellmers, “Differentiating between sintered and non-sintered aggregates,” in Electromagnetic and Light Scattering XII (2010), pp. 322–325.
  26. K. Skorupski, J. Hellmers, W. Feng, J. Mroczka, T. Wriedt, and L. Mädler, “Influence of sintering necks on the spectral behaviour of ITO clusters using the Discrete Dipole Approximation,” J. Quant. Spectrosc. Radiat. Transf. 159, 11–18 (2015).
    [Crossref]
  27. Y. Huang, C. Jin, and Y. Bao, “Effects of bump/pit on the radiative properties of small particles,” Opt. Lett. 41(7), 1455–1457 (2016).
    [Crossref] [PubMed]
  28. Y. Huang, R. Zhao, J. Jiang, and K. Y. Zhu, “Scattering and absorptive characteristics of a cenosphere,” Int. J. Therm. Sci. 57, 63–70 (2012).
    [Crossref]
  29. C. Y. Niu, H. Qi, X. Huang, L. M. Ruan, and H. P. Tan, “Efficient and robust method for simultaneous reconstruction of the temperature distribution and radiative properties in absorbing, emitting, and scattering media,” J. Quant. Spectrosc. Radiat. Transf. 184, 44–57 (2016).
    [Crossref]
  30. Y. Ren, H. Qi, X. Yu, and L. Ruan, “A forward-angle-scattering method for the determination of optical constants and particle size distribution by collimated laser irradiation,” Opt. Commun. 389, 258–264 (2017).
    [Crossref]
  31. S. R. Forrest and T. A. Witten, “Long-range correlations in smoke-particle aggregates,” J. Phys. Math. Gen. 12(5), L109–L117 (1979).
    [Crossref]
  32. L. Liu and M. I. Mishchenko, “Scattering and radiative properties of complex soot and soot-containing aggregate particles,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 262–273 (2007).
    [Crossref]
  33. N. Doner and F. Liu, “Impact of morphology on the radiative properties of fractal soot aggregates,” J. Quant. Spectrosc. Radiat. Transf. 187, 10–19 (2017).
    [Crossref]
  34. K. Skorupski, “The accuracy of the DDA (Discrete Dipole Approximation) method in determining the optical properties of black carbon fractal-like aggregates,” in M. Bertolotti, J. W. Haus, and A. M. Zheltikov, eds. (2015), Vol. 9503, p. 95030U.
  35. Y. L. Xu, “Electromagnetic scattering by an aggregate of spheres: errata,” Appl. Opt. 37(27), 6494 (1998).
    [Crossref] [PubMed]
  36. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13(11), 2266 (1996).
    [Crossref]
  37. D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
    [Crossref]
  38. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25(11), 2693–2703 (2008).
    [Crossref] [PubMed]
  39. A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
    [Crossref]
  40. M. J. Collinge and B. T. Draine, “Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry,” J. Opt. Soc. Am. A 21(10), 2023–2028 (2004).
    [Crossref] [PubMed]
  41. Y. Xu, “Radiative interaction with arbitrary material bodies,” in Frontiers in Optics (Optical Society of America, 2018), p. JW3A–57.
  42. Y. L. Xu, “Fraunhofer diffraction of electromagnetic radiation by finite periodic structures with regular or irregular overall shapes,” J. Opt. Soc. Am. A 32(1), 12–21 (2015).
    [Crossref] [PubMed]
  43. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 558–589 (2007).
    [Crossref]
  44. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).
    [Crossref]
  45. M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(3 Pt 2), 036703 (2010).
    [Crossref] [PubMed]

2018 (1)

X. W. Chen, C. Y. Zhao, and B. X. Wang, “Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings,” J. Quant. Spectrosc. Radiat. Transf. 210, 116–126 (2018).
[Crossref]

2017 (4)

B. X. Wang and C. Y. Zhao, “Effect of anisotropy on thermal radiation transport in porous ceramics,” Int. J. Therm. Sci. 111, 301–309 (2017).
[Crossref]

J. Chai, Q. Cheng, M. Si, Y. Su, Y. Zhou, and J. Song, “Numerical simulation of white double-layer coating with different submicron particles on the spectral reflectance,” J. Quant. Spectrosc. Radiat. Transf. 189, 176–180 (2017).
[Crossref]

Y. Ren, H. Qi, X. Yu, and L. Ruan, “A forward-angle-scattering method for the determination of optical constants and particle size distribution by collimated laser irradiation,” Opt. Commun. 389, 258–264 (2017).
[Crossref]

N. Doner and F. Liu, “Impact of morphology on the radiative properties of fractal soot aggregates,” J. Quant. Spectrosc. Radiat. Transf. 187, 10–19 (2017).
[Crossref]

2016 (4)

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Effect of morphology on the optical properties of soot aggregated with spheroidal monomers,” J. Quant. Spectrosc. Radiat. Transf. 168, 158–169 (2016).
[Crossref]

Y. Huang, C. Jin, and Y. Bao, “Effects of bump/pit on the radiative properties of small particles,” Opt. Lett. 41(7), 1455–1457 (2016).
[Crossref] [PubMed]

C. Y. Niu, H. Qi, X. Huang, L. M. Ruan, and H. P. Tan, “Efficient and robust method for simultaneous reconstruction of the temperature distribution and radiative properties in absorbing, emitting, and scattering media,” J. Quant. Spectrosc. Radiat. Transf. 184, 44–57 (2016).
[Crossref]

Q. Cheng, J. Chai, and Z. Zhang, “Investigation of double-layer coating pigmented with CuO particles of different concentrations on aesthetic and thermal aspects,” Int. J. Therm. Sci. 105, 36–44 (2016).
[Crossref]

2015 (4)

K. Skorupski, J. Hellmers, W. Feng, J. Mroczka, T. Wriedt, and L. Mädler, “Influence of sintering necks on the spectral behaviour of ITO clusters using the Discrete Dipole Approximation,” J. Quant. Spectrosc. Radiat. Transf. 159, 11–18 (2015).
[Crossref]

R. Kandilian, R. L. Heng, and L. Pilon, “Absorption and scattering by fractal aggregates and by their equivalent coated spheres,” J. Quant. Spectrosc. Radiat. Transf. 151, 310–326 (2015).
[Crossref]

J. Yon, A. Bescond, and F. Liu, “On the radiative properties of soot aggregates part 1: Necking and overlapping,” J. Quant. Spectrosc. Radiat. Transf. 162, 197–206 (2015).
[Crossref]

Y. L. Xu, “Fraunhofer diffraction of electromagnetic radiation by finite periodic structures with regular or irregular overall shapes,” J. Opt. Soc. Am. A 32(1), 12–21 (2015).
[Crossref] [PubMed]

2014 (3)

K. Skorupski and J. Mroczka, “Effect of the necking phenomenon on the optical properties of soot particles,” J. Quant. Spectrosc. Radiat. Transf. 141, 40–48 (2014).
[Crossref]

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transf. 146, 41–58 (2014).
[Crossref]

H. Gonome, M. Baneshi, J. Okajima, A. Komiya, and S. Maruyama, “Controlling the radiative properties of cool black-color coatings pigmented with CuO submicron particles,” J. Quant. Spectrosc. Radiat. Transf. 132, 90–98 (2014).
[Crossref]

2013 (1)

K. Skorupski, J. Mroczka, N. Riefler, H. Oltmann, S. Will, and T. Wriedt, “Impact of morphological parameters onto simulated light scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 119, 53–66 (2013).
[Crossref]

2012 (3)

M. L. Eggersdorfer, D. Kadau, H. J. Herrmann, and S. E. Pratsinis, “Aggregate morphology evolution by sintering: Number and diameter of primary particles,” J. Aerosol Sci. 46, 7–19 (2012).
[Crossref] [PubMed]

Y. Huang, R. Zhao, J. Jiang, and K. Y. Zhu, “Scattering and absorptive characteristics of a cenosphere,” Int. J. Therm. Sci. 57, 63–70 (2012).
[Crossref]

C. Li, Y. Luo, X. Guo, D. Li, J. Mi, L. Sø, P. Hald, Q. Meng, and B. B. Iversen, “Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells,” J. Solid State Chem. 196, 504–510 (2012).
[Crossref]

2011 (2)

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623 (2011).
[Crossref]

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

2010 (2)

M. Baneshi, S. Maruyama, and A. Komiya, “Infrared Radiative Properties of Thin Polyethylene Coating Pigmented With Titanium Dioxide Particles,” J. Heat Transfer 132(2), 023306 (2010).
[Crossref]

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(3 Pt 2), 036703 (2010).
[Crossref] [PubMed]

2009 (2)

M. Baneshi, S. Maruyama, and A. Komiya, “The Effects of Using Some Common White Pigments on Thermal and Aesthetic Performances of Pigmented Coatings,” Journal of Thermal Science and Technology 4(1), 131–145 (2009).
[Crossref]

A. Indluru and T. L. Alford, “Effect of Ag thickness on electrical transport and optical properties of indium tin oxide–Ag–indium tin oxide multilayers,” J. Appl. Phys. 105(12), 123528 (2009).
[Crossref]

2008 (1)

2007 (4)

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[Crossref]

L. Liu and M. I. Mishchenko, “Scattering and radiative properties of complex soot and soot-containing aggregate particles,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 262–273 (2007).
[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 558–589 (2007).
[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).
[Crossref]

2006 (1)

W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
[Crossref]

2005 (1)

J. Ederth, A. Hultåker, G. Niklasson, P. Heszler, A. R. van Doorn, M. J. Jongerius, D. Burgard, and C. G. Granqvist, “Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air,” Appl. Phys., A Mater. Sci. Process. 81(7), 1363–1368 (2005).
[Crossref]

2004 (1)

2002 (1)

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

2000 (1)

W. E. Vargas, “Optimization of the diffuse reflectance of pigmented coatings taking into account multiple scattering,” J. Appl. Phys. 88(7), 4079 (2000).
[Crossref]

1998 (1)

1996 (1)

1984 (1)

I. Hamberg and C. G. Granqvist, “Optical properties of transparent and heatreflecting indium tin oxide films: The role of ionized impurity scattering,” Appl. Phys. Lett. 44(8), 721–723 (1984).
[Crossref]

1982 (1)

I. Hamberg, A. Hjortsberg, and C. G. Granqvist, “High quality transparent heat reflectors of reactively evaporated indium tin oxide,” Appl. Phys. Lett. 40(5), 362–364 (1982).
[Crossref]

1979 (1)

S. R. Forrest and T. A. Witten, “Long-range correlations in smoke-particle aggregates,” J. Phys. Math. Gen. 12(5), L109–L117 (1979).
[Crossref]

Alford, T. L.

A. Indluru and T. L. Alford, “Effect of Ag thickness on electrical transport and optical properties of indium tin oxide–Ag–indium tin oxide multilayers,” J. Appl. Phys. 105(12), 123528 (2009).
[Crossref]

Amador, A.

W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
[Crossref]

Baneshi, M.

H. Gonome, M. Baneshi, J. Okajima, A. Komiya, and S. Maruyama, “Controlling the radiative properties of cool black-color coatings pigmented with CuO submicron particles,” J. Quant. Spectrosc. Radiat. Transf. 132, 90–98 (2014).
[Crossref]

M. Baneshi, S. Maruyama, and A. Komiya, “Infrared Radiative Properties of Thin Polyethylene Coating Pigmented With Titanium Dioxide Particles,” J. Heat Transfer 132(2), 023306 (2010).
[Crossref]

M. Baneshi, S. Maruyama, and A. Komiya, “The Effects of Using Some Common White Pigments on Thermal and Aesthetic Performances of Pigmented Coatings,” Journal of Thermal Science and Technology 4(1), 131–145 (2009).
[Crossref]

Bao, Y.

Benicewicz, B. C.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623 (2011).
[Crossref]

Bescond, A.

J. Yon, A. Bescond, and F. Liu, “On the radiative properties of soot aggregates part 1: Necking and overlapping,” J. Quant. Spectrosc. Radiat. Transf. 162, 197–206 (2015).
[Crossref]

Burgard, D.

J. Ederth, A. Hultåker, G. Niklasson, P. Heszler, A. R. van Doorn, M. J. Jongerius, D. Burgard, and C. G. Granqvist, “Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air,” Appl. Phys., A Mater. Sci. Process. 81(7), 1363–1368 (2005).
[Crossref]

Chai, J.

J. Chai, Q. Cheng, M. Si, Y. Su, Y. Zhou, and J. Song, “Numerical simulation of white double-layer coating with different submicron particles on the spectral reflectance,” J. Quant. Spectrosc. Radiat. Transf. 189, 176–180 (2017).
[Crossref]

Q. Cheng, J. Chai, and Z. Zhang, “Investigation of double-layer coating pigmented with CuO particles of different concentrations on aesthetic and thermal aspects,” Int. J. Therm. Sci. 105, 36–44 (2016).
[Crossref]

Chen, H.

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Effect of morphology on the optical properties of soot aggregated with spheroidal monomers,” J. Quant. Spectrosc. Radiat. Transf. 168, 158–169 (2016).
[Crossref]

Chen, X. W.

X. W. Chen, C. Y. Zhao, and B. X. Wang, “Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings,” J. Quant. Spectrosc. Radiat. Transf. 210, 116–126 (2018).
[Crossref]

Cheng, Q.

J. Chai, Q. Cheng, M. Si, Y. Su, Y. Zhou, and J. Song, “Numerical simulation of white double-layer coating with different submicron particles on the spectral reflectance,” J. Quant. Spectrosc. Radiat. Transf. 189, 176–180 (2017).
[Crossref]

Q. Cheng, J. Chai, and Z. Zhang, “Investigation of double-layer coating pigmented with CuO particles of different concentrations on aesthetic and thermal aspects,” Int. J. Therm. Sci. 105, 36–44 (2016).
[Crossref]

Cheng, T.

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Effect of morphology on the optical properties of soot aggregated with spheroidal monomers,” J. Quant. Spectrosc. Radiat. Transf. 168, 158–169 (2016).
[Crossref]

Collinge, M. J.

Doner, N.

N. Doner and F. Liu, “Impact of morphology on the radiative properties of fractal soot aggregates,” J. Quant. Spectrosc. Radiat. Transf. 187, 10–19 (2017).
[Crossref]

Draine, B.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[Crossref]

Draine, B. T.

Ederth, J.

J. Ederth, A. Hultåker, G. Niklasson, P. Heszler, A. R. van Doorn, M. J. Jongerius, D. Burgard, and C. G. Granqvist, “Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air,” Appl. Phys., A Mater. Sci. Process. 81(7), 1363–1368 (2005).
[Crossref]

Eggersdorfer, M. L.

M. L. Eggersdorfer, D. Kadau, H. J. Herrmann, and S. E. Pratsinis, “Aggregate morphology evolution by sintering: Number and diameter of primary particles,” J. Aerosol Sci. 46, 7–19 (2012).
[Crossref] [PubMed]

Feng, W.

K. Skorupski, J. Hellmers, W. Feng, J. Mroczka, T. Wriedt, and L. Mädler, “Influence of sintering necks on the spectral behaviour of ITO clusters using the Discrete Dipole Approximation,” J. Quant. Spectrosc. Radiat. Transf. 159, 11–18 (2015).
[Crossref]

Flatau, P. J.

Forrest, S. R.

S. R. Forrest and T. A. Witten, “Long-range correlations in smoke-particle aggregates,” J. Phys. Math. Gen. 12(5), L109–L117 (1979).
[Crossref]

Gao, J.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623 (2011).
[Crossref]

Gonome, H.

H. Gonome, M. Baneshi, J. Okajima, A. Komiya, and S. Maruyama, “Controlling the radiative properties of cool black-color coatings pigmented with CuO submicron particles,” J. Quant. Spectrosc. Radiat. Transf. 132, 90–98 (2014).
[Crossref]

Granqvist, C. G.

J. Ederth, A. Hultåker, G. Niklasson, P. Heszler, A. R. van Doorn, M. J. Jongerius, D. Burgard, and C. G. Granqvist, “Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air,” Appl. Phys., A Mater. Sci. Process. 81(7), 1363–1368 (2005).
[Crossref]

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

I. Hamberg and C. G. Granqvist, “Optical properties of transparent and heatreflecting indium tin oxide films: The role of ionized impurity scattering,” Appl. Phys. Lett. 44(8), 721–723 (1984).
[Crossref]

I. Hamberg, A. Hjortsberg, and C. G. Granqvist, “High quality transparent heat reflectors of reactively evaporated indium tin oxide,” Appl. Phys. Lett. 40(5), 362–364 (1982).
[Crossref]

Guo, X.

C. Li, Y. Luo, X. Guo, D. Li, J. Mi, L. Sø, P. Hald, Q. Meng, and B. B. Iversen, “Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells,” J. Solid State Chem. 196, 504–510 (2012).
[Crossref]

Hald, P.

C. Li, Y. Luo, X. Guo, D. Li, J. Mi, L. Sø, P. Hald, Q. Meng, and B. B. Iversen, “Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells,” J. Solid State Chem. 196, 504–510 (2012).
[Crossref]

Hamberg, I.

I. Hamberg and C. G. Granqvist, “Optical properties of transparent and heatreflecting indium tin oxide films: The role of ionized impurity scattering,” Appl. Phys. Lett. 44(8), 721–723 (1984).
[Crossref]

I. Hamberg, A. Hjortsberg, and C. G. Granqvist, “High quality transparent heat reflectors of reactively evaporated indium tin oxide,” Appl. Phys. Lett. 40(5), 362–364 (1982).
[Crossref]

Hellmers, J.

K. Skorupski, J. Hellmers, W. Feng, J. Mroczka, T. Wriedt, and L. Mädler, “Influence of sintering necks on the spectral behaviour of ITO clusters using the Discrete Dipole Approximation,” J. Quant. Spectrosc. Radiat. Transf. 159, 11–18 (2015).
[Crossref]

Heng, R. L.

R. Kandilian, R. L. Heng, and L. Pilon, “Absorption and scattering by fractal aggregates and by their equivalent coated spheres,” J. Quant. Spectrosc. Radiat. Transf. 151, 310–326 (2015).
[Crossref]

Herrmann, H. J.

M. L. Eggersdorfer, D. Kadau, H. J. Herrmann, and S. E. Pratsinis, “Aggregate morphology evolution by sintering: Number and diameter of primary particles,” J. Aerosol Sci. 46, 7–19 (2012).
[Crossref] [PubMed]

Heszler, P.

J. Ederth, A. Hultåker, G. Niklasson, P. Heszler, A. R. van Doorn, M. J. Jongerius, D. Burgard, and C. G. Granqvist, “Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air,” Appl. Phys., A Mater. Sci. Process. 81(7), 1363–1368 (2005).
[Crossref]

Hjortsberg, A.

I. Hamberg, A. Hjortsberg, and C. G. Granqvist, “High quality transparent heat reflectors of reactively evaporated indium tin oxide,” Appl. Phys. Lett. 40(5), 362–364 (1982).
[Crossref]

Hoekstra, A. G.

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(3 Pt 2), 036703 (2010).
[Crossref] [PubMed]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 558–589 (2007).
[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).
[Crossref]

Huang, X.

C. Y. Niu, H. Qi, X. Huang, L. M. Ruan, and H. P. Tan, “Efficient and robust method for simultaneous reconstruction of the temperature distribution and radiative properties in absorbing, emitting, and scattering media,” J. Quant. Spectrosc. Radiat. Transf. 184, 44–57 (2016).
[Crossref]

Huang, Y.

Y. Huang, C. Jin, and Y. Bao, “Effects of bump/pit on the radiative properties of small particles,” Opt. Lett. 41(7), 1455–1457 (2016).
[Crossref] [PubMed]

Y. Huang, R. Zhao, J. Jiang, and K. Y. Zhu, “Scattering and absorptive characteristics of a cenosphere,” Int. J. Therm. Sci. 57, 63–70 (2012).
[Crossref]

Hultåker, A.

J. Ederth, A. Hultåker, G. Niklasson, P. Heszler, A. R. van Doorn, M. J. Jongerius, D. Burgard, and C. G. Granqvist, “Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air,” Appl. Phys., A Mater. Sci. Process. 81(7), 1363–1368 (2005).
[Crossref]

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

Indluru, A.

A. Indluru and T. L. Alford, “Effect of Ag thickness on electrical transport and optical properties of indium tin oxide–Ag–indium tin oxide multilayers,” J. Appl. Phys. 105(12), 123528 (2009).
[Crossref]

Iversen, B. B.

C. Li, Y. Luo, X. Guo, D. Li, J. Mi, L. Sø, P. Hald, Q. Meng, and B. B. Iversen, “Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells,” J. Solid State Chem. 196, 504–510 (2012).
[Crossref]

Jiang, J.

Y. Huang, R. Zhao, J. Jiang, and K. Y. Zhu, “Scattering and absorptive characteristics of a cenosphere,” Int. J. Therm. Sci. 57, 63–70 (2012).
[Crossref]

Jin, C.

Jongerius, M. J.

J. Ederth, A. Hultåker, G. Niklasson, P. Heszler, A. R. van Doorn, M. J. Jongerius, D. Burgard, and C. G. Granqvist, “Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air,” Appl. Phys., A Mater. Sci. Process. 81(7), 1363–1368 (2005).
[Crossref]

Kadau, D.

M. L. Eggersdorfer, D. Kadau, H. J. Herrmann, and S. E. Pratsinis, “Aggregate morphology evolution by sintering: Number and diameter of primary particles,” J. Aerosol Sci. 46, 7–19 (2012).
[Crossref] [PubMed]

Kahnert, M.

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transf. 146, 41–58 (2014).
[Crossref]

Kandilian, R.

R. Kandilian, R. L. Heng, and L. Pilon, “Absorption and scattering by fractal aggregates and by their equivalent coated spheres,” J. Quant. Spectrosc. Radiat. Transf. 151, 310–326 (2015).
[Crossref]

Komiya, A.

H. Gonome, M. Baneshi, J. Okajima, A. Komiya, and S. Maruyama, “Controlling the radiative properties of cool black-color coatings pigmented with CuO submicron particles,” J. Quant. Spectrosc. Radiat. Transf. 132, 90–98 (2014).
[Crossref]

M. Baneshi, S. Maruyama, and A. Komiya, “Infrared Radiative Properties of Thin Polyethylene Coating Pigmented With Titanium Dioxide Particles,” J. Heat Transfer 132(2), 023306 (2010).
[Crossref]

M. Baneshi, S. Maruyama, and A. Komiya, “The Effects of Using Some Common White Pigments on Thermal and Aesthetic Performances of Pigmented Coatings,” Journal of Thermal Science and Technology 4(1), 131–145 (2009).
[Crossref]

Li, C.

C. Li, Y. Luo, X. Guo, D. Li, J. Mi, L. Sø, P. Hald, Q. Meng, and B. B. Iversen, “Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells,” J. Solid State Chem. 196, 504–510 (2012).
[Crossref]

Li, D.

C. Li, Y. Luo, X. Guo, D. Li, J. Mi, L. Sø, P. Hald, Q. Meng, and B. B. Iversen, “Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells,” J. Solid State Chem. 196, 504–510 (2012).
[Crossref]

Li, Y.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623 (2011).
[Crossref]

Lindqvist, H.

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transf. 146, 41–58 (2014).
[Crossref]

Liu, F.

N. Doner and F. Liu, “Impact of morphology on the radiative properties of fractal soot aggregates,” J. Quant. Spectrosc. Radiat. Transf. 187, 10–19 (2017).
[Crossref]

J. Yon, A. Bescond, and F. Liu, “On the radiative properties of soot aggregates part 1: Necking and overlapping,” J. Quant. Spectrosc. Radiat. Transf. 162, 197–206 (2015).
[Crossref]

Liu, L.

L. Liu and M. I. Mishchenko, “Scattering and radiative properties of complex soot and soot-containing aggregate particles,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 262–273 (2007).
[Crossref]

Lumme, K.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[Crossref]

Luo, Y.

C. Li, Y. Luo, X. Guo, D. Li, J. Mi, L. Sø, P. Hald, Q. Meng, and B. B. Iversen, “Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells,” J. Solid State Chem. 196, 504–510 (2012).
[Crossref]

Mackowski, D. W.

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13(11), 2266 (1996).
[Crossref]

Mädler, L.

K. Skorupski, J. Hellmers, W. Feng, J. Mroczka, T. Wriedt, and L. Mädler, “Influence of sintering necks on the spectral behaviour of ITO clusters using the Discrete Dipole Approximation,” J. Quant. Spectrosc. Radiat. Transf. 159, 11–18 (2015).
[Crossref]

Maltsev, V. P.

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).
[Crossref]

Maruyama, S.

H. Gonome, M. Baneshi, J. Okajima, A. Komiya, and S. Maruyama, “Controlling the radiative properties of cool black-color coatings pigmented with CuO submicron particles,” J. Quant. Spectrosc. Radiat. Transf. 132, 90–98 (2014).
[Crossref]

M. Baneshi, S. Maruyama, and A. Komiya, “Infrared Radiative Properties of Thin Polyethylene Coating Pigmented With Titanium Dioxide Particles,” J. Heat Transfer 132(2), 023306 (2010).
[Crossref]

M. Baneshi, S. Maruyama, and A. Komiya, “The Effects of Using Some Common White Pigments on Thermal and Aesthetic Performances of Pigmented Coatings,” Journal of Thermal Science and Technology 4(1), 131–145 (2009).
[Crossref]

Meng, Q.

C. Li, Y. Luo, X. Guo, D. Li, J. Mi, L. Sø, P. Hald, Q. Meng, and B. B. Iversen, “Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells,” J. Solid State Chem. 196, 504–510 (2012).
[Crossref]

Mi, J.

C. Li, Y. Luo, X. Guo, D. Li, J. Mi, L. Sø, P. Hald, Q. Meng, and B. B. Iversen, “Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells,” J. Solid State Chem. 196, 504–510 (2012).
[Crossref]

Min, M.

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(3 Pt 2), 036703 (2010).
[Crossref] [PubMed]

Mishchenko, M. I.

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

L. Liu and M. I. Mishchenko, “Scattering and radiative properties of complex soot and soot-containing aggregate particles,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 262–273 (2007).
[Crossref]

D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13(11), 2266 (1996).
[Crossref]

Mroczka, J.

K. Skorupski, J. Hellmers, W. Feng, J. Mroczka, T. Wriedt, and L. Mädler, “Influence of sintering necks on the spectral behaviour of ITO clusters using the Discrete Dipole Approximation,” J. Quant. Spectrosc. Radiat. Transf. 159, 11–18 (2015).
[Crossref]

K. Skorupski and J. Mroczka, “Effect of the necking phenomenon on the optical properties of soot particles,” J. Quant. Spectrosc. Radiat. Transf. 141, 40–48 (2014).
[Crossref]

K. Skorupski, J. Mroczka, N. Riefler, H. Oltmann, S. Will, and T. Wriedt, “Impact of morphological parameters onto simulated light scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 119, 53–66 (2013).
[Crossref]

Muinonen, K.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[Crossref]

Niklasson, G.

J. Ederth, A. Hultåker, G. Niklasson, P. Heszler, A. R. van Doorn, M. J. Jongerius, D. Burgard, and C. G. Granqvist, “Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air,” Appl. Phys., A Mater. Sci. Process. 81(7), 1363–1368 (2005).
[Crossref]

Niklasson, G. A.

W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
[Crossref]

Niu, C. Y.

C. Y. Niu, H. Qi, X. Huang, L. M. Ruan, and H. P. Tan, “Efficient and robust method for simultaneous reconstruction of the temperature distribution and radiative properties in absorbing, emitting, and scattering media,” J. Quant. Spectrosc. Radiat. Transf. 184, 44–57 (2016).
[Crossref]

Nousiainen, T.

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transf. 146, 41–58 (2014).
[Crossref]

Okajima, J.

H. Gonome, M. Baneshi, J. Okajima, A. Komiya, and S. Maruyama, “Controlling the radiative properties of cool black-color coatings pigmented with CuO submicron particles,” J. Quant. Spectrosc. Radiat. Transf. 132, 90–98 (2014).
[Crossref]

Oltmann, H.

K. Skorupski, J. Mroczka, N. Riefler, H. Oltmann, S. Will, and T. Wriedt, “Impact of morphological parameters onto simulated light scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 119, 53–66 (2013).
[Crossref]

Penttilä, A.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[Crossref]

Pilon, L.

R. Kandilian, R. L. Heng, and L. Pilon, “Absorption and scattering by fractal aggregates and by their equivalent coated spheres,” J. Quant. Spectrosc. Radiat. Transf. 151, 310–326 (2015).
[Crossref]

Pratsinis, S. E.

M. L. Eggersdorfer, D. Kadau, H. J. Herrmann, and S. E. Pratsinis, “Aggregate morphology evolution by sintering: Number and diameter of primary particles,” J. Aerosol Sci. 46, 7–19 (2012).
[Crossref] [PubMed]

Qi, H.

Y. Ren, H. Qi, X. Yu, and L. Ruan, “A forward-angle-scattering method for the determination of optical constants and particle size distribution by collimated laser irradiation,” Opt. Commun. 389, 258–264 (2017).
[Crossref]

C. Y. Niu, H. Qi, X. Huang, L. M. Ruan, and H. P. Tan, “Efficient and robust method for simultaneous reconstruction of the temperature distribution and radiative properties in absorbing, emitting, and scattering media,” J. Quant. Spectrosc. Radiat. Transf. 184, 44–57 (2016).
[Crossref]

Rahola, J.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[Crossref]

Ren, Y.

Y. Ren, H. Qi, X. Yu, and L. Ruan, “A forward-angle-scattering method for the determination of optical constants and particle size distribution by collimated laser irradiation,” Opt. Commun. 389, 258–264 (2017).
[Crossref]

Riefler, N.

K. Skorupski, J. Mroczka, N. Riefler, H. Oltmann, S. Will, and T. Wriedt, “Impact of morphological parameters onto simulated light scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 119, 53–66 (2013).
[Crossref]

Ruan, L.

Y. Ren, H. Qi, X. Yu, and L. Ruan, “A forward-angle-scattering method for the determination of optical constants and particle size distribution by collimated laser irradiation,” Opt. Commun. 389, 258–264 (2017).
[Crossref]

Ruan, L. M.

C. Y. Niu, H. Qi, X. Huang, L. M. Ruan, and H. P. Tan, “Efficient and robust method for simultaneous reconstruction of the temperature distribution and radiative properties in absorbing, emitting, and scattering media,” J. Quant. Spectrosc. Radiat. Transf. 184, 44–57 (2016).
[Crossref]

Rungta, A.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623 (2011).
[Crossref]

Schadler, L. S.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623 (2011).
[Crossref]

Shkuratov, Y.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[Crossref]

Si, M.

J. Chai, Q. Cheng, M. Si, Y. Su, Y. Zhou, and J. Song, “Numerical simulation of white double-layer coating with different submicron particles on the spectral reflectance,” J. Quant. Spectrosc. Radiat. Transf. 189, 176–180 (2017).
[Crossref]

Siegel, R. W.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623 (2011).
[Crossref]

Skorupski, K.

K. Skorupski, J. Hellmers, W. Feng, J. Mroczka, T. Wriedt, and L. Mädler, “Influence of sintering necks on the spectral behaviour of ITO clusters using the Discrete Dipole Approximation,” J. Quant. Spectrosc. Radiat. Transf. 159, 11–18 (2015).
[Crossref]

K. Skorupski and J. Mroczka, “Effect of the necking phenomenon on the optical properties of soot particles,” J. Quant. Spectrosc. Radiat. Transf. 141, 40–48 (2014).
[Crossref]

K. Skorupski, J. Mroczka, N. Riefler, H. Oltmann, S. Will, and T. Wriedt, “Impact of morphological parameters onto simulated light scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 119, 53–66 (2013).
[Crossref]

Sø, L.

C. Li, Y. Luo, X. Guo, D. Li, J. Mi, L. Sø, P. Hald, Q. Meng, and B. B. Iversen, “Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells,” J. Solid State Chem. 196, 504–510 (2012).
[Crossref]

Song, J.

J. Chai, Q. Cheng, M. Si, Y. Su, Y. Zhou, and J. Song, “Numerical simulation of white double-layer coating with different submicron particles on the spectral reflectance,” J. Quant. Spectrosc. Radiat. Transf. 189, 176–180 (2017).
[Crossref]

Su, Y.

J. Chai, Q. Cheng, M. Si, Y. Su, Y. Zhou, and J. Song, “Numerical simulation of white double-layer coating with different submicron particles on the spectral reflectance,” J. Quant. Spectrosc. Radiat. Transf. 189, 176–180 (2017).
[Crossref]

Tan, H. P.

C. Y. Niu, H. Qi, X. Huang, L. M. Ruan, and H. P. Tan, “Efficient and robust method for simultaneous reconstruction of the temperature distribution and radiative properties in absorbing, emitting, and scattering media,” J. Quant. Spectrosc. Radiat. Transf. 184, 44–57 (2016).
[Crossref]

Tao, P.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623 (2011).
[Crossref]

van Doorn, A. R.

J. Ederth, A. Hultåker, G. Niklasson, P. Heszler, A. R. van Doorn, M. J. Jongerius, D. Burgard, and C. G. Granqvist, “Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air,” Appl. Phys., A Mater. Sci. Process. 81(7), 1363–1368 (2005).
[Crossref]

Vargas, W. E.

W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
[Crossref]

W. E. Vargas, “Optimization of the diffuse reflectance of pigmented coatings taking into account multiple scattering,” J. Appl. Phys. 88(7), 4079 (2000).
[Crossref]

Viswanath, A.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623 (2011).
[Crossref]

Wang, B. X.

X. W. Chen, C. Y. Zhao, and B. X. Wang, “Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings,” J. Quant. Spectrosc. Radiat. Transf. 210, 116–126 (2018).
[Crossref]

B. X. Wang and C. Y. Zhao, “Effect of anisotropy on thermal radiation transport in porous ceramics,” Int. J. Therm. Sci. 111, 301–309 (2017).
[Crossref]

Will, S.

K. Skorupski, J. Mroczka, N. Riefler, H. Oltmann, S. Will, and T. Wriedt, “Impact of morphological parameters onto simulated light scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 119, 53–66 (2013).
[Crossref]

Witten, T. A.

S. R. Forrest and T. A. Witten, “Long-range correlations in smoke-particle aggregates,” J. Phys. Math. Gen. 12(5), L109–L117 (1979).
[Crossref]

Wriedt, T.

K. Skorupski, J. Hellmers, W. Feng, J. Mroczka, T. Wriedt, and L. Mädler, “Influence of sintering necks on the spectral behaviour of ITO clusters using the Discrete Dipole Approximation,” J. Quant. Spectrosc. Radiat. Transf. 159, 11–18 (2015).
[Crossref]

K. Skorupski, J. Mroczka, N. Riefler, H. Oltmann, S. Will, and T. Wriedt, “Impact of morphological parameters onto simulated light scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 119, 53–66 (2013).
[Crossref]

Wu, Y.

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Effect of morphology on the optical properties of soot aggregated with spheroidal monomers,” J. Quant. Spectrosc. Radiat. Transf. 168, 158–169 (2016).
[Crossref]

Xu, Y. L.

Yon, J.

J. Yon, A. Bescond, and F. Liu, “On the radiative properties of soot aggregates part 1: Necking and overlapping,” J. Quant. Spectrosc. Radiat. Transf. 162, 197–206 (2015).
[Crossref]

Yu, X.

Y. Ren, H. Qi, X. Yu, and L. Ruan, “A forward-angle-scattering method for the determination of optical constants and particle size distribution by collimated laser irradiation,” Opt. Commun. 389, 258–264 (2017).
[Crossref]

Yurkin, M. A.

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(3 Pt 2), 036703 (2010).
[Crossref] [PubMed]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 558–589 (2007).
[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).
[Crossref]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[Crossref]

Zhang, Z.

Q. Cheng, J. Chai, and Z. Zhang, “Investigation of double-layer coating pigmented with CuO particles of different concentrations on aesthetic and thermal aspects,” Int. J. Therm. Sci. 105, 36–44 (2016).
[Crossref]

Zhao, C. Y.

X. W. Chen, C. Y. Zhao, and B. X. Wang, “Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings,” J. Quant. Spectrosc. Radiat. Transf. 210, 116–126 (2018).
[Crossref]

B. X. Wang and C. Y. Zhao, “Effect of anisotropy on thermal radiation transport in porous ceramics,” Int. J. Therm. Sci. 111, 301–309 (2017).
[Crossref]

Zhao, R.

Y. Huang, R. Zhao, J. Jiang, and K. Y. Zhu, “Scattering and absorptive characteristics of a cenosphere,” Int. J. Therm. Sci. 57, 63–70 (2012).
[Crossref]

Zheng, L.

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Effect of morphology on the optical properties of soot aggregated with spheroidal monomers,” J. Quant. Spectrosc. Radiat. Transf. 168, 158–169 (2016).
[Crossref]

Zhou, Y.

J. Chai, Q. Cheng, M. Si, Y. Su, Y. Zhou, and J. Song, “Numerical simulation of white double-layer coating with different submicron particles on the spectral reflectance,” J. Quant. Spectrosc. Radiat. Transf. 189, 176–180 (2017).
[Crossref]

Zhu, K. Y.

Y. Huang, R. Zhao, J. Jiang, and K. Y. Zhu, “Scattering and absorptive characteristics of a cenosphere,” Int. J. Therm. Sci. 57, 63–70 (2012).
[Crossref]

Zubko, E.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

I. Hamberg and C. G. Granqvist, “Optical properties of transparent and heatreflecting indium tin oxide films: The role of ionized impurity scattering,” Appl. Phys. Lett. 44(8), 721–723 (1984).
[Crossref]

I. Hamberg, A. Hjortsberg, and C. G. Granqvist, “High quality transparent heat reflectors of reactively evaporated indium tin oxide,” Appl. Phys. Lett. 40(5), 362–364 (1982).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. Ederth, A. Hultåker, G. Niklasson, P. Heszler, A. R. van Doorn, M. J. Jongerius, D. Burgard, and C. G. Granqvist, “Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air,” Appl. Phys., A Mater. Sci. Process. 81(7), 1363–1368 (2005).
[Crossref]

Int. J. Therm. Sci. (3)

Q. Cheng, J. Chai, and Z. Zhang, “Investigation of double-layer coating pigmented with CuO particles of different concentrations on aesthetic and thermal aspects,” Int. J. Therm. Sci. 105, 36–44 (2016).
[Crossref]

B. X. Wang and C. Y. Zhao, “Effect of anisotropy on thermal radiation transport in porous ceramics,” Int. J. Therm. Sci. 111, 301–309 (2017).
[Crossref]

Y. Huang, R. Zhao, J. Jiang, and K. Y. Zhu, “Scattering and absorptive characteristics of a cenosphere,” Int. J. Therm. Sci. 57, 63–70 (2012).
[Crossref]

J. Aerosol Sci. (1)

M. L. Eggersdorfer, D. Kadau, H. J. Herrmann, and S. E. Pratsinis, “Aggregate morphology evolution by sintering: Number and diameter of primary particles,” J. Aerosol Sci. 46, 7–19 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (2)

W. E. Vargas, “Optimization of the diffuse reflectance of pigmented coatings taking into account multiple scattering,” J. Appl. Phys. 88(7), 4079 (2000).
[Crossref]

A. Indluru and T. L. Alford, “Effect of Ag thickness on electrical transport and optical properties of indium tin oxide–Ag–indium tin oxide multilayers,” J. Appl. Phys. 105(12), 123528 (2009).
[Crossref]

J. Heat Transfer (1)

M. Baneshi, S. Maruyama, and A. Komiya, “Infrared Radiative Properties of Thin Polyethylene Coating Pigmented With Titanium Dioxide Particles,” J. Heat Transfer 132(2), 023306 (2010).
[Crossref]

J. Mater. Chem. (1)

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623 (2011).
[Crossref]

J. Opt. Soc. Am. A (4)

J. Phys. Math. Gen. (1)

S. R. Forrest and T. A. Witten, “Long-range correlations in smoke-particle aggregates,” J. Phys. Math. Gen. 12(5), L109–L117 (1979).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (17)

L. Liu and M. I. Mishchenko, “Scattering and radiative properties of complex soot and soot-containing aggregate particles,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 262–273 (2007).
[Crossref]

N. Doner and F. Liu, “Impact of morphology on the radiative properties of fractal soot aggregates,” J. Quant. Spectrosc. Radiat. Transf. 187, 10–19 (2017).
[Crossref]

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

C. Y. Niu, H. Qi, X. Huang, L. M. Ruan, and H. P. Tan, “Efficient and robust method for simultaneous reconstruction of the temperature distribution and radiative properties in absorbing, emitting, and scattering media,” J. Quant. Spectrosc. Radiat. Transf. 184, 44–57 (2016).
[Crossref]

K. Skorupski, J. Hellmers, W. Feng, J. Mroczka, T. Wriedt, and L. Mädler, “Influence of sintering necks on the spectral behaviour of ITO clusters using the Discrete Dipole Approximation,” J. Quant. Spectrosc. Radiat. Transf. 159, 11–18 (2015).
[Crossref]

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transf. 146, 41–58 (2014).
[Crossref]

Y. Wu, T. Cheng, L. Zheng, and H. Chen, “Effect of morphology on the optical properties of soot aggregated with spheroidal monomers,” J. Quant. Spectrosc. Radiat. Transf. 168, 158–169 (2016).
[Crossref]

R. Kandilian, R. L. Heng, and L. Pilon, “Absorption and scattering by fractal aggregates and by their equivalent coated spheres,” J. Quant. Spectrosc. Radiat. Transf. 151, 310–326 (2015).
[Crossref]

J. Yon, A. Bescond, and F. Liu, “On the radiative properties of soot aggregates part 1: Necking and overlapping,” J. Quant. Spectrosc. Radiat. Transf. 162, 197–206 (2015).
[Crossref]

K. Skorupski and J. Mroczka, “Effect of the necking phenomenon on the optical properties of soot particles,” J. Quant. Spectrosc. Radiat. Transf. 141, 40–48 (2014).
[Crossref]

K. Skorupski, J. Mroczka, N. Riefler, H. Oltmann, S. Will, and T. Wriedt, “Impact of morphological parameters onto simulated light scattering patterns,” J. Quant. Spectrosc. Radiat. Transf. 119, 53–66 (2013).
[Crossref]

H. Gonome, M. Baneshi, J. Okajima, A. Komiya, and S. Maruyama, “Controlling the radiative properties of cool black-color coatings pigmented with CuO submicron particles,” J. Quant. Spectrosc. Radiat. Transf. 132, 90–98 (2014).
[Crossref]

X. W. Chen, C. Y. Zhao, and B. X. Wang, “Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings,” J. Quant. Spectrosc. Radiat. Transf. 210, 116–126 (2018).
[Crossref]

J. Chai, Q. Cheng, M. Si, Y. Su, Y. Zhou, and J. Song, “Numerical simulation of white double-layer coating with different submicron particles on the spectral reflectance,” J. Quant. Spectrosc. Radiat. Transf. 189, 176–180 (2017).
[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 558–589 (2007).
[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).
[Crossref]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[Crossref]

J. Solid State Chem. (1)

C. Li, Y. Luo, X. Guo, D. Li, J. Mi, L. Sø, P. Hald, Q. Meng, and B. B. Iversen, “Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells,” J. Solid State Chem. 196, 504–510 (2012).
[Crossref]

Journal of Thermal Science and Technology (1)

M. Baneshi, S. Maruyama, and A. Komiya, “The Effects of Using Some Common White Pigments on Thermal and Aesthetic Performances of Pigmented Coatings,” Journal of Thermal Science and Technology 4(1), 131–145 (2009).
[Crossref]

Opt. Commun. (2)

W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
[Crossref]

Y. Ren, H. Qi, X. Yu, and L. Ruan, “A forward-angle-scattering method for the determination of optical constants and particle size distribution by collimated laser irradiation,” Opt. Commun. 389, 258–264 (2017).
[Crossref]

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(3 Pt 2), 036703 (2010).
[Crossref] [PubMed]

Thin Solid Films (1)

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

Other (4)

H. Liu, C. Chang, C. Lin, and P. Yu, “Scattering analysis of the indium-tin-oxide (ITO) nanowhiskers on ITO film substrate for thin film solar cell,” in Proceedings of SPIE-The International Society for Optical Engineering, A. Freundlich and J. F. F. Guillemoles, eds. (2012), Vol. 8256, p. 82560A.
[Crossref]

T. Wriedt, J. Wilkens, and J. Hellmers, “Differentiating between sintered and non-sintered aggregates,” in Electromagnetic and Light Scattering XII (2010), pp. 322–325.

K. Skorupski, “The accuracy of the DDA (Discrete Dipole Approximation) method in determining the optical properties of black carbon fractal-like aggregates,” in M. Bertolotti, J. W. Haus, and A. M. Zheltikov, eds. (2015), Vol. 9503, p. 95030U.

Y. Xu, “Radiative interaction with arbitrary material bodies,” in Frontiers in Optics (Optical Society of America, 2018), p. JW3A–57.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The point-touch and ball-necking aggregate models built by the “particle superposition model”.
Fig. 2
Fig. 2 Fractal-like aggregate models composed of N p =25 primary particles with (a) point-touch, η=0; and with necking connector (b) η=0.2; (c) η=0.4; (d) η=0.6 and (e) η=0.8.
Fig. 3
Fig. 3 Flow chart of the arithmetic for generating the sintered aggregate with ball-necking structure.
Fig. 4
Fig. 4 Complex refractive indices of ITO [26] and TiO2 [10].
Fig. 5
Fig. 5 Dependence of C ext on λ for the ITO clusters with two kinds of necking structures.
Fig. 6
Fig. 6 Dependence of C ext on λ for ITO and TiO2 clusters with different η.
Fig. 7
Fig. 7 Dependence of Q sca,back on λ for TiO2 and ITO clusters with different η.
Fig. 8
Fig. 8 Dependence of g on λ for TiO2 and ITO clusters with different η
Fig. 9
Fig. 9 Dependence of C ext on λ for TiO2 clusters with different η.
Fig. 10
Fig. 10 Dependence of C ext on λ for ITO clusters with different η.
Fig. 11
Fig. 11 Dependence of C ext on λ within the range of 0.3-0.6 μm for TiO2 clusters with different η.

Tables (2)

Tables Icon

Table 1 The morphological parameters of ITO and TiO2 clusters

Tables Icon

Table 2 The relative errors between the extinction factors from DDA and Mie

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N p = k f ( R g R p ) D f
R g 2 = 1 N p i=1 N P ( r i r 0 ) 2
η= r R 1
Q sca,back =( d C sca,back dΩ )/π a eff 2

Metrics